cutter/src/widgets/GraphView.cpp
Vanellope cd96856959 Fixed a scaling issue of Graph (#1200)
* Fixed a scaling issue of Graph

* Thoroughly fixed for the scaling

* double click fixed
2019-02-17 13:31:00 +00:00

861 lines
27 KiB
C++

#include "GraphView.h"
#include <vector>
#include <QPainter>
#include <QMouseEvent>
#include <QPropertyAnimation>
GraphView::GraphView(QWidget *parent)
: QAbstractScrollArea(parent)
{
}
GraphView::~GraphView()
{
// TODO: Cleanups
}
// Vector functions
template<class T>
static void removeFromVec(std::vector<T> &vec, T elem)
{
vec.erase(std::remove(vec.begin(), vec.end(), elem), vec.end());
}
template<class T>
static void initVec(std::vector<T> &vec, size_t size, T value)
{
vec.resize(size);
for (size_t i = 0; i < size; i++)
vec[i] = value;
}
// Callbacks
void GraphView::drawBlock(QPainter &p, GraphView::GraphBlock &block)
{
Q_UNUSED(p);
Q_UNUSED(block);
qWarning() << "Draw block not overriden!";
}
void GraphView::blockClicked(GraphView::GraphBlock &block, QMouseEvent *event, QPoint pos)
{
Q_UNUSED(block);
Q_UNUSED(event);
Q_UNUSED(pos);
qWarning() << "Block clicked not overridden!";
}
void GraphView::blockDoubleClicked(GraphView::GraphBlock &block, QMouseEvent *event, QPoint pos)
{
Q_UNUSED(block);
Q_UNUSED(event);
Q_UNUSED(pos);
qWarning() << "Block double clicked not overridden!";
}
void GraphView::blockHelpEvent(GraphView::GraphBlock &block, QHelpEvent *event, QPoint pos)
{
Q_UNUSED(block);
Q_UNUSED(event);
Q_UNUSED(pos);
}
bool GraphView::helpEvent(QHelpEvent *event)
{
int x = event->pos().x() + offset_x;
int y = event->pos().y() - offset_y;
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
if ((block.x <= x) && (block.y <= y) &&
(x <= block.x + block.width) & (y <= block.y + block.height)) {
QPoint pos = QPoint(x - block.x, y - block.y);
blockHelpEvent(block, event, pos);
return true;
}
}
return false;
}
void GraphView::blockTransitionedTo(GraphView::GraphBlock *to)
{
Q_UNUSED(to);
qWarning() << "blockTransitionedTo not overridden!";
}
GraphView::EdgeConfiguration GraphView::edgeConfiguration(GraphView::GraphBlock &from,
GraphView::GraphBlock *to)
{
Q_UNUSED(from);
Q_UNUSED(to);
qWarning() << "Edge configuration not overridden!";
EdgeConfiguration ec;
return ec;
}
bool GraphView::event(QEvent *event)
{
if (event->type() == QEvent::ToolTip) {
if (helpEvent(static_cast<QHelpEvent *>(event))) {
return true;
}
}
return QAbstractScrollArea::event(event);
}
// This calculates the full graph starting at block entry.
