Windows
security Internals

A Deep Dive into Windows Authentication,
Authorization, and Auditing

Y

James Forshaw

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR AND TECHNICAL REVIEWER
FOREWORD

ACKNOWLEDGMENTS

INTRODUCTION

Who Is This Book For?

What Is in This Book?

PowerShell Conventions Used in This Book
Getting in Touch

PART I: AN OVERVIEW OF THE WINDOWS
OPERATING SYSTEM

1
SETTING UP A POWERSHELL TESTING ENVIRONMENT

Choosing a PowerShell Version

Configuring PowerShell

An Overview of the PowerShell Language
Understanding Types, Variables, and Expressions
Executing Commands
Discovering Commands and Getting Help
Defining Functions
Displaying and Manipulating Objects

Filtering, Ordering, and Grouping Objects
Exporting Data

Wrapping Up

2
THE WINDOWS KERNEL

The Windows Kernel Executive
The Security Reference Monitor
The Object Manager

Object Types
The Object Manager Namespace

System Calls
NTSTATUS Codes
Object Handles
Query and Set Information System Calls
The Input/Output Manager
The Process and Thread Manager
The Memory Manager
NtVirtualMemory Commands
Section Objects
Code Inteqrity
Advanced Local Procedure Call
The Configuration Manager
Worked Examples
Finding Open Handles by Name
Finding Shared Objects
Modifying a Mapped Section
Finding Writable and Executable Memory

Wrapping Up

3
USER-MODE APPLICATIONS

Win32 and the User-Mode Windows APIs
Loading a New Library
Viewing Imported APIs
Searching for DLLs
The Win32 GUI
GUI Kernel Resources
Window Messages
Console Sessions
Comparing Win32 APIls and System Calls
Win32 Regqistry Paths
Opening Keys
Listing the Reqistry’s Contents
DOS Device Paths

Path Types

Maximum Path Lengths
Process Creation
Command Line Parsing
Shell APls
System Processes
The Session Manager
The Windows Logon Process
The Local Security Authority Subsystem
The Service Control Manager
Worked Examples
Finding Executables That Import Specific APIs
Finding Hidden Regqistry Keys or Values

Wrapping Up

PART II: THE WINDOWS SECURITY
REFERENCE MONITOR

4
SECURITY ACCESS TOKENS

Primary Tokens
Impersonation Tokens
Security Quality of Service
Explicit Token Impersonation
Converting Between Token Types
Pseudo Token Handles

Token Groups
Enabled, EnabledByDefault, and Mandatory

Logonid
Owner
UseForDenyOnly
Integrity and IntegrityEnabled
Resource
Device Groups
Privileges
Sandbox Tokens
Restricted Tokens
Write-Restricted Tokens
AppContainer and Lowbox Tokens
What Makes an Administrator User?
User Account Control
Linked Tokens and Elevation Type
Ul Access
Virtualization
Security Attributes
Creating Tokens

Token Assignment
Assigning a Primary Token
Assigning an Impersonation Token
Worked Examples
Finding Ul Access Processes
Finding Token Handles to Impersonate
Removing Administrator Privileges

Wrapping Up

5
SECURITY DESCRIPTORS

The Structure of a Security Descriptor
The Structure of a SID
Absolute and Relative Security Descriptors
Access Control List Headers and Entries
The Header
The ACE List
Constructing and Manipulating Security Descriptors
Creating a New Security Descriptor
Ordering the ACEs
Formatting Security Descriptors
Converting to and from a Relative Security Descriptor
The Security Descriptor Definition Language
Worked Examples
Manually Parsing a Binary SID
Enumerating SIDs

Wrapping Up

6
READING AND ASSIGNING SECURITY DESCRIPTORS

Reading Security Descriptors
Assigning Security Descriptors
Assigning a Security Descriptor During Resource Creation
Assigning a Security Descriptor to an Existing Resource
Win32 Security APIs
Server Security Descriptors and Compound ACEs
A Summary of Inheritance Behavior
Worked Examples
Finding Object Manager Resource Owners
Changing the Ownership of a Resource

Wrapping Up
7
THE ACCESS CHECK PROCESS

Running an Access Check
Kernel-Mode Access Checks

User-Mode Access Checks
The Get-NtGrantedAccess PowerShell Command
The Access Check Process in PowerShell
Defining the Access Check Function
Performing the Mandatory Access Check
Performing the Token Access Check
Performing the Discretionary Access Check
Sandboxing
Restricted Tokens
Lowbox Tokens
Enterprise Access Checks
The Object Type Access Check
The Central Access Policy
Worked Examples
Using the Get-PSGrantedAccess Command
Calculating Granted Access for Resources

Wrapping Up

8
OTHER ACCESS CHECKING USE CASES

Traversal Checking
The SeChangeNotifyPrivilege Privilege
Limited Checks

Handle Duplication Access Checks

Sandbox Token Checks

Automating Access Checks

Worked Examples
Simplifying an Access Check for an Object
Finding Writable Section Objects

Wrapping Up

9
SECURITY AUDITING

The Security Event Log
Configuring the System Audit Policy
Configuring the Per-User Audit Policy
Audit Policy Security
Configuring the Resource SACL
Configuring the Global SACL
Worked Examples
Verifying Audit Access Security
Finding Resources with Audit ACEs

Wrapping Up

PART lli: THE LOCAL SECURITY AUTHORITY

AND AUTHENTICATION

10
WINDOWS AUTHENTICATION

Domain Authentication
Local Authentication
Enterprise Network Domains
Domain Forests
Local Domain Configuration
The User Database
The LSA Policy Database
Remote LSA Services
The SAM Remote Service
The Domain Policy Remote Service
The SAM and SECURITY Databases
Accessing the SAM Database Through the Reqistry

Inspecting the SECURITY Database
Worked Examples

RID Cycling
Forcing a User's Password Change
Extracting All Local User Hashes

Wrapping Up
11

ACTIVE DIRECTORY

A Brief History of Active Directory
Exploring an Active Directory Domain with PowerShell
The Remote Server Administration Tools
Basic Forest and Domain Information
The Users
The Groups
The Computers
Obijects and Distinguished Names
Enumerating Directory Objects
Accessing Objects in Other Domains
The Schema
Inspecting the Schema
Accessing the Security Attributes
Security Descriptors
Querying Security Descriptors of Directory Objects
Assigning Security Descriptors to New Directory Objects
Assigning Security Descriptors to Existing Objects
Inspecting a Security Descriptor’s Inherited Security
Access Checks
Creating Objects
Deleting Objects

Listing Objects
Reading and Writing Attributes
Checking Multiple Attributes
Analyzing Property Sets
Inspecting Control Access Rights
Analyzing Write-Validated Access Rights
Accessing the SELF SID
Performing Additional Security Checks
Claims and Central Access Policies
Group Policies
Worked Example
Building the Authorization Context
Gathering Object Information
Running the Access Check

Wrapping Up
12

INTERACTIVE AUTHENTICATION

Creating a User’s Desktop
The Lsal.ogonUser API
Local Authentication
Domain Authentication
Logon and Console Sessions
Token Creation
Using the Lsal ogonUser API from PowerShell
Creating a New Process with a Token
The Service Logon Type
Worked Examples
Testing Privileges and Logon Account Rights
Creating a Process in a Different Console Session
Authenticating Virtual Accounts

Wrapping Up
13

NETWORK AUTHENTICATION

NTLM Network Authentication
NTLM Authentication Using PowerShell
The Cryptographic Derivation Process
Pass-Through Authentication
Local Loopback Authentication
Alternative Client Credentials

The NTLM Relay Attack
Attack Overview
Active Server Challenges
Signing and Sealing

Target Names

Channel Binding

Worked Example
Overview
The Code Module
The Server Implementation
The Client Implementation
The NTLM Authentication Test

Wrapping Up

14
KERBEROS

Interactive Authentication with Kerberos
Initial User Authentication
Network Service Authentication
Performing Kerberos Authentication in PowerShell
Decrypting the AP-REQ Message
Decrypting the AP-REP Message
Cross-Domain Authentication
Kerberos Delegation
Unconstrained Delegation
Constrained Delegation
User-to-User Kerberos Authentication
Worked Examples
Querying the Kerberos Ticket Cache
Simple Kerberoasting

