h4cker/ai_security/ML_Fundamentals/ai_generated/Neural_Networks.py

63 lines
2.7 KiB
Python
Raw Normal View History

2023-09-05 02:57:22 +00:00
import numpy as np
import matplotlib.pyplot as plt
# Create a simple neural network with one input layer, one hidden layer, and one output layer
class NeuralNetwork:
def __init__(self):
self.weights1 = np.random.rand(3, 4) # weight matrix between input and hidden layer
self.weights2 = np.random.rand(4, 1) # weight matrix between hidden and output layer
self.bias1 = np.random.rand(1, 4) # bias matrix for hidden layer
self.bias2 = np.random.rand(1, 1) # bias matrix for output layer
def sigmoid(self, x):
# Sigmoid activation function
return 1 / (1 + np.exp(-x))
def forward_propagation(self, X):
# Perform forward propagation
self.hidden_layer = self.sigmoid(np.dot(X, self.weights1) + self.bias1) # calculate hidden layer activations
self.output_layer = self.sigmoid(np.dot(self.hidden_layer, self.weights2) + self.bias2) # calculate output layer activations
return self.output_layer
def backward_propagation(self, X, y, output):
# Perform backward propagation to update weights and biases
self.error = y - output # calculate error
self.delta_output = self.error * (output * (1 - output)) # calculate output gradient
self.delta_hidden = np.dot(self.delta_output, self.weights2.T) * (self.hidden_layer * (1 - self.hidden_layer)) # calculate hidden gradient
self.weights2 += np.dot(self.hidden_layer.T, self.delta_output) # update weights between hidden and output layer
self.weights1 += np.dot(X.T, self.delta_hidden) # update weights between input and hidden layer
self.bias2 += np.sum(self.delta_output, axis=0) # update bias for output layer
self.bias1 += np.sum(self.delta_hidden, axis=0) # update bias for hidden layer
def train(self, X, y, epochs):
# Train the neural network
for _ in range(epochs):
output = self.forward_propagation(X)
self.backward_propagation(X, y, output)
def predict(self, X):
# Make predictions
return self.forward_propagation(X)
# Create a sample dataset for XOR gate
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
# Create and train the neural network
nn = NeuralNetwork()
nn.train(X, y, epochs=10000)
# Make predictions on the same dataset
predictions = nn.predict(X)
# Print the predictions
print("Predictions:")
for i in range(len(predictions)):
print(f"Input: {X[i]}, Predicted Output: {predictions[i]}")
# Plot the predictions
plt.scatter(X[:, 0], X[:, 1], c=predictions.flatten(), cmap='viridis')
plt.xlabel("Input 1")
plt.ylabel("Input 2")
plt.title("Neural Network Predictions for XOR Gate")
plt.show()