mirror of
https://github.com/EbookFoundation/free-programming-books.git
synced 2025-01-23 02:48:52 +00:00
Compare commits
4 Commits
09ed446b59
...
e9fdee1bd4
Author | SHA1 | Date | |
---|---|---|---|
|
e9fdee1bd4 | ||
|
2d1bd6bf03 | ||
|
1e86318ce2 | ||
|
6114dc94e5 |
@ -868,6 +868,7 @@ Kerridge (PDF) (email address *requested*, not required)
|
|||||||
* [Crypto 101 - Crypto for everyone](https://www.crypto101.io)
|
* [Crypto 101 - Crypto for everyone](https://www.crypto101.io)
|
||||||
* [Cryptography](https://en.wikibooks.org/wiki/Cryptography) - Wikibooks (HTML) *(:construction: in process)*
|
* [Cryptography](https://en.wikibooks.org/wiki/Cryptography) - Wikibooks (HTML) *(:construction: in process)*
|
||||||
* [CryptoParty Handbook](https://unglue.it/work/141611/)
|
* [CryptoParty Handbook](https://unglue.it/work/141611/)
|
||||||
|
* [Fuzzing Book](https://www.fuzzingbook.org) - Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, Christian Holler (HTML)
|
||||||
* [Gray Hat Hacking: The Ethical Hacker's Handbook](https://pages.cs.wisc.edu/~ace/media/gray-hat-hacking.pdf) - Allen Harper, Jonathan Ness, Chris Eagle, Shon Harris, Gideon Lenkey, Terron Williams (PDF)
|
* [Gray Hat Hacking: The Ethical Hacker's Handbook](https://pages.cs.wisc.edu/~ace/media/gray-hat-hacking.pdf) - Allen Harper, Jonathan Ness, Chris Eagle, Shon Harris, Gideon Lenkey, Terron Williams (PDF)
|
||||||
* [Handbook of Applied Cryptography](https://cacr.uwaterloo.ca/hac/index.html)
|
* [Handbook of Applied Cryptography](https://cacr.uwaterloo.ca/hac/index.html)
|
||||||
* [How HTTPS works](https://howhttps.works) - dnsimple
|
* [How HTTPS works](https://howhttps.works) - dnsimple
|
||||||
@ -945,6 +946,7 @@ Kerridge (PDF) (email address *requested*, not required)
|
|||||||
* [Category Theory for Programmers](https://github.com/hmemcpy/milewski-ctfp-pdf) - Bartosz Milewski (PDF)
|
* [Category Theory for Programmers](https://github.com/hmemcpy/milewski-ctfp-pdf) - Bartosz Milewski (PDF)
|
||||||
* [Delftse Foundations of Computation](https://textbooks.open.tudelft.nl/textbooks/catalog/book/13) - Stefan Hugtenburgand, Neil Yorke-Smith @ TU Delft Open (PDF)
|
* [Delftse Foundations of Computation](https://textbooks.open.tudelft.nl/textbooks/catalog/book/13) - Stefan Hugtenburgand, Neil Yorke-Smith @ TU Delft Open (PDF)
|
||||||
* [Homotopy Type Theory: Univalent Foundations of Mathematics](https://homotopytypetheory.org/book/) (PDF)
|
* [Homotopy Type Theory: Univalent Foundations of Mathematics](https://homotopytypetheory.org/book/) (PDF)
|
||||||
|
* [Introduction to Theoretical Computer Science](https://files.boazbarak.org/introtcs/lnotes_book.pdf) - Boaz Barak (PDF)
|
||||||
* [Introduction to Theory of Computation](https://cglab.ca/~michiel/TheoryOfComputation/) - Anil Maheshwari, Michiel Smid (PDF)
|
* [Introduction to Theory of Computation](https://cglab.ca/~michiel/TheoryOfComputation/) - Anil Maheshwari, Michiel Smid (PDF)
|
||||||
* [Models of Computation](https://cs.brown.edu/people/jes/book/) - John E. Savage
|
* [Models of Computation](https://cs.brown.edu/people/jes/book/) - John E. Savage
|
||||||
* [Principles of Programming Languages](https://web.archive.org/web/20150418034451/http://www.cs.jhu.edu/~scott/pl/book/dist/) - Scott F. Smith *(:card_file_box: archived)*
|
* [Principles of Programming Languages](https://web.archive.org/web/20150418034451/http://www.cs.jhu.edu/~scott/pl/book/dist/) - Scott F. Smith *(:card_file_box: archived)*