Wrapping Up
15

NEGOTIATE AUTHENTICATION AND OTHER SECURITY
PACKAGES

Security Buffers
Using Buffers with an Authentication Context
Using Buffers with Signing and Sealing
The Negotiate Protocol
Less Common Security Packages
Secure Channel
CredSSP
Remote Credential Guard and Restricted Admin Mode
The Credential Manager
Additional Request Attribute Flags
Anonymous Sessions
Identity Tokens
Network Authentication with a Lowbox Token
Authentication with the Enterprise Authentication Capability
Authentication to a Known Web Proxy
Authentication with Explicit Credentials

The Authentication Audit Event Log
Worked Examples
Identifying the Reason for an Authentication Failure
Using a Secure Channel to Extract a Server's TLS Certificate
Wrapping Up
Final Thoughts

A
BUILDING A WINDOWS DOMAIN NETWORK FOR TESTING

The Domain Network
Installing and Configuring Windows Hyper-V
Creating the Virtual Machines

The PRIMARYDC Server

The GRAPHITE Workstation

The SALESDC Server

B
SDDL SID ALIAS MAPPING

INDEX

WINDOWS SECURITY
INTERNALS

A Deep Dive into Windows
Authentication, Authorization, and
Auditing

by James Forshaw

©

no starch
press®

San Francisco

WINDOWS SECURITY INTERNALS. Copyright © 2024 by James Forshaw.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0198-0 (print)
ISBN-13: 978-1-7185-0199-7 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock

Managing Editor: Jill Franklin

Production Manager: Sabrina Plomitallo-Gonzalez
Production Editor: Sydney Cromwell
Developmental Editors: Alex Freed and Frances Saux
Cover Illustrator: Garry Booth

Interior Design: Octopod Studios

Technical Reviewer: Lee Holmes

Copyeditor: Rachel Head

Proofreader: Audrey Doyle

Indexer: BIM Creatives, LLC

Library of Congress Cataloging-in-Publication Data

Name: Forshaw, James, author.

Title: Windows security internals / James Forshaw.

Description: San Francisco : No Starch Press, [2024] | Includes index. | Identifiers:
LCCN 2023040842 (print) | LCCN 2023040843 (ebook) | ISBN 9781718501980 (print) |
ISBN 9781718501997 (ebook)

Subjects: LCSH: Computer security. | Microsoft Windows (Computer file) | Computer
networks—Security measures.

Classification: LCC QA76.9.A25 F65655 2024 (print) | LCC QA76.9.A25 (ebook) | DDC
005.8—dc23/eng/20231208

LC record available at https://lccn.loc.qov/2023040842

LC ebook record available at https://lccn.loc.gov/2023040843

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

http://www.nostarch.com
mailto:info@nostarch.com
https://lccn.loc.gov/2023040842
https://lccn.loc.gov/2023040843

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

Dedicated to my amazing wife, Huayi, and my little Jacob, without whom I
would never get anything done.

About the Author

James Forshaw is a renowned computer security expert on Google’s Project
Zero team. In his more than 20 years of experience analyzing and exploiting
security issues in Microsoft Windows and other products, he has discovered
hundreds of publicly disclosed vulnerabilities in Microsoft platforms. Others
frequently cite his research, which he presents in blogs, on the world stage, or
through novel tooling, and he has inspired numerous researchers in the
industry. When not breaking the security of other products, James works as a
defender, advising teams on their security design and improving the
Chromium Windows sandbox to secure billions of users worldwide.

About the Technical Reviewer

Lee Holmes is a security architect in Azure security, an original developer on
the PowerShell team, a fanatical hobbyist, and the author of The PowerShell
Cookbook (O’Reilly Media, 2010). You can find him on Mastodon
(@Lee_Holmes@infosec.exchange), as well as on his personal website
(https://leeholmes.com).

https://leeholmes.com

FOREWORD

A Microsoft Technical Fellow once told me he had never met someone who
understood how the security of the Windows operating system actually
worked. While I don’t think he was right (and plan to send him a copy of this
book to prove it), he had a point. Though critical, there is no doubt that
Windows security is complex.

One of the reasons for this is related to the core architectural difference
between Linux and Windows. Linux is a file-oriented operating system,
while Windows is API oriented, and though APIs can provide a much richer
set of capabilities, they come at the expense of simplicity. So, exploring an
API-oriented operating system is more difficult. You need to read the API
documentation, write code, compile and run it, and debug the results.

This is a very time-consuming loop, and it’s why so few people have a
deep understanding of how Windows security works—it’s just too hard to
explore.

It was because of these problems that I invented PowerShell. I wanted
administrators to automate Windows and had originally tried to do so by
distributing Unix tools for free. (Remember Windows Services for Unix?)
This failed because Unix tools work on files, while everything important in
Windows lives behind an API. Thus, awk didn’t work against the registry,
grep didn’t work against Windows Management Instrumentation (WMI), sed
didn’t work against Active Directory, and so on. What we needed was an
API-oriented command line interface and scripting tool. So, I created
PowerShell.

Today, James is using PowerShell to address the difficulty of acquiring
Windows security expertise; he has made the system explorable. Step one:
install his PowerShell module, NTObjectManager, which provides over 550

cmdlets to experiment with all aspects of Windows security. This hands-on
exploration will allow you to understand how things really work.

This book belongs on the desk of every security professional and
developer working with Windows security. Part I provides an overview of
Windows security’s architecture, Part II covers the details of the operating
system’s security mechanisms and services, and Part III explores the various
aspects of Windows authentication. Each chapter includes a set of
PowerShell examples.

I strongly encourage you to follow the examples provided; exploration
turns words into experience, and experience is the foundation of competence.
Run the commands, make intentional mistakes, and see what errors you get.
In doing so, you’ll acquire a deep understanding of the system.

And trust me: it will be fun.

Jeffrey Snover
Inventor of PowerShell, former chief architect for Windows Server, and
former Microsoft Technical Fellow

ACKNOWLEDGMENTS

Few books are written in complete isolation, and this one certainly doesn’t
break that mold. I’d like to take the opportunity to thank some of the many
people who have contributed to making this tome a reality. I apologize to
anyone I’ve forgotten.

I must start by acknowledging the contribution of my wife, Huayi, who
cheers me up when I’'m down and kicks me (metaphorically) when I’'m being
lazy. Without her by my side, the past few years would have been much less
agreeable. The rest of my family are just as important; without them, my life
would be so very different.

Next, I’d like to thank my technical reviewer, Lee Holmes, who has
made the review a valuable experience, teaching me many PowerShell tricks
I didn’t know existed and providing important feedback on the structure and
content.

I’'m not the only person doing significant research on Windows. While
there are far too many to list here, I’d like to acknowledge the following
people who have made important contributions to my work. First is Alex
Ionescu, well-known Windows internals guru and my sometimes collaborator
(or competitor), who always seems to know some weird bit of operating
system esoterica. Then there are the many practitioners of Windows
enterprise security research and testing, such as Lee Christensen, Will
Schroeder, and Nick Landers. They’ve been important sounding boards for
my understanding of software like Active Directory and Kerberos and have
actively tested and contributed to my tooling projects.

I’d be remiss not to mention the amazing researchers from my more
formative years, especially Pete and Rich; you know who you are. Also, I’d
like to thank Rob and his team for looking at early drafts of my book’s

chapters and providing valuable feedback.

My relationship with Microsoft has had its ups and downs. That said, I'd
like to thank many of its current and former employees who have helped me
along the way. This includes Katie Moussouris, who was instrumental in
convincing me that it pays to find bugs in Microsoft products. Without her
friendship and contributions, I doubt I’d be as successful as I am today. Then
there’s Nate Warfield, who for many years was my point of contact at the
Microsoft Security Response Center (MSRC), where he shielded me from
much of the company’s party politics and ensured the bugs I reported got
fixed in a timely manner. Finally, I’d like to thank current MSRC
representatives, including Nic Fillingham and Stephanie Calabrese, for
helping me when I need to contact someone deep inside the beast, and for
providing me with swag.