void GraphView::computeGraph(ut64 entry)
{
// Populate incoming lists
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
for (auto &edge : block.exits) {
blocks[edge].incoming.push_back(block.entry);
}
}
std::unordered_set<ut64> visited;
visited.insert(entry);
std::queue<ut64> queue;
std::vector<ut64> block_order;
queue.push(entry);
bool changed = true;
while (changed) {
changed = false;
// Pick nodes with single entrypoints
while (!queue.empty()) {
GraphBlock &block = blocks[queue.front()];
queue.pop();
block_order.push_back(block.entry);
for (ut64 edge : block.exits) {
// Skip edge if we already visited it
if (visited.count(edge)) {
continue;
}
// Some edges might not be available
if (!blocks.count(edge)) {
continue;
}
// If this node has no other incoming edges, add it to the graph layout
if (blocks[edge].incoming.size() == 1) {
removeFromVec(blocks[edge].incoming, block.entry);
block.new_exits.push_back(edge);
queue.push(blocks[edge].entry);
visited.insert(edge);
changed = true;
} else {
// Remove from incoming edges
removeFromVec(blocks[edge].incoming, block.entry);
}
}
}
// No more nodes satisfy constraints, pick a node to continue constructing the graph
ut64 best = 0;
int best_edges;
ut64 best_parent;
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
// Skip blocks we haven't visited yet
if (!visited.count(block.entry)) {
continue;
}
for (ut64 edge : block.exits) {
// If we already visited the exit, skip it
if (visited.count(edge)) {
continue;
}
if (!blocks.count(edge)) {
continue;
}
// find best edge
if ((best == 0) || ((int)blocks[edge].incoming.size() < best_edges) || (
((int)blocks[edge].incoming.size() == best_edges) && (edge < best))) {
best = edge;
best_edges = blocks[edge].incoming.size();
best_parent = block.entry;
}
}
}
if (best != 0) {
GraphBlock &best_parentb = blocks[best_parent];
removeFromVec(blocks[best].incoming, best_parentb.entry);
best_parentb.new_exits.push_back(best);
visited.insert(best);
queue.push(best);
changed = true;
}
}
computeGraphLayout(blocks[entry]);
// Prepare edge routing
GraphBlock &entryb = blocks[entry];
EdgesVector horiz_edges, vert_edges;
horiz_edges.resize(entryb.row_count + 1);
vert_edges.resize(entryb.row_count + 1);
Matrix<bool> edge_valid;
edge_valid.resize(entryb.row_count + 1);
for (int row = 0; row < entryb.row_count + 1; row++) {
horiz_edges[row].resize(entryb.col_count + 1);
vert_edges[row].resize(entryb.col_count + 1);
initVec(edge_valid[row], entryb.col_count + 1, true);
for (int col = 0; col < entryb.col_count + 1; col++) {
horiz_edges[row][col].clear();
vert_edges[row][col].clear();
}
}
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
edge_valid[block.row][block.col + 1] = false;
}
// Perform edge routing
for (ut64 block_id : block_order) {
GraphBlock &block = blocks[block_id];
GraphBlock &start = block;
for (ut64 edge : block.exits) {
GraphBlock &end = blocks[edge];
start.edges.push_back(routeEdge(horiz_edges, vert_edges, edge_valid, start, end, QColor(255, 0,
0)));
}
}
// Compute edge counts for each row and column
std::vector<int> col_edge_count, row_edge_count;
initVec(col_edge_count, entryb.col_count + 1, 0);
initVec(row_edge_count, entryb.row_count + 1, 0);
for (int row = 0; row < entryb.row_count + 1; row++) {
for (int col = 0; col < entryb.col_count + 1; col++) {
if (int(horiz_edges[row][col].size()) > row_edge_count[row])
row_edge_count[row] = int(horiz_edges[row][col].size());
if (int(vert_edges[row][col].size()) > col_edge_count[col])
col_edge_count[col] = int(vert_edges[row][col].size());
}
}
//Compute row and column sizes
std::vector<int> col_width, row_height;
initVec(col_width, entryb.col_count + 1, 0);
initVec(row_height, entryb.row_count + 1, 0);
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
if ((int(block.width / 2)) > col_width[block.col])
col_width[block.col] = int(block.width / 2);
if ((int(block.width / 2)) > col_width[block.col + 1])
col_width[block.col + 1] = int(block.width / 2);
if (int(block.height) > row_height[block.row])
row_height[block.row] = int(block.height);
}
// Compute row and column positions
std::vector<int> col_x, row_y;
initVec(col_x, entryb.col_count, 0);
initVec(row_y, entryb.row_count, 0);
initVec(col_edge_x, entryb.col_count + 1, 0);
initVec(row_edge_y, entryb.row_count + 1, 0);
