mirror of
https://github.com/EbookFoundation/free-programming-books.git
synced 2025-01-20 01:18:52 +00:00
Update free-courses-en.md
Move links from free books to free courses.
This commit is contained in:
parent
cc7a0f28f5
commit
dacf9047b2
@ -129,9 +129,11 @@
|
||||
* [MIT´s Computer Language Engineering](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-sma-5502-fall-2005/lecture-notes/)
|
||||
* [MIT´s Introduction to Algorithms](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/)
|
||||
* [MIT´s Mathematics for Computer Science](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/)
|
||||
* [MIT Numerical Methods (2014)](http://www.iitg.ernet.in/kartha/CE601-14/CourseSchedule.htm)
|
||||
* [Principles of Reactive Programming](https://www.coursera.org/course/reactive)
|
||||
* [Stanford Cryptography I](https://www.coursera.org/course/crypto)
|
||||
* [Stanford Cryptography II](https://www.coursera.org/course/crypto2)
|
||||
* [Stanford SEE 229 - Machine Learning](https://see.stanford.edu/Course/CS229)
|
||||
|
||||
|
||||
### OCaml
|
||||
|
@ -355,7 +355,6 @@ Original Source: [Free Programming books](http://stackoverflow.com/revisions/392
|
||||
* [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/ICS273Afall11/IntroMLBook.pdf) (PDF)
|
||||
* [AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java](http://wps.aw.com/wps/media/objects/5771/5909832/PDF/Luger_0136070477_1.pdf) - George F. Luger, William A Stubblefield
|
||||
* [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani
|
||||
* [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)*
|
||||
* [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage)
|
||||
* [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/)
|
||||
* [Inductive Logic Programming](http://www-ai.ijs.si/SasoDzeroski/ILPBook/)
|
||||
|
Loading…
Reference in New Issue
Block a user