Special thanks to my Google colleagues, who support me in making and
breaking things on Windows. This includes the entirety of the current Google
Project Zero team and its alumni: the best set of security researchers you’ll
likely ever find in a single room, or even two. Then there’s Will Harris, my
friend and colleague on the Chromium Windows sandbox team, who asked
me many of the questions about Windows security on which this book is
based. Finally, thanks to Heather Adkins, who was instrumental in my being
allowed to write a book of this nature while keeping a job at Google.

I’d also like to thank everyone at No Starch Press who has worked on
this book and been patient with me: especially Alex Freed, my longtime
editor, who unfortunately left before this book was published, and Frances
Saux, who became my new editor after Alex’s departure and pulled this
book, kicking and screaming, to completion. Finally, I must thank Bill
Pollock, who is a good friend and always has amazing advice on the book
writing process, as well as the latest recommendations for incredible
restaurants.

I don’t have the space here to name everyone, but to wrap up I’d like to
express my gratitude to all the friends and colleagues who contribute
massively every day to my life and success. Thanks also to you, for picking
up my book. I hope you find the information about Windows security
contained herein to be useful.

INTRODUCTION

Hundreds of millions of devices use the
Microsoft Windows platform. Many of
the world’s largest companies rely on its security to
protect their data and communications, as does anyone
hosting their code in the Azure cloud. But because
Windows is so important to the security of the modern

internet, it’s also a popular target for attack.

The Windows NT operating system began including security in its
design in 1993, when it introduced user accounts, control over resources, and
remote access from a network. In the more than 20 years since then, much
has changed in Windows security. Microsoft has replaced its original
authentication process with modern technology, granted the access control
mechanism additional capabilities, and significantly hardened the platform
against attack.

Today, the security of the Windows platform is surprisingly complex,
and many attacks rely on abusing this complexity. Unfortunately, Microsoft’s
documentation in this area can be lacking. As Windows is not open source,
sometimes the only way to understand its security is through deep research
and analysis.

This is where I come in. I’ve spent more than 20 years as a developer
and security researcher on Windows platforms, cultivating an understanding
of the operating system’s undocumented corners. In this book, I share some
of my extensive expertise in an easy-to-understand form. By mastering the

principles of Windows security, you’ll be able to kick-start your own
research project or improve your software product.

Who Is This Book For?

I wrote this book for people who work with Windows security. Perhaps
you’re a developer of Windows software and want to ensure that your
product is secure. Or maybe you’re a system administrator tasked with
securing Windows across an enterprise and don’t fully understand how
various security features combine to protect the platform. Or you might want
to poke holes in the operating system to find security vulnerabilities as a
researcher.

This book assumes reasonable familiarity with the Windows user
interface and its basic operations, such as manipulating files. That said, you
don’t need to be a low-level Windows expert: for those who need a little
more grounding, Chapters 2 and 3 provide an overview of the operating
system and how it’s put together.

I rely heavily on the use of PowerShell scripting, so you’ll find it helpful
to have some experience with the language, as well as with the NET
framework on which it’s based. To get you up to speed, Chapter 1 gives a
very quick overview of some of PowerShell’s features. Elsewhere, I’ll do my
best to avoid using esoteric features of the language, to keep the code
accessible to readers with knowledge of other scripting languages or shell
environments (such as bash).

What Is in This Book?

In each chapter, we’ll cover core security features implemented in modern
versions of Windows. We’ll also walk through several worked examples
written in PowerShell, which should give you a better understanding of the
commands introduced in the chapter. Here’s a brief summary of what each
chapter covers.

Part I surveys the Windows operating system from a programming
perspective. It should provide you with the foundation needed to understand
the material in the rest of the book.

Chapter 1: Setting Up a PowerShell Testing Environment In this
chapter, you’ll set up PowerShell to run the examples included in the
subsequent chapters. This includes installing a PowerShell module I’ve

written to interact with Windows and its security features. The chapter
also provides an overview of the PowerShell scripting language.

Chapter 2: The Windows Kernel This chapter covers the basics of
the Windows kernel and its system call interface, a topic crucial to
developing a solid understanding of Windows security. I also describe
the object manager, used to manage resources.

Chapter 3: User-Mode Applications Most applications don’t directly
use the system call interface from the kernel; instead, they use a set of
higher-level programming interfaces. This chapter covers Windows
features such as file handling and the registry.

Part II covers the most important component of the Windows kernel for
security, the Security Reference Monitor. We’ll look at all aspects of access
control, from constructing the user’s identity to securing an individual
resource, such as a file.

Chapter 4: Security Access Tokens Windows assigns every running
process an access token, which represents the user’s identity to the
system. This chapter describes the various components stored in the
token that are used to check access.

Chapter 5: Security Descriptors FEach securable resource needs a
description of who is allowed to access it and what type of access they
are granted. This is the purpose of security descriptors. In this chapter,
we’ll cover their internal structure and how you can create and
manipulate them.

Chapter 6: Reading and Assigning Security Descriptors To inspect
the security of the system, you need to be able to query the security
descriptor of a resource. This chapter explains how this querying
happens for different types of resources. It also covers the many complex
ways that Windows assigns security descriptors to resources.

Chapter 7: The Access Check Process Windows uses the access
check to determine what access to grant a user to a resource. This
operation takes the token and the security descriptor and follows an
algorithm to determine the granted access. This chapter works through a
PowerShell implementation of the algorithm to explore its design in
depth.

Chapter 8: Other Access Checking Use Cases Although Windows
primarily uses access checks to grant access to resources, it sometimes
uses them to determine other security properties, such as the visibility of
resources and whether a process is running with a low level of privilege.
This chapter covers these alternative use cases for the access check.

Chapter 9: Security Auditing The access check process can also
create logs of the resources a user has accessed, and with what level of
access. This chapter covers these system auditing policies.

Part 111 contains details of Windows authentication, the mechanisms that
verify a user’s identity for the purposes of access control.

Chapter 10: Windows Authentication As the topic of authentication
is quite complex, this chapter summarizes the authentication structure
and services on which the rest of the authentication mechanisms depend.

Chapter 11: Active Directory Windows 2000 introduced a new
model for networking Windows systems in an enterprise, with all
authentication information stored in a network directory that users and
administrators could query and modify. This chapter covers how Active
Directory stores information and secures it from malicious modification.

Chapter 12: Interactive Authentication The most common
authentication scenario on Windows occurs when a user enters their
username and password into their computer and gains access to the
desktop. This chapter covers how the operating system implements this
authentication process.

Chapter 13: Network Authentication When a user wants to access a
network service in a Windows enterprise network, they typically must
authenticate to it. Windows provides special network protocols to
implement this authentication without disclosing the user’s credentials to
a potentially hostile network. This chapter explains the network
authentication process, focusing on the New Technology LAN Manager
(NTLM) authentication protocol.

Chapter 14: Kerberos Along with Active Directory, Windows 2000
also introduced the use of the open Kerberos authentication protocol for
enterprise network authentication. This chapter explains how Kerberos
works in Windows to authenticate a user interactively and over a

network.

Chapter 15: Negotiate Authentication and Other Security

Packages Over the years, Windows has added other types of network
authentication protocols. This chapter covers these new types, including
Negotiate, to supplement those discussed in Chapters 13 and 14.

Finally, the two appendices provide configuration details and further
resources.

Appendix A: Building a Windows Domain Network for Testing To
run some of the examples in the book, you’ll need a Windows domain
network. This appendix provides some steps for using PowerShell to
configure a network for testing.

Appendix B: SDDL SID Alias Mapping This appendix provides a
table of constants referenced in Chapter 5.

PowerShell Conventions Used in This Book

The PowerShell scripting language, which is included with all versions of
Windows, is one of the best ways to flexibly experiment with the internals of
the operating system without needing to install much additional software. As
PowerShell is based on the .NET runtime, this book will use a .NET library
I’ve written for interacting with Windows, making it easy to develop
complex scripts. All example scripts in the book will be available to
download from https://github.com/tyranid/windows-security-internals.