int x = block_horizontal_margin * 2;
for (int i = 0; i < entryb.col_count; i++) {
col_edge_x[i] = x;
x += block_horizontal_margin * col_edge_count[i];
col_x[i] = x;
x += col_width[i];
}
int y = block_vertical_margin * 2;
for (int i = 0; i < entryb.row_count; i++) {
row_edge_y[i] = y;
// TODO: The 1 when row_edge_count is 0 is not needed on the original.. not sure why it's required for us
if (!row_edge_count[i]) {
row_edge_count[i] = 1;
}
y += block_vertical_margin * row_edge_count[i];
row_y[i] = y;
y += row_height[i];
}
col_edge_x[entryb.col_count] = x;
row_edge_y[entryb.row_count] = y;
width = x + (block_horizontal_margin * 2) + (block_horizontal_margin *
col_edge_count[entryb.col_count]);
height = y + (block_vertical_margin * 2) + (block_vertical_margin *
row_edge_count[entryb.row_count]);
//Compute node positions
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
block.x = int(
(col_x[block.col] + col_width[block.col] + ((block_horizontal_margin / 2) * col_edge_count[block.col
+ 1])) - (block.width / 2));
if ((block.x + block.width) > (
col_x[block.col] + col_width[block.col] + col_width[block.col + 1] + block_horizontal_margin *
col_edge_count[
block.col + 1])) {
block.x = int((col_x[block.col] + col_width[block.col] + col_width[block.col + 1] +
block_horizontal_margin * col_edge_count[
block.col + 1]) - block.width);
}
block.y = row_y[block.row];
}
// Precompute coordinates for edges
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
for (GraphEdge &edge : block.edges) {
auto start = edge.points[0];
auto start_col = start.col;
auto last_index = edge.start_index;
// This is the start point of the edge.
auto first_pt = QPoint(col_edge_x[start_col] + (block_horizontal_margin * last_index) +
(block_horizontal_margin / 2),
block.y + block.height);
auto last_pt = first_pt;
QPolygonF pts;
pts.append(last_pt);
for (int i = 0; i < int(edge.points.size()); i++) {
auto end = edge.points[i];
auto end_row = end.row;
auto end_col = end.col;
auto last_index = end.index;
QPoint new_pt;
// block_vertical_margin/2 gives the margin from block to the horizontal lines
if (start_col == end_col)
new_pt = QPoint(last_pt.x(), row_edge_y[end_row] + (block_vertical_margin * last_index) +
(block_vertical_margin / 2));
else
new_pt = QPoint(col_edge_x[end_col] + (block_horizontal_margin * last_index) +
(block_horizontal_margin / 2), last_pt.y());
pts.push_back(new_pt);
last_pt = new_pt;
start_col = end_col;
}
EdgeConfiguration ec = edgeConfiguration(block, edge.dest);
auto new_pt = QPoint(last_pt.x(), edge.dest->y - 1);
pts.push_back(new_pt);
edge.polyline = pts;
edge.color = ec.color;
if (ec.start_arrow) {
pts.clear();
pts.append(QPoint(first_pt.x() - 3, first_pt.y() + 6));
pts.append(QPoint(first_pt.x() + 3, first_pt.y() + 6));
pts.append(first_pt);
edge.arrow_start = pts;
}
if (ec.end_arrow) {
pts.clear();
pts.append(QPoint(new_pt.x() - 3, new_pt.y() - 6));
pts.append(QPoint(new_pt.x() + 3, new_pt.y() - 6));
pts.append(new_pt);
edge.arrow_end = pts;
}
}
}
ready = true;
viewport()->update();
}
QPolygonF GraphView::recalculatePolygon(QPolygonF polygon)
{
QPolygonF ret;
for (int i = 0; i < polygon.size(); i++) {
ret << QPointF(polygon[i].x() - offset_x, polygon[i].y() - offset_y);
}
return ret;
}
void GraphView::paintEvent(QPaintEvent *event)
{
Q_UNUSED(event);
QPainter p(viewport());
p.setRenderHint(QPainter::Antialiasing);
int render_width = viewport()->width();
int render_height = viewport()->height();
QRect viewportRect(viewport()->rect().topLeft(), viewport()->rect().bottomRight() - QPoint(1, 1));
p.setBrush(backgroundColor);
p.drawRect(viewportRect);
p.setBrush(Qt::black);
p.scale(current_scale, current_scale);
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
qreal blockX = block.x * current_scale;
qreal blockY = block.y * current_scale;
qreal blockWidth = block.width * current_scale;
qreal blockHeight = block.height * current_scale;
// Check if block is visible by checking if block intersects with view area
if (offset_x * current_scale < blockX + blockWidth
&& blockX < offset_x * current_scale + render_width
&& offset_y * current_scale < blockY + blockHeight
&& blockY < offset_y * current_scale + render_height) {
drawBlock(p, block);
}
p.setBrush(Qt::gray);
// Always draw edges
// TODO: Only draw edges if they are actually visible ...
