mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2025-01-23 02:48:54 +00:00
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
Sure! Here's an example of a Python script that demonstrates the DBSCAN algorithm using the iris dataset from scikit-learn:
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from sklearn import datasets
|
|
from sklearn.cluster import DBSCAN
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
# Load the iris dataset
|
|
iris = datasets.load_iris()
|
|
X = iris.data
|
|
|
|
# Scale the features
|
|
X = StandardScaler().fit_transform(X)
|
|
|
|
# Apply DBSCAN
|
|
dbscan = DBSCAN(eps=0.3, min_samples=5)
|
|
dbscan.fit(X)
|
|
|
|
# Get the predicted labels and number of clusters
|
|
labels = dbscan.labels_
|
|
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
|
|
n_noise = list(labels).count(-1)
|
|
|
|
# Plot the results
|
|
unique_labels = set(labels)
|
|
colors = [plt.cm.Spectral(each)
|
|
for each in np.linspace(0, 1, len(unique_labels))]
|
|
|
|
for k, col in zip(unique_labels, colors):
|
|
if k == -1:
|
|
# Black used for noise
|
|
col = [0, 0, 0, 1]
|
|
|
|
class_member_mask = (labels == k)
|
|
|
|
xy = X[class_member_mask & core_samples_mask]
|
|
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
|
|
markeredgecolor='k', markersize=6)
|
|
|
|
plt.title(f"Estimated number of clusters: {n_clusters}, Noise points: {n_noise}")
|
|
plt.show()
|
|
```
|
|
|
|
In this script, we first load the iris dataset and normalize the features using `StandardScaler`. Then we apply DBSCAN with `eps=0.3` (maximum distance between samples to form a cluster) and `min_samples=5` (minimum number of samples in a cluster).
|
|
|
|
Next, we retrieve the predicted labels and calculate the number of clusters and noise points. Finally, we plot the data points, highlighting the clusters and noise using different colors.
|
|
|
|
Note that you may need to have scikit-learn and matplotlib installed for this script to work. |