The PowerShell examples in each chapter follow a common set of style
conventions that should help you understand how to use them. Each example
is provided as a listing, of which there are two types: interactive and non-
interactive. Interactive PowerShell listings are those you should enter on the
command line to observe the results. Here is an example of an interactive
listing:

0 PS> 1s C:\

E) Directory: C:\
Mode LastWriteTime Length Name

d-r--- 4/17 11:45 AM Program Files

(3] --snip--

https://github.com/tyranid/windows-security-internals

An interactive listing precedes each command to enter with a
PowerShell- style prompt (PS>) and shows the command in bold €. You’ll
see the resulting output below the command @. Sometimes the output can be
quite long, so to save space, I use --snip- - to indicate that the output has
been truncated €. Also note that in some examples the output is indicative; it
might be subtly different depending on your operating system or network
configuration.

Most of the interactive listings are designed to be executed from a
normal user account. However, some must run under an administrator
account to access certain protected features. If you don’t run the commands
as an administrator, the results won’t be correct. The text preceding each
listing will clarify whether you must run the command as an administrator.

A non-interactive listing contains PowerShell code that you can copy
into a script file for reuse, like this:

function Get-Hello {
"Hello"
3

Non-interactive listings don’t include the PowerShell prompt and aren’t in
bold.

If you’ve written any scripts in PowerShell, you’ll know that the
language is notorious for verbose command and parameter names. This
makes it difficult to fit certain commands on a single line in the book. Here is
an example of a long PowerShell line and a few ways the book might split it
to make it fit on the page:

PS> Get-ChildItem -LiteralPath "C:\" -Filter "*.exe" -Recurse
-Hidden

C’ -System -Depth 5 | Where-Object {
® s_.Name -eq "Hello"
}

The first line, using the Get-ChildItem command, is too long to fit on
the page, so it wraps onto a subsequent line €. You can’t just add a newline

in the middle of such a command, so when you’re entering it into the shell or
a file, you should treat it as a single line. The key indicator that the line
continues, instead of being part of the output, is that there’s a bold character
in the first column.

PowerShell can break long lines on certain characters, such as the pipe
(1), the comma (,), or braces ({}). In this listing, I’ve added a newline
following the opening brace ({) and placed the subsequent commands in the
braced block, indented one level @. In this case, the shell will handle the
introduction of the new line. Note that the closing brace (}) is in the first
column, so you might assume it needs to be placed on the previous line.
While moving the brace to the previous line will still work in this specific
case, it’s unnecessary.

Note that the Windows operating system is still under active
development. While all the PowerShell examples have been tested on the
latest versions of Windows available at the time of writing, there is a chance
that new security features will have been introduced, or older ones
deprecated, by the time you come to read this book. The following is a list of
the versions on which the examples were tested, along with the major OS
build number:

e Windows 11 (OS build 22631)
e Windows 10 (OS build 19045)
e Windows Server 2022 (OS build 20384)
e Windows Server 2019 (OS build 17763)

Any mentions of “the latest versions” in the text refer to these versions.

Getting in Touch

I’m always interested in receiving feedback, both positive and negative, on
my work, and this book is no exception. You can email me at
winsecinternals.book@gmail.com. You can also subscribe to my blog at
https://www.tiraniddo.dev, where I post some of my latest advanced security
research.

https://www.tiraniddo.dev

PART |

AN OVERVIEW OF THE WINDOWS
OPERATING SYSTEM

1

SETTING UP A POWERSHELL TESTING
ENVIRONMENT

In this chapter, you’ll configure
PowerShell so you can work through the
code examples presented in the rest of the book. Then,
we’ll walk through a very quick overview of the
PowerShell language, including its types, variables,
and expressions. We’ll also cover how to execute its
commands, how to get help, and how to export data for
later use.

Choosing a PowerShell Version

The most important tool you’ll need to use this book effectively is
PowerShell, which has been installed on the Windows operating system by
default since Windows 7. However, there are many different versions of this
tool. The version installed by default on currently supported versions of
Windows is 5.1, which is suitable for our purposes, even though Microsoft no
longer fully supports it. More recent versions of PowerShell are cross
platform and open source but must be installed separately on Windows.

All the code presented in this book will run in both PowerShell 5.1 and
the latest open source version, so it doesn’t matter which you choose. If you

want to use the open source PowerShell, visit the project’s GitHub page at
https://github.com/PowerShell/PowerShell to find installation instructions for
your version of Windows.

Configuring PowerShell

The first thing we need to do in PowerShell is set the script execution policy,
which determines what types of scripts PowerShell can execute. For
Windows clients running PowerShell 5.1, the default is Restricted, which
blocks all scripts from running unless they are signed with a trusted
certificate. As the scripts in this book are unsigned, we’ll change the
execution policy to RemoteSigned. This execution policy allows us to run
unsigned PowerShell scripts if they’re created locally but will not allow us to
execute unsigned scripts downloaded in a web browser or attached to emails.
Run the following command to set the execution policy:

PS> Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Re
moteSigned -Force

The command changes the execution policy for the current user only, not
the entire system. If you want to change it for all users, you’ll need to start
PowerShell as an administrator and then rerun the command, removing the
Scope parameter.

If you’re using the open source version of PowerShell or version 5.1 on
Windows Server, then the default script execution policy is RemoteSigned
and you do not need to change anything.

Now that we can run unsigned scripts, we can install the PowerShell
module we’ll be using for this book. A PowerShell module is a package of
scripts and .NET binaries that export PowerShell commands. Every
installation of PowerShell comes preinstalled with several modules for tasks
ranging from configuring your applications to setting up Windows Update.
You can install a module manually by copying its files, but the easiest
approach is to use the PowerShell Gallery (https:/www.powershellgallery
.com), an online repository of modules.

To install a module from the PowerShell Gallery, we use PowerShell’s
Install-Module command. For this book, we’ll need to install the

Technet24

https://github.com/PowerShell/PowerShell
https://www.powershellgallery.com
https://technet24.ir

NtObjectManager module, which we can do using the following command:

PS> Install-Module NtObjectManager -Scope CurrentUser -Force

Make sure to say yes if the installer asks you any questions (after you’ve
read and understood the question, of course). If you have the module installed
already, you can ensure that you have the latest version by using the Update-
Module command:

PS> Update-Module NtObjectManager

Once it’s installed, you can load the module using the Import-Module
command:

PS> Import-Module NtObjectManager

If you see any errors after importing the module, double-check that
you’ve correctly set the execution policy; that’s the most common reason for
the module not loading correctly. As a final test, let’s run a command that
comes with the module to check that it’s working. Execute the command in
Listing 1-1 and verify that the output matches what you see in the PowerShell
console. We’ll explore the purpose of this command in a later chapter.

PS> New-NtSecurityDescriptor
Owner DACL ACE Count SACL ACE Count Integrity Level

NONE NONE NONE NONE

Listing 1-1: Testing that the NtObjectManager module is working

If everything is working and you’re comfortable with PowerShell, you
can move on to the next chapter. If you need a quick refresher on the
PowerShell language, keep reading.

An Overview of the PowerShell Language

A complete introduction to PowerShell is beyond the scope of this book.

However, this section touches on various language features you’ll need to be
familiar with to use the book most effectively.

Understanding Types, Variables, and Expressions

PowerShell supports many different types, from basic integers and strings to
complex objects. Table 1-1 shows some of the most common built-in types,
along with the underlying .NET runtime types and some simple examples.

Table 1-1: Common Basic PowerShell Types with .NET Types and Examples

Type .NET type Examples

int System.Int32 142, OX8E, 0216
long System.Int64 1421, OX8EL, 0216L
string System.String "Hello", 'World!'
double System.Double 1.0, 1e10

bool System.Boolean $true, $false
array System.Object[] @(1, "ABC", $true)
hashtable System.Collections.Hashtable @{A=1; B="ABC"}

To perform calculations on basic types, we can use well-known operators

such as +, -, *, and /. These operators can be overloaded; for example, + is
used for addition as well as for concatenating strings and arrays. Table 1-2
provides a list of common operators, with simple examples and their results.
You can test the examples yourself to check the output of each operator.