// Draw edges
for (GraphEdge &edge : block.edges) {
QPolygonF polyline = recalculatePolygon(edge.polyline);
QPolygonF arrow_start = recalculatePolygon(edge.arrow_start);
QPolygonF arrow_end = recalculatePolygon(edge.arrow_end);
EdgeConfiguration ec = edgeConfiguration(block, edge.dest);
QPen pen(edge.color);
pen.setWidth(pen.width() / ec.width_scale);
p.setPen(pen);
p.setBrush(edge.color);
p.drawPolyline(polyline);
pen.setStyle(Qt::SolidLine);
p.setPen(pen);
if (ec.start_arrow) {
p.drawConvexPolygon(arrow_start);
}
if (ec.end_arrow) {
p.drawConvexPolygon(arrow_end);
}
}
}
emit refreshBlock();
}
// Prepare graph
// This computes the position and (row/col based) size of the block
// Recursively calls itself for each child of the GraphBlock
void GraphView::computeGraphLayout(GraphBlock &block)
{
int col = 0;
int row_count = 1;
int childColumn = 0;
bool singleChild = block.new_exits.size() == 1;
// Compute all children nodes
for (size_t i = 0; i < block.new_exits.size(); i++) {
ut64 edge = block.new_exits[i];
GraphBlock &edgeb = blocks[edge];
computeGraphLayout(edgeb);
row_count = std::max(edgeb.row_count + 1, row_count);
childColumn = edgeb.col;
}
if (layoutType != LayoutType::Wide && block.new_exits.size() == 2) {
GraphBlock &left = blocks[block.new_exits[0]];
GraphBlock &right = blocks[block.new_exits[1]];
if (left.new_exits.size() == 0) {
left.col = right.col - 2;
int add = left.col < 0 ? - left.col : 0;
adjustGraphLayout(right, add, 1);
adjustGraphLayout(left, add, 1);
col = right.col_count + add;
} else if (right.new_exits.size() == 0) {
adjustGraphLayout(left, 0, 1);
adjustGraphLayout(right, left.col + 2, 1);
col = std::max(left.col_count, right.col + 2);
} else {
adjustGraphLayout(left, 0, 1);
adjustGraphLayout(right, left.col_count, 1);
col = left.col_count + right.col_count;
}
block.col_count = std::max(2, col);
if (layoutType == LayoutType::Medium) {
block.col = (left.col + right.col) / 2;
} else {
block.col = singleChild ? childColumn : (col - 2) / 2;
}
} else {
for (ut64 edge : block.new_exits) {
adjustGraphLayout(blocks[edge], col, 1);
col += blocks[edge].col_count;
}
if (col >= 2) {
// Place this node centered over the child nodes
block.col = singleChild ? childColumn : (col - 2) / 2;
block.col_count = col;
} else {
//No child nodes, set single node's width (nodes are 2 columns wide to allow
//centering over a branch)
block.col = 0;
block.col_count = 2;
}
}
block.row = 0;
block.row_count = row_count;
}
// Edge computing stuff
bool GraphView::isEdgeMarked(EdgesVector &edges, int row, int col, int index)
{
if (index >= int(edges[row][col].size()))
return false;
return edges[row][col][index];
}
void GraphView::markEdge(EdgesVector &edges, int row, int col, int index, bool used)
{
while (int(edges[row][col].size()) <= index)
edges[row][col].push_back(false);
edges[row][col][index] = used;
}
GraphView::GraphEdge GraphView::routeEdge(EdgesVector &horiz_edges, EdgesVector &vert_edges,
Matrix<bool> &edge_valid, GraphBlock &start, GraphBlock &end, QColor color)
{
GraphEdge edge;
edge.color = color;
edge.dest = &end;
//Find edge index for initial outgoing line
int i = 0;
while (true) {
if (!isEdgeMarked(vert_edges, start.row + 1, start.col + 1, i))
break;
i += 1;
}
markEdge(vert_edges, start.row + 1, start.col + 1, i);
edge.addPoint(start.row + 1, start.col + 1);
edge.start_index = i;
bool horiz = false;
//Find valid column for moving vertically to the target node
int min_row, max_row;
