mirror of
https://github.com/EbookFoundation/free-programming-books.git
synced 2024-12-18 09:26:10 +00:00
Compare commits
8 Commits
fd308c5e83
...
cc1744ab26
Author | SHA1 | Date | |
---|---|---|---|
|
cc1744ab26 | ||
|
267ec88e4d | ||
|
53ddc7852e | ||
|
6a2399cfb9 | ||
|
c577401c30 | ||
|
8557449222 | ||
|
a3d83cbf6f | ||
|
28efb756b6 |
@ -405,7 +405,7 @@ Books that cover a specific programming language can be found in the [BY PROGRAM
|
||||
### Machine Learning
|
||||
|
||||
* [A Brief Introduction to Machine Learning for Engineers](https://arxiv.org/pdf/1709.02840.pdf) - Osvaldo Simeone (PDF)
|
||||
* [A Brief Introduction to Neural Networks](https://www.dkriesel.com/en/science/neural_networks)
|
||||
* [A Brief Introduction to Neural Networks](https://www.dkriesel.com/en/science/neural_networks) (CC BY-ND)
|
||||
* [A Comprehensive Guide to Machine Learning](https://www.eecs189.org/static/resources/comprehensive-guide.pdf) - Soroush Nasiriany, Garrett Thomas, William Wang, Alex Yang (PDF)
|
||||
* [A Course in Machine Learning](http://ciml.info/dl/v0_9/ciml-v0_9-all.pdf) (PDF)
|
||||
* [A First Encounter with Machine Learning](https://web.archive.org/web/20210420163002/https://www.ics.uci.edu/~welling/teaching/ICS273Afall11/IntroMLBook.pdf) - Max Welling (PDF) *(:card_file_box: archived)*
|
||||
@ -420,11 +420,11 @@ Books that cover a specific programming language can be found in the [BY PROGRAM
|
||||
* [Dive into Deep Learning](https://d2l.ai)
|
||||
* [Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises](https://web.stanford.edu/group/pdplab/pdphandbook) - James L. McClelland
|
||||
* [Foundations of Machine Learning, Second Edition](https://mitpress.ublish.com/ebook/foundations-of-machine-learning--2-preview/7093/Cover) - Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar
|
||||
* [Free and Open Machine Learning](https://nocomplexity.com/documents/fossml/) - Maikel Mardjan (HTML)
|
||||
* [Free and Open Machine Learning](https://nocomplexity.com/documents/fossml/) - Maikel Mardjan (HTML) (CC BY-SA)
|
||||
* [Gaussian Processes for Machine Learning](https://www.gaussianprocess.org/gpml/) - Carl Edward Rasmussen, Christopher K.I. Williams
|
||||
* [IBM Machine Learning for Dummies](https://www.ibm.com/downloads/cas/GB8ZMQZ3) - Judith Hurwitz, Daniel Kirsch
|
||||
* [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/) - David J.C. MacKay
|
||||
* [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) - Christoph Molnar
|
||||
* [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) (CC BY-NC-SA) - Christoph Molnar
|
||||
* [Introduction to CNTK Succinctly](https://www.syncfusion.com/ebooks/cntk_succinctly) - James McCaffrey
|
||||
* [Introduction to Machine Learning](https://arxiv.org/abs/0904.3664v1) - Amnon Shashua
|
||||
* [Keras Succinctly](https://www.syncfusion.com/ebooks/keras-succinctly) - James McCaffrey
|
||||
|
Loading…
Reference in New Issue
Block a user