Table 1-2: Common Operators

Operator Name Examples Results

i Addition or concatenation 1+ 2, "Hello" + "World!" 3, "HelloWorld!"
- Subtraction 2-1 1

* Multiplication 2 %4 8

/ Division 8/ 4 2

% Modulus 6 % 4 2

(1 Index @3, 2, 1, 0)[1] 2

-f String formatter "ox{0:X} {1}" -f 42, 123 "Ox2A 123"
-band Bitwise AND Ox1FF -band OXFF 255

-bor Bitwise OR 0x100 -bor 0x20 288

-bxor Bitwise XOR OXCC -bxor 0xDD 17

-bnot Bitwise NOT -bnot OXEE -239

-and $true -and $false $false

Technet24

https://technet24.ir

Boolean AND

= Boolean OR $true -or $false $true
-not Boolean NOT -not $true $false
-€q Equals "Hello" -eq "Hello" $true
-ne Not equals "Hello" -ne "Hello" $false
-1t Less than 4 -1t 10 $true
-gt Greater than 4 -gt 10 $false

You can assign values to variables using the assignment operator, =. A
variable has an alphanumeric name prefixed with the $ character. For
example, Listing 1-2 shows how you can capture an array in a variable and
use the indexing operator to look up a value.

PS> $var = 3, 2, 1, ©
PS> $var[1]
2

Listing 1-2: Capturing an array in a variable and indexing it via the variable name

There are also some predefined variables we’ll use in the rest of this
book. These variables are:

$null Represents the NULL value, which indicates the absence of a
value in comparisons

$pwd Contains the current working directory

$pid Contains the process ID of the shell

$env Accesses the process environment (for example, $env:WinDir to
get the Windows directory)

You can enumerate all variables using the Get-variable command.

In Table 1-1, you might have noticed that there were two string
examples, one using double quotation marks and one using single quotation
marks. One difference between the two is that a double-quoted string
supports string interpolation, where you insert a variable name into the string
as a placeholder and PowerShell includes its value in the result. Listing 1-3
shows what happens when you do this in double- and single-quoted strings.

PS> $var = 42

PS> "The magic number is $var"
The magic number is 42

PS> 'It is not $var'
It is not $var

Listing 1-3: Examples of string interpolation

First, we define a variable with the value 42 to insert into a string. Then
we create a double-quoted string with the variable name inside it. The result
is the string with the variable name replaced by its value formatted as a
string. (If you want more control over the formatting, you can use the string
formatter operator defined in Table 1-2.)

Next, to demonstrate the different behavior of a single-quoted string, we
define one of these with the variable name inline. We can observe that in this
case the variable name is copied verbatim and is not replaced by the value.

Another difference is that a double-quoted string can contain character
escapes that are ignored in single-quoted strings. These escapes use a similar
syntax to those of the C programming language, but instead of a backslash
character (\) PowerShell uses the backtick (*). This is because Windows uses
the backslash as a path separator, and writing out filepaths would be very
annoying if you had to escape every backslash. Table 1-3 gives a list of
character escapes you can use in PowerShell.

Table 1-3: String Character Escapes

Character escape Name

0 NUL character, with a value of zero
‘a Bell

b Backspace

n Line feed

r Carriage return

't Horizontal tab

v Vertical tab

Backtick character

Double quote character

If you want to insert a double quote character into a double-quoted
string, you’ll need to use the " " escape. To insert a single quote into a single-

Technet24

https://technet24.ir

quoted string, you double the quote character: for example, 'Hello' 'There'
would convert to Hello'There. Note also the mention of a NUL character in
this table. As PowerShell uses the .NET string type, it can contain embedded
NUL characters. Unlike in the C language, adding a NUL will not terminate
the string prematurely.

Because all values are .NET types, we can invoke methods and access
properties on an object. For example, the following calls the ToCharArray
method on a string to convert it to an array of single characters:

PS> "Hello".ToCharArray()
H

O KOO

We can use PowerShell to construct almost any .INET type. The simplest
way to do this is to cast a value to that type by specifying the .NET type in
square brackets. When casting, PowerShell will try to find a suitable
constructor for the type to invoke. For example, the following command will
convert a string to a System.Guid object; PowerShell will find a constructor
that accepts a string and call it:

PS> [System.Guid]"6c0a3al7-4459-4339-a3b6-1cdb1b3e8973"

You can also call a constructor explicitly by calling the new method on
the type. The previous example can be rewritten as follows:

PS> [System.Guid]::new("6c0a3al17-4459-4339-a3b6-1cdh1b3e8973")

This syntax can also be used to invoke static methods on the type. For
example, the following calls the NewGuid static method to create a new
random globally unique identifier (GUID):

PS> [System.Guid]: :NewGuid()

You can create new objects too, using the New-0bject command:

PS> New-Object -TypeName Guid -ArgumentList "6c0a3al7-4459-433
9-a3b6-1cdb1b3e8973"

This example is equivalent to the call to the static new function.

Executing Commands

Almost all commands in PowerShell are named using a common pattern: a
verb and a noun, separated by a dash. For example, consider the command
Get-Item. The Get verb implies retrieving an existing resource, while Item is
the type of resource to return.

Each command can accept a list of parameters that controls the behavior
of the command. For example, the Get-Item command accepts a Path
parameter that indicates the existing resource to retrieve, as shown here:

PS> Get-Item -Path "C:\Windows"

The Path parameter is a positional parameter. This means that you can
omit the name of the parameter, and PowerShell will do its best to select the
best match. So, the previous command can also be written as the following:

PS> Get-Item "C:\Windows"

If a parameter takes a string value, and the string does not contain any
special characters or whitespace, then you do not need to use quotes around
the string. For example, the Get -I1tem command would also work with the
following:

PS> Get-Item C:\Windows

The output of a single command is zero or more values, which can be
basic or complex object types. You can pass the output of one command to
another as input using a pipeline, which is represented by a vertical bar
character, |. We’ll see examples of using a pipeline when we discuss

Technet24

https://technet24.ir

filtering, grouping, and sorting later in this chapter.

You can capture the result of an entire command or pipeline into a
variable, then interact with the results. For example, the following captures
the result of the Get -Item command and queries for the FullName property:

PS> $var = Get-Item -Path "C:\Windows"
PS> $var.FullName
C:\Windows

If you don’t want to capture the result in a variable, you can enclose the
command in parentheses and directly access its properties and methods:

PS> (Get-Item -Path "C:\Windows").FullName
C:\Windows

The length of a command line is effectively infinite. However, you’ll
want to try to split up long lines to make the commands more readable. The
shell will automatically split a line on the pipe character. If you need to split a
long line with no pipes, you can use the backtick character, then start a new
line. The backtick must be the last character on the line; otherwise, an error
will occur when the script is parsed.

Discovering Commands and Getting Help

A default installation of PowerShell has hundreds of commands to choose
from. This means that finding a command to perform a specific task can be
difficult, and even if you find the command, it might not be clear how to use
it. To help, you can use two built-in commands, Get -Command and Get -Help.

The Get-Command command can be used to enumerate all the commands
available to you. In its simplest form, you can execute it without any
parameters and it will print all commands from all modules. However, it’s
probably more useful to filter on a specific word you’re interested in. For
example, Listing 1-4 will list only the commands with the word
SecurityDescriptor in their names.

PS> Get-Command -Name *SecurityDescriptor*
CommandType Name Source

Function Add-NtSecurityDescriptorControl NtObjectMana
ger

Function Add-NtSecurityDescriptorDaclAce NtObjectMana
ger

Function Clear-NtSecurityDescriptorDacl NtObjectMana
ger

Function Clear-NtSecurityDescriptorSacl NtObjectMana
ger

--snip--

Listing 1-4: Using Get-Command to enumerate commands

This command uses wildcard syntax to list only commands whose names
include the specified word. Wildcard syntax uses a * character to represent
any character or series of characters. Here, we’ve put the * on both sides of
SecurityDescriptor to indicate that any text can come before or after it.

You can also list the commands available in a module. For example,
Listing 1-5 will list only the commands that are exported by the
NtObjectManager module and begin with the verb Start.