if (end.row < (start.row + 1)) {
min_row = end.row;
max_row = start.row + 1;
} else {
min_row = start.row + 1;
max_row = end.row;
}
int col = start.col + 1;
if (min_row != max_row) {
auto checkColumn = [min_row, max_row, &edge_valid](int column) {
if (column < 0 || column >= int(edge_valid[min_row].size()))
return false;
for (int row = min_row; row < max_row; row++) {
if (!edge_valid[row][column]) {
return false;
}
}
return true;
};
if (!checkColumn(col)) {
if (checkColumn(end.col + 1)) {
col = end.col + 1;
} else {
int ofs = 0;
while (true) {
col = start.col + 1 - ofs;
if (checkColumn(col)) {
break;
}
col = start.col + 1 + ofs;
if (checkColumn(col)) {
break;
}
ofs += 1;
}
}
}
}
if (col != (start.col + 1)) {
//Not in same column, need to generate a line for moving to the correct column
int min_col, max_col;
if (col < (start.col + 1)) {
min_col = col;
max_col = start.col + 1;
} else {
min_col = start.col + 1;
max_col = col;
}
int index = findHorizEdgeIndex(horiz_edges, start.row + 1, min_col, max_col);
edge.addPoint(start.row + 1, col, index);
horiz = true;
}
if (end.row != (start.row + 1)) {
//Not in same row, need to generate a line for moving to the correct row
if (col == (start.col + 1))
markEdge(vert_edges, start.row + 1, start.col + 1, i, false);
int index = findVertEdgeIndex(vert_edges, col, min_row, max_row);
if (col == (start.col + 1))
edge.start_index = index;
edge.addPoint(end.row, col, index);
horiz = false;
}
if (col != (end.col + 1)) {
//Not in ending column, need to generate a line for moving to the correct column
int min_col, max_col;
if (col < (end.col + 1)) {
min_col = col;
max_col = end.col + 1;
} else {
min_col = end.col + 1;
max_col = col;
}
int index = findHorizEdgeIndex(horiz_edges, end.row, min_col, max_col);
edge.addPoint(end.row, end.col + 1, index);
horiz = true;
}
//If last line was horizontal, choose the ending edge index for the incoming edge
if (horiz) {
int index = findVertEdgeIndex(vert_edges, end.col + 1, end.row, end.row);
edge.points[int(edge.points.size()) - 1].index = index;
}
return edge;
}
int GraphView::findHorizEdgeIndex(EdgesVector &edges, int row, int min_col, int max_col)
{
//Find a valid index
int i = 0;
while (true) {
bool valid = true;
for (int col = min_col; col < max_col + 1; col++)
if (isEdgeMarked(edges, row, col, i)) {
valid = false;
break;
}
if (valid)
break;
i++;
}
//Mark chosen index as used
for (int col = min_col; col < max_col + 1; col++)
markEdge(edges, row, col, i);
return i;
}
int GraphView::findVertEdgeIndex(EdgesVector &edges, int col, int min_row, int max_row)
{
//Find a valid index
int i = 0;
while (true) {
bool valid = true;
for (int row = min_row; row < max_row + 1; row++)
if (isEdgeMarked(edges, row, col, i)) {
valid = false;
break;
}
if (valid)
break;
i++;
}
//Mark chosen index as used
for (int row = min_row; row < max_row + 1; row++)
markEdge(edges, row, col, i);
return i;
}
void GraphView::center()
{
centerX();
centerY();
}
void GraphView::centerX()
{
offset_x = -((viewport()->width() - width * current_scale) / 2);
offset_x /= current_scale;
}
void GraphView::centerY()
{
offset_y = -((viewport()->height() - height * current_scale) / 2);
offset_y /= current_scale;
}
void GraphView::showBlock(GraphBlock &block)
{
showBlock(&block);
}
void GraphView::showBlock(GraphBlock *block)
{
if (width * current_scale <= viewport()->width()) {
centerX();
} else {
int render_width = viewport()->width() / current_scale;