|
||||||
|
154
more/free-programming-cheatsheets-AIML.md
Normal file
154
more/free-programming-cheatsheets-AIML.md
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
# ML-Machine-Learning
|
||||||
|
|
||||||
|
<p align="right">
|
||||||
|
<img src="https://github.com/akashdip2001/ML-Machine-Learning/assets/81384987/dff140e6-3c24-4430-96b6-48877e6c98b9" alt="Pandas Logo" width="500" />
|
||||||
|
</p>
|
||||||
|
|
||||||
|
| GitHub Repo |🍭 [ML](https://github.com/akashdip2001/ML-Machine-Learning) 🍭|🐥 [Pandas](https://github.com/akashdip2001/ML-Machine-Learning/tree/main/pandas) 🐥|❌ [numPy](https://github.com/akashdip2001/ML-Machine-Learning/tree/main/numPy) ❌|
|
||||||
|
|-------------------- |-------------------- |-------------------- |-------------------- |
|
||||||
|
|
||||||
|
|
||||||
|
| WebSite => |🍭 [ML](https://akashdip2001.github.io/ML-Machine-Learning/) 🍭|🐥 [Pandas](https://akashdip2001.github.io/ML-Machine-Learning/pandas.html) 🐥|❌ [numPy](https://akashdip2001.github.io/ML-Machine-Learning/numPy.html) ❌|
|
||||||
|
|-------------------- |-------------------- |-------------------- |-------------------- |
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
![ml](https://github.com/akashdip2001/ML-Machine-Learning/raw/main/ML/img/ml_roadmap01.jpg)
|
||||||
|
|
||||||
|
![ml](https://github.com/akashdip2001/ML-Machine-Learning/raw/main/ML/img/ml_roadmap02.jpg)
|
||||||
|
|
||||||
|
# Jupyter Notebook // JupyterLab // .ipynb
|
||||||
|
|
||||||
|
### Command Mode Shortcuts (press Esc to activate)
|
||||||
|
- **A**: Insert cell above
|
||||||
|
- **B**: Insert cell below
|
||||||
|
- **D, D** (press D twice): Delete selected cell
|
||||||
|
- **Y**: Change cell to code mode
|
||||||
|
- **M**: Change cell to markdown mode
|
||||||
|
- **Shift + Arrow**: Select multiple cells
|
||||||
|
- **Shift + M**: Merge selected cells
|
||||||
|
- **Ctrl + Enter**: Run selected cell
|
||||||
|
- **Shift + Enter**: Run cell and select below
|
||||||
|
- **Alt + Enter**: Run cell and insert new cell below
|
||||||
|
|
||||||
|
### Edit Mode Shortcuts (press Enter to activate)
|
||||||
|
- **Ctrl + /**: Comment/uncomment selected lines
|
||||||
|
- **Tab**: Code completion or indent
|
||||||
|
- **Shift + Tab**: Tooltip (for function arguments)
|
||||||
|
- **Ctrl + Shift + -**: Split cell at cursor
|
||||||
|
- **Ctrl + Shift + P**: Command palette (access to all commands)
|
||||||
|
|
||||||
|
### Navigation Shortcuts (in both modes)
|
||||||
|
- **Up Arrow / Down Arrow**: Move up/down one cell
|
||||||
|
- **Ctrl + Home**: Go to first cell
|
||||||
|
- **Ctrl + End**: Go to last cell
|
||||||
|
- **Ctrl + G**: Go to specific cell by number
|
||||||
|
- **Shift + L**: Toggle line numbers
|
||||||
|
|
||||||
|
### Other Useful Shortcuts
|
||||||
|
- **Esc + F**: Find and replace
|
||||||
|
- **Esc + O**: Toggle cell output
|
||||||
|
- **Esc + H**: Show keyboard shortcuts help dialog
|
||||||
|
- **Esc + I, I**: Interrupt kernel
|
||||||
|
- **Esc + 0, 0**: Restart kernel
|
||||||
|
- **Ctrl + Shift + Enter**:Run All Cells
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# [Pandas](https://github.com/akashdip2001/ML-Machine-Learning/tree/main/pandas)
|
||||||
|
|
||||||
|
### Downlod [Pythin](https://www.python.org/downloads/_)
|
||||||
|
|
||||||
|
Run Command Prompt as Administrator:
|
||||||
|
|
||||||
|
- Right-click on the Command Prompt icon in the Start menu.