PS> Get-Command -Module NtObjectManager -Name Start-*

CommandType Name Source
Eﬁééiiéé___ éié;t—AccessibleScheduledTask &iégiéctManag
ﬁznction Start-NtFileOplock NtObjectManag
i:nction Start-win32ChildProcess NtObjectManag
ggdlet Start-NtDebugWait NtObjectManag
ggdlet Start-Ntwait NtObjectManag
er

Listing 1-5: Using Get-Command to enumerate commands in the NtObjectManager
module

Once you’ve found a command that looks promising, you can use the
Get-Help command to inspect its parameters and get some usage examples.
In Listing 1-6, we take the Start-Ntwait command from Listing 1-5 and

Technet24

https://technet24.ir

pass it to Get-Help.

PS> Get-Help Start-Ntwait
NAME

€ start-Ntwait
SYNOPSIS

@) Wait on one or more NT objects to become signaled.
SYNTAX

G) Start-NtwWait [-Object] <NtObject[]> [-Alertable <SwitchPar
ameter>]
[-Hour <int>] [-MilliSecond <long>]
[-Minute <int>] [-Second <int>] [-WaitAll <SwitchParameter

>]

[<CommonParameters>]

Start-NtwWait [-Object] <NtObject[]> [-Alertable <SwitchPar
ameter>]
[-Infinite <SwitchParameter>] [-WaitAll <SwitchParameter>]
[<CommonParameters>]
DESCRIPTION

(} This cmdlet allows you to issue a wait on one or more NT
objects until they become signaled.
--snip--

Listing 1-6: Displaying help for the Start-NtWait command

By default, Get -Help outputs the name of the command @, a short
synopsis @, the syntax of the command @), and a more in-depth description
@. In the command syntax section, you can see its multiple possible modes
of operation: in this case, either specifying a time in hours, minutes, seconds,
and/or milliseconds, or specifying Infinite to wait indefinitely.

When any part of the syntax is shown in brackets, [], that means it’s
optional. For example, the only required parameter is object, which takes an
array of Ntobject values. Even the name of this parameter is optional, as -
Object is in brackets.

You can get more information about a parameter by using the Parameter
command. Listing 1-7 shows the details for the object parameter.

PS> Get-Help Start-NtWait -Parameter Object

-Object <NtObject[]>
Specify a list of objects to wait on.

Required? true

Position? 0

Default value

Accept pipeline input? true (Byvalue)

Accept wildcard characters? False

Listing 1-7: Querying the details of the Object parameter with the Parameter command

You can use wildcard syntax to select a group of similar parameter
names. For example, if you specify obj*, then you’ll get information about
any parameters whose names start with the obj prefix.

If you want usage examples for a command, use the Examples parameter,
as demonstrated in Listing 1-8.

PS> Get-Help Start-NtWait -Examples
--snip--
---------- EXAMPLE 1 ----------

() $ev = Get-NtEvent \BaseNamedObjects\ABC
Start-Ntwait $ev -Second 10

(9 Get an event and wait for 10 seconds for it to be signaled
--snip--
Listing 1-8: Showing examples for Start-NtWait

Each example should include a one- or two-line snippet of a PowerShell
script @ and a description of what it does €. You can also see the full help
output for the command by specifying the Full parameter. To view this
output in a separate pop-up window, use the Showwindow parameter. For
example, try running this command:

PS> Get-Help Start-NtWait -ShowWindow

You should see the dialog shown in Figure 1-1.

Technet24

https://technet24.ir

EX Start-NtWait Help = O X

Find: Previous Next Settings

bynopsis
Wait on one or more NT objects to become signalled.

Description

This cmdlet allows you to issue a wait on one or more NT objects until
they become signalled. This is used for example to acquire a Mutant,
decrement a Semaphore or wait for a Process to exit. The timeout value is
a combination of all the allowed time parameters, e.g. if you specify 1
second and 1000 milliseconds it will actually wait 2 seconds in total.
Specifying -Infinite overrides the time parameters and will wait
indefinitely.

Parameters
-Objects <NtObject[]>
Specify a list of objects to wait on.

100%

Figure 1-1: A dialog showing Get-Help information using the ShowWindow parameter

One final topic to mention about commands is that you can set up
aliases, or alternative names for the commands. For example, you can use an
alias to make commands shorter to type. PowerShell comes with many
aliases predefined, and you can define your own using the New-Alias
command. For example, we can set the Start-Ntwait command to have the
alias swt by doing the following:

PS> New-Alias -Name swt -Value Start-NtwWait

To display a list of all the defined aliases, use the Get-Alias command.
We’ll avoid using aliases unnecessarily throughout this book, as it can make
the scripts more confusing if you don’t know what an alias represents.

Defining Functions

As with all programming languages, it pays to reduce complexity in
PowerShell. One way of reducing complexity is to combine common code

into a function. Once a function is defined, the PowerShell script can call the
function rather than needing to repeat the same code in multiple places. The
basic function syntax in PowerShell is simple; Listing 1-9 shows an example.

PS> function Get-NameValue {

param(
[string]$Name = "",
$value

)

return "We've got $Name with value $Value"

}

PS> Get-NameValue -Name "Hello" -Value "World"
We've got Hello with value World

PS> Get-NameValue "Goodbye" 12345
We've got Goodbye with value 12345

Listing 1-9: Defining a simple PowerShell function called Get-NameValue

The syntax for defining a function starts with the keyword function
followed by the name of the function you want to define. While it’s not
required to use the standard PowerShell command naming convention of a
verb followed by a noun, it pays to do so, as it makes it clear to the user what
your function does.

Next, you define the function’s named parameters. Like variables,
parameters are defined using a name prefixed with $, as you can see in
Listing 1-9. You can specify a type in brackets, but this is optional; in this
example, $Name is a string, but the $value parameter can take any value from
the caller. Specifying named parameters is not required. If no param block is
included, then any passed arguments are placed in the $args array. The first
parameter is located at $args[0], the second at $args[1], and so on.

The body of the Get-Namevalue function takes the parameters and builds
a string using string interpolation. The function returns the string using the
return keyword, which also immediately finishes the function. You can omit
the return keyword in this case, as PowerShell will return any values
uncaptured in variables.

After defining the function, we invoke it. You can specify the parameter

Technet24

https://technet24.ir

names explicitly. However, if the call is unambiguous, then specifying the
parameter names is not required. Listing 1-9 shows both approaches.

If you want to run a small block of code without defining a function, you
can create a script block. A script block is one or more statements enclosed in
braces, {}. This block can be assigned to a variable and executed when
needed using the Invoke-Command command or the & operator, as shown in

Listing 1-10.

PS> $script = {Write-Output "Hello"}
PS> & $script
Hello

Listing 1-10: Creating a script block and executing it

Displaying and Manipulating Objects

If you execute a command and do not capture the results in a variable, the
results are passed to the PowerShell console. The console will use a formatter
to display the results, in either a table or a list (the format is chosen
automatically depending on the types of objects contained in the results). It’s
also possible to specify custom formatters. For example, if you use the built-
in Get-Process command to retrieve the list of running processes,
PowerShell uses a custom formatter to display the entries as a table, as shown

in Listing 1-11.

PS> Get-Process

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI Proc
essName

476 27 25896 32044 2.97 3352 1 Appl
icationFrameHost

623 18 25096 18524 529.95 19424 0 audi
odg

170 8 6680 5296 0.08 5192 1 bash

557 31 23888 332 0.59 10784 1 Calc
ulator
--snip--

Listing 1-11: Outputting the process list as a table

If you want to reduce the number of columns in the output, you can use
the Select-0Object command to select only the properties you need. For
example, Listing 1-12 selects the Id and ProcessName properties.

PS> Get-Process | Select-Object Id, ProcessName
Id ProcessName

3352 ApplicationFrameHost
19424 audiodg

5192 bash

10784 Calculator

--snip--

Listing 1-12: Selecting only the Id and ProcessName properties

You can change the default behavior of the output by using the Format -
Table or Format-List command, which will force table or list formatting,
respectively. For example, Listing 1-13 shows how to use the Format-List
command to change the output to a list.

PS> Get-Process | Format-List

Id i 3352

Handles : 476

CPU 1 2.96875

ST 1

Name : ApplicationFrameHost
--snip--

Listing 1-13: Using Format-List to show processes in a list view

To find the names of the available properties, you can use the Get -
Member command on one of the objects that Get-Process returns. For
example, Listing 1-14 lists the properties of the Process object.

