mirror of
https://github.com/EbookFoundation/free-programming-books.git
synced 2024-12-24 04:15:28 +00:00
Computer Vision related changes
* Created computer vision section * Moved two existing books to said section * Added two new CV books * Changed the URL of existing CV book
This commit is contained in:
parent
56f12a52e1
commit
b8558ee356
@ -301,6 +301,13 @@ Original Source: [Free Programming books](http://stackoverflow.com/revisions/392
|
||||
* [Practical and Theoretical Aspects of Compiler Construction](http://www.stanford.edu/class/archive/cs/cs143/cs143.1128/) (class lectures and slides)
|
||||
|
||||
|
||||
#### Computer Vision
|
||||
* [Computer Vision](http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm) - Dana Ballard, Chris Brown
|
||||
* [Computer Vision: Algorithms and Applications](http://szeliski.org/Book/) - Richard Szeliski
|
||||
* [Computer Vision: Models, Learning, and Inference](http://www.computervisionmodels.com/) - Simon J.D. Prince
|
||||
* [Programming Computer Vision with Python](http://programmingcomputervision.com/) - Jan Erik Solem
|
||||
|
||||
|
||||
#### Database
|
||||
* [Big Data Now: Current Perspectives from O'Reilly Radar](http://shop.oreilly.com/product/0636920022640.do)
|
||||
* [Database Fundamentals](http://public.dhe.ibm.com/software/dw/db2/express-c/wiki/Database_fundamentals.pdf) (PDF)
|
||||
@ -337,7 +344,6 @@ Original Source: [Free Programming books](http://stackoverflow.com/revisions/392
|
||||
* [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani
|
||||
* [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)*
|
||||
* [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage)
|
||||
* [Computer Vision: Algorithms and Applications](http://hackershelf.com/book/134/computer-vision-algorithms-and-applications/)
|
||||
* [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/)
|
||||
* [Inductive Logic Programming](http://www-ai.ijs.si/SasoDzeroski/ILPBook/)
|
||||
* [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/)
|
||||
@ -348,7 +354,6 @@ Original Source: [Free Programming books](http://stackoverflow.com/revisions/392
|
||||
* [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/whole.pdf) (PDF) or [online version](http://www1.maths.leeds.ac.uk/~charles/statlog/) - This book is based on the EC (ESPRIT) project StatLog.
|
||||
* [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com)
|
||||
* [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code)
|
||||
* [Programming Computer Vision with Python](http://programmingcomputervision.com/) - Jan Erik Solem
|
||||
* [Reinforcement Learning: An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html)
|
||||
* [The Elements of Statistical Learning](http://www-stat.stanford.edu/~tibs/ElemStatLearn/) - Trevor Hastie, Robert Tibshirani, and Jerome Friedman
|
||||
* [The LION Way: Machine Learning plus Intelligent Optimization](http://www.e-booksdirectory.com/details.php?ebook=9575)
|
||||
|
Loading…
Reference in New Issue
Block a user