|
||||||
|
- Select "Run as administrator".
|
||||||
|
- Confirm the User Account Control prompt if prompted.
|
||||||
|
|
||||||
|
```python
|
||||||
|
!pip install pandas
|
||||||
|
!pip install jupyter
|
||||||
|
# If you want to install matplotlib as well, uncomment the line below
|
||||||
|
# !pip install matplotlib
|
||||||
|
|
||||||
|
!jupyter notebook --version
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
jupyter notebook
|
||||||
|
```
|
||||||
|
![Screenshot (38)](https://github.com/akashdip2001/ML-Machine-Learning/assets/81384987/bd3b3e3a-5d70-41a2-b412-14f1f109fc8e)
|
||||||
|
|
||||||
|
![Screenshot (39)](https://github.com/akashdip2001/ML-Machine-Learning/assets/81384987/d1b0208d-eca9-42d1-a800-8ca1cda97eb4)
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# Data for plotting
|
||||||
|
t = np.arange(0.0, 2.0, 0.01)
|
||||||
|
s = 1 + np.sin(2 * np.pi * t)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.plot(t, s)
|
||||||
|
|
||||||
|
ax.set(xlabel='time (s)', ylabel='voltage (mV)',
|
||||||
|
title='About as simple as it gets, folks')
|
||||||
|
ax.grid()
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
![png](https://github.com/akashdip2001/ML-Machine-Learning/raw/main/pandas/output_0_0.png)
|
||||||
|
|
||||||
|
| more about [pamdas](https://github.com/akashdip2001/ML-Machine-Learning/tree/main/pandas) |
|
||||||
|
|---
|
||||||
|
|
||||||
|
# [numPy](https://github.com/akashdip2001/ML-Machine-Learning/tree/main/numPy)
|
||||||
|
|
||||||
|
#### [documentation](https://numpy.org/doc/stable/reference/)
|
||||||
|
|
||||||
|
```python
|
||||||
|
pip install numpy
|
||||||
|
python.exe -m pip install --upgrade pip
|
||||||
|
|
||||||
|
pip install jupyter
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
| python 10h => |🍭 [SourceCode](https://github.com/akashdip2001/Python-Course-10h) 🍭|🐥 [Notes 10h]() 🐥|❌ [complete Notes](https://www.codewithharry.com/notes/) ❌|
|
||||||
|
|-------------------- |-------------------- |-------------------- |-------------------- |
|
||||||
|
|
||||||
|
```html
|
||||||
|
7296
|
||||||
|
|
||||||
|
body {
|
||||||
|
zoom: 100%; /* Default zoom level */
|
||||||
|
}
|
||||||
|
|
||||||
|
<script>
|
||||||
|
function isPC() {
|
||||||
|
return !/Mobi|Android/i.test(navigator.userAgent);
|
||||||
|
}
|
||||||
|
|
||||||
|
function setZoom() {
|
||||||
|
if (isPC()) {
|
||||||
|
document.body.style.zoom = "150%";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
window.onload = setZoom;
|
||||||
|
</script>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
7522
|
||||||
|
|
||||||
|
<div style="text-align: right;">
|
||||||
|
<img src="pandas/img/Python-Pandas-logo.png" alt="Pandas Logo" width="300" />
|
||||||
|
<div style="font-size: 10px; margin-top: -10px; margin-bottom: 15px;">by Akashdip Mahapatra</div>
|
||||||
|
</div>
|
||||||
|
```
|
Loading…
Reference in New Issue
Block a user