PS> Get-Process | Get-Member -Type Property
TypeName: System.Diagnostics.Process

Name MemberType Definition
BasePriority Property int BasePriority {get;}
Container Property System.ComponentModel.IContaine

r Container {get;}

Technet24

https://technet24.ir

EnableRaisingEvents Property bool EnableRaisingEvents {get;s

et;}

ExitCode Property int ExitCode {get;}
ExitTime Property datetime ExitTime {get;}
--sSnip- -

Listing 1-14: Using the Get-Member command to list properties of the Process object

You might notice that there are other properties not included in the
output. To display them, you need to override the custom formatting. The
simplest way to access the hidden properties is to use Select-0Object to
extract the values explicitly, or specify the properties to display to the
Format-Table or Format-List command. You can use * as a wildcard to
show all properties, as in Listing 1-15.

PS> Get-Process | Format-List *

Name : ApplicationFrameHost

Id : 3352

PriorityClass : Normal

FileVersion : 10.0.18362.1 (WinBuild.160101.0800)
HandleCount 1 476

WorkingSet : 32968704

PagedMemorySize : 26517504

--snip--

Listing 1-15: Showing all the properties of the Process object in a list

Many objects also have methods you can call to perform some action on
the object. Listing 1-16 shows how you can use Get -Member to query for
methods.

PS> Get-Process | Get-Member -Type Method
TypeName: System.Diagnostics.Process

Name MemberType Definition
BeginErrorReadLine Method void BeginErrorReadLine()
BeginOutputReadLine Method void BeginOutputReadLine()
CancelErrorRead Method void CancelErrorRead()
CancelOutputRead Method void CancelOutputRead()

Close Method void Close()

--snip--

Listing 1-16: Displaying the methods on a Process object

If the output from a command is too long to fit on the screen, you can
page the output so that only the first part is displayed, and the console will
wait for you to press a key before displaying more. You can enable paging by
piping the output to the out-Host command and specifying the Paging
parameter, or by using the more command. Listing 1-17 shows an example.

PS> Get-Process | Out-Host -Paging

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI Proc
essName

476 27 25896 32044 2.97 3352 1 Appl
icationFrameHost

623 18 25096 18524 529.95 19424 0 audi
odg

170 8 6680 5296 0.08 5192 1 bash

557 31 23888 332 0.59 10784 1 Calc
ulator

<SPACE> next page; <CR> next line; Q quit

Listing 1-17: Paging output using Out-Host

You can write directly to the console window by using the Write-Host
command in your own scripts. This allows you to change the colors of the
output to suit your taste, using the ForegroundColor and BackgroundColor
parameters. It also has the advantage of not inserting objects into the pipeline
by default, as shown here:

PS> $output = Write-Host "Hello"
Hello

This means that, by default, you can’t redirect the output to a file or into
a pipeline. However, you can redirect the host output by redirecting its stream
to the standard output stream using a command like the following:

PS> $output = Write-Host "Hello" 6>&1

Technet24

https://technet24.ir

PS> S$Soutput
Hello

PowerShell also supports a basic GUI to display tables of objects. To
access it, use the out -Gridview command. Note that the custom formatting
will still restrict what columns PowerShell displays. If you want to view other
columns, use Select-0Object in the pipeline to select the properties. The
following example displays all properties in the Grid View GUI:

PS> Get-Process | Select-Object * | Out-GridView

Running this command should show a dialog like Figure 1-2.

EX Get-Process | Select-Object * | Out-GridView — O X
Filter @
& Add criteria v|

Name] Id ’ PriorityClass | FileVersion | HandleCount | WorkingSet | PagedMemorySize | A

i amdow 5916 163 1,376,256 2,347,008

AMDRSServ 10,088 5,720 18,513,920 150,417,408

Applicatio... 3,352 Normal 10.0.183... 476 33,464,320 26,517,504

atieclxx 5,664 259 8,880,128 2,748,416

L atiesnx 2,172 182 4177920 1,478,656

audiodg 19,424 626 19,017,728 26,017,792

bash 5192 Normal 170 5,500,928 6,840,320

Calculator 10,784 Normal 10.1910.... 557 348,160 24,461,312

chrome 8 Normal 81.0.404... 521 56,348,672 43,933,696

chrome 248 Normal 81.0.404... 212 32,636,928 10,170,368

Figure 1-2: Showing Process objects in a grid view

You can filter and manipulate the data in the Grid View GUI. Try
playing around with the controls. You can also specify the PassThru
parameter to Out-GridView, which causes the command to wait for you to
click the OK button in the GUI. Any rows in the view that are selected when
you click OK will be written to the command pipeline.

Filtering, Ordering, and Grouping Objects

A traditional shell passes raw text between commands; PowerShell passes
objects. Passing objects lets you access individual properties of the objects
and trivially filter the pipeline. You can even order and group the objects

easily.

You can filter objects using the where-0bject command, which has the
aliases Where and 2. The simplest filter is to check for the value of a
parameter, as shown in Listing 1-18, where we filter the output from the
built-in Get-Process command to find the explorer process.

PS> Get-Process | Where-Object ProcessName -EQ "explorer"

Handles NPM(K)
essName

2792 130
orer

PM(K)

118152

WS (K) CPU(s) Id SI Proc

158144 624.83 6584 1 expl

Listing 1-18: Filtering a list of processes using Where-Object

In Listing 1-18, we pass through only Process objects where the
ProcessName equals (-EQ) "explorer". There are numerous operators you
can use for filtering, some of which are shown in Table 1-4.

Table 1-4: Common Operators for where-0Object

Operator Example Description

-EQ ProcessName -EQ "explorer" Equal to the value

-NE ProcessName -NE "explorer" Not equal to the value

-Match ProcessName -Match "ex.*" Matches a string against a regular expression
-NotMatch ProcessName -NotMatch "ex.*" Inverse of the -Match operator

-Like ProcessName -Like "ex*" Matches a string against a wildcard

-NotLike ProcessName -NotLike "ex*" Inverse of the -Like operator

-GT ProcessName -GT "ex" Greater-than comparison

-LT ProcessName -LT "ex" Less-than comparison

You can investigate all of the supported operators by using Get-Help on
the where-0bject command. If the condition to filter on is more complex
than a simple comparison, you can use a script block. The script block should

Technet24

https://technet24.ir

return True to keep the object in the pipeline or False to filter it. For
example, you could also write Listing 1-18 as the following:

PS> Get-Process | Where-Object {$_.ProcessName -eq "explorer"}

The $_ variable passed to the script block represents the current object in
the pipeline. By using a script block you can access the entire language in
your filtering, including calling functions.

To order objects, use the Sort-0Object command. If the objects can be
ordered, as in the case of strings or numbers, then you just need to pipe the
objects into the command. Otherwise, you’ll need to specify a property to
sort on. For example, you can sort the process list by its handle count,
represented by the Handles property, as shown in Listing 1-19.

PS> Get-Process | Sort-Object Handles

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI Proc
essName
0] 0] 60 8 0] 0 Idle
32 9 4436 6396 1032 1 font
drvhost
53 3 1148 1080 496 O smss
59 5 804 1764 908 0 Lsal
SO
--snip--

Listing 1-19: Sorting processes by the number of handles

To sort in descending order instead of ascending order, use the
Descending parameter, as shown in Listing 1-20.

PS> Get-Process | Sort-Object Handles -Descending

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI
ProcessName

5143 0] 244 15916 4 0
System

2837 130 116844 156356 634.72 6584 1

explorer

1461 21 11484 16384 1116 0]
svchost
1397 52 55448 2180 12.80 12452 1

Microsoft.Photos

Listing 1-20: Sorting processes by the number of handles in descending order

It’s also possible to filter out duplicate entries at this stage by specifying
the Unique parameter to Sort-Object.

Finally, you can group objects based on a property name using the
Group-Object command. Listing 1-21 shows that this command returns a list
of objects, each with Count, Name, and Group properties.