offset_x = block->x - ((render_width - block->width) / 2);
}
if (height * current_scale <= viewport()->height()) {
centerY();
} else {
offset_y = block->y - 30;
}
blockTransitionedTo(block);
viewport()->update();
}
void GraphView::adjustGraphLayout(GraphBlock &block, int col, int row)
{
block.col += col;
block.row += row;
for (ut64 edge : block.new_exits) {
adjustGraphLayout(blocks[edge], col, row);
}
}
void GraphView::addBlock(GraphView::GraphBlock block)
{
blocks[block.entry] = block;
}
void GraphView::setEntry(ut64 e)
{
entry = e;
}
bool GraphView::checkPointClicked(QPointF &point, int x, int y, bool above_y)
{
int half_target_size = 5;
if ((point.x() - half_target_size < x) &&
(point.y() - (above_y ? (2 * half_target_size) : 0) < y) &&
(x < point.x() + half_target_size) &&
(y < point.y() + (above_y ? 0 : (3 * half_target_size)))) {
return true;
}
return false;
}
// Mouse events
void GraphView::mousePressEvent(QMouseEvent *event)
{
int x = event->pos().x() / current_scale + offset_x;
int y = event->pos().y() / current_scale + offset_y;
// Check if a block was clicked
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
if ((block.x <= x) && (block.y <= y) &&
(x <= block.x + block.width) & (y <= block.y + block.height)) {
QPoint pos = QPoint(x - block.x, y - block.y);
blockClicked(block, event, pos);
// Don't do anything else here! blockClicked might seek and
// all our data is invalid then.
return;
}
}
// Check if a line beginning/end was clicked
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
for (GraphEdge &edge : block.edges) {
if (edge.polyline.length() < 2) {
continue;
}
QPointF start = edge.polyline.first();
QPointF end = edge.polyline.last();
if (checkPointClicked(start, x, y)) {
showBlock(edge.dest);
// TODO: Callback to child
return;
break;
}
if (checkPointClicked(end, x, y, true)) {
showBlock(block);
// TODO: Callback to child
return;
break;
}
}
}
// No block was clicked
if (event->button() == Qt::LeftButton) {
//Left click outside any block, enter scrolling mode
scroll_base_x = event->x();
scroll_base_y = event->y();
scroll_mode = true;
setCursor(Qt::ClosedHandCursor);
viewport()->grabMouse();
}
}
void GraphView::mouseMoveEvent(QMouseEvent *event)
{
if (scroll_mode) {
offset_x += (scroll_base_x - event->x()) / current_scale;
offset_y += (scroll_base_y - event->y()) / current_scale;
scroll_base_x = event->x();
scroll_base_y = event->y();
viewport()->update();
}
}
void GraphView::mouseDoubleClickEvent(QMouseEvent *event)
{
int x = event->pos().x() / current_scale + offset_x;
int y = event->pos().y() / current_scale + offset_y;
// Check if a block was clicked
for (auto &blockIt : blocks) {
GraphBlock &block = blockIt.second;
if ((block.x <= x) && (block.y <= y) &&
(x <= block.x + block.width) & (y <= block.y + block.height)) {
QPoint pos = QPoint(x - block.x, y - block.y);
blockDoubleClicked(block, event, pos);
return;
}
}
}
void GraphView::mouseReleaseEvent(QMouseEvent *event)
{
// TODO
// if(event->button() == Qt::ForwardButton)
// gotoNextSlot();
// else if(event->button() == Qt::BackButton)
// gotoPreviousSlot();
if (event->button() != Qt::LeftButton)
return;
if (scroll_mode) {
scroll_mode = false;
setCursor(Qt::ArrowCursor);
viewport()->releaseMouse();
}
}
void GraphView::wheelEvent(QWheelEvent *event)
{
const QPoint delta = -event->angleDelta();
offset_x += delta.x() / current_scale;
offset_y += delta.y() / current_scale;
viewport()->update();
event->accept();
}