PS> Get-Process | Group-Object ProcessName
Count Name Group

1 ApplicationFrameHost {System.Diagnostics.Process (Applic
ationFrameHost)}

1 Calculator {System.Diagnostics.Process (Calcul
ator)}

11 conhost {System.Diagnostics.Process (conhos
t)..:}
--snip--

Listing 1-21: Grouping Process objects by ProcessName

Alternatively, you could use all of these commands together in one
pipeline, as shown in Listing 1-22.

PS> Get-Process | Group-Object ProcessName |
Where-Object Count -GT 10 | Sort-Object Count

Count Name Group

11 conhost {System.Diagnostics.Process (conhos
t),...}

83 svchost {System.Diagnostics.Process (svchos
t),...}

Listing 1-22: Combining Where-Object, Group-Object, and Sort-Object

https://technet24.ir

Exporting Data

Once you’ve got the perfect set of objects you want to inspect, you might
want to persist that information to a file on disk. PowerShell provides
numerous options for this, a few of which I’ll discuss here. The first option is
to output the objects to a file as text, using out-File. This command captures
the formatted text output and writes it to a file. You can use Get-Content to
read the file back in again, as shown in Listing 1-23.

PS> Get-Process | Out-File processes.txt
PS> Get-Content processes.txt

Handles NPM(K) PM(K) WS (K) CPU(s) Id SI Proc
essName

476 27 25896 32044 2.97 3352 1 Appl
icationFrameHost

623 18 25096 18524 529.95 19424 0 audi
odg

170 8 6680 5296 0.08 5192 1 bash

557 31 23888 332 0.59 10784 1 Calc
ulator
--snip--

Listing 1-23: Writing content to a text file and reading it back in again

You can also use the greater-than operator to send the output to a file, as
in other shells. For example:

PS> Get-Process > processes.txt

If you want a more structured format, you can use Export-Csv to convert
the object to a comma-separated value (CSV) table format. You could then
import this file into a spreadsheet program to analyze offline. The example in
Listing 1-24 selects some properties of the Process object and exports them
to the CSV file processes.csv.

PS> Get-Process | Select-Object Id, ProcessName |
Export-Csv processes.csv -NoTypeInformation
PS> Get-Content processes.csv

"Id","ProcessName"
"3352", "ApplicationFrameHost"
"19424", "audiodg"

||5192|| , llbashll
"10784", "Calculator"
--snip--

Listing 1-24: Exporting objects to a CSV file

It’s possible to reimport the CSV data using the Import-Csv command.
However, if you expect to export the data and then reimport it later, you’ll
probably prefer the CLI XML format. This format can include the structure
and type of the original object, which allows you to reconstruct it when you
import the data. Listing 1-25 shows how you can use the Export-clixml and
Import-CliXml commands to export objects in this format and then reimport
them.

PS> Get-Process | Select-Object Id, ProcessName | Export-CliXm
1 processes.xml
PS> Get-Content processes.xml
<0bjs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/po
wershell/2004/04">
<0bj RefId="0">
<TNRef RefId="0" />
<MS>
<I32 N="Id">3352</132>
<S N="ProcessName">ApplicationFrameHost</S>
</MS>
</0bj>
--snip--
</0bjs>
PS> $ps = Import-CliXml processes.xml
PS> $ps[0]
Id ProcessName

3352 ApplicationFrameHost

Listing 1-25: Exporting and reimporting CLI XML files

This concludes our discussion of the PowerShell language. If you’re a
little rusty, I recommend picking up a good book on the topic, such as
PowerShell for Sysadmins by Adam Bertram (No Starch Press, 2020).

Technet24

https://technet24.ir

Wrapping Up

This chapter gave a short overview of how to set up your PowerShell
environment so that you can run the code examples included throughout the
book. We discussed configuring PowerShell to run scripts and installing the
required external PowerShell module.

The rest of the chapter provided a bit of background on the PowerShell
language. This included the basics of PowerShell syntax, as well as
discovering commands using Get -Command, getting help using Get -Help, and
displaying, filtering, grouping, and exporting PowerShell objects.

With the basics of PowerShell out of the way, we can start to dive into
the inner workings of the Windows operating system. In the next chapter,
we’ll discuss the Windows kernel and how you can interact with it using
PowerShell.

2

THE WINDOWS KERNEL

Windows is a secure, multiuser operating
system. However, it’s also one of the
most challenging modern operating systems to
understand in detail. Before we delve into the
intricacies of its security, in this part of the book I’ll
provide you with an overview of the operating
system’s structure. We’ll also take this opportunity to
understand how to use the PowerShell module that will

form the core of this book.

We’ll consider the two parts of the running operating system: the kernel
and the user-mode applications. The kernel makes the security decisions that
determine what a user can do on the system. However, most of the
applications you use on a Windows machine run in user mode. This chapter
will focus on the kernel; the next chapter will focus on user-mode
applications.

In the following sections, we’ll examine the various subsystems that
make up the Windows kernel. For each subsystem, I’ll explain its purpose
and how it’s used. We’ll begin with the object manager, where we’ll also
explore system calls, which allow a user-mode application to access kernel
objects. We’ll then discuss the input/output manager, how applications are
created through the process and thread manager, and how memory is

Technet24

https://technet24.ir

represented with the memory manager. Throughout, I’ll outline how you can
inspect the behavior of these subsystems using PowerShell.

The Windows Kernel Executive

The Windows NTOS kernel executive, or kernel for short, is the heart of
Windows. It provides all the operating system’s privileged functionality, as
well as interfaces through which the user applications can communicate with
the hardware. The kernel is split into multiple subsystems, each with a
dedicated purpose. Figure 2-1 shows a diagram of the components in which
we’ll be most interested in this book.

NTOS kernel executive
Input/output Driver
Configuration
/—) mor?oger manager \\ Driver
\ .
Obiject l/_// Process and Driver
manager thread manager
— Networking
Security Advanced local —
Reference procedure call
Monitor
Memory | : :
manager » Code integrity
System calll
interface
Kernel mode
User mode

User applications

Figure 2-1: The Windows kernel executive modules

Each subsystem in the kernel executive exposes APIs for other
subsystems to call. If you are looking at kernel code, you can quickly
determine what subsystem each API belongs to using its two-character prefix.
The prefixes for the subsystems in Figure 2-1 are shown in Table 2-1.

Table 2-1: API Prefix-to-Subsystem Mapping

Prefix Subsystem Example

Nt Or Zw System call interface NtOpenFile/ZwOpenFile

Se Security Reference Monitor SeAccessCheck

ob Object manager ObReferenceObjectByHandle
Ps Process and thread manager PsGetCurrentProcess

Cm Configuration manager CmRegisterCallback

Mm Memory manager MmMapIoSpace

To Input/output manager IoCreateFile

Ci Code integrity CivalidateFileObject

We’ll explore all of these subsystems in the sections that follow.

The Security Reference Monitor

For the purposes of this book, the Security Reference Monitor (SRM) is the
most important subsystem in the kernel. It implements the security
mechanisms that restrict which users can access different resources. Without
the SRM, you wouldn’t be able to prevent other users from accessing your
files. Figure 2-2 shows the SRM and its related system components.

Technet24

https://technet24.ir

/ NTOS kernel executive \

Security
Reference
Monitor

Access check

L =

4 N 4

User process Resource

[-)

(‘--.{

L1 \

[P,

L1 L %
I—— Granted access — -— \‘
/
/

_ Access token / \ Security descriptor Yy,

Figure 2-2: Components of the Security Reference Monitor

Every process running on the system is assigned an access token when
it’s created. This access token is managed by the SRM and defines the
identity of the user associated with that process. The SRM can then perform
an operation called an access check. This operation queries a resource’s
security descriptor, compares it to the process’s access token, and either
calculates the level of granted access or indicates that access is denied to the
caller.

The SRM is also responsible for generating audit events whenever a user
accesses a resource. Auditing is disabled by default due to the volume of
events it can produce, so an administrator must enable it first. These audit
events can be used to identify malicious behavior on a system as well as to
diagnose security misconfigurations.

The SRM expects users and groups to be represented as binary structures
called security identifiers (SIDs). However, passing around raw binary SIDs
isn’t very convenient for users, who normally refer to users and groups by
meaningful names (for example, the user bob or the Users group). These

names need to be converted to SIDs before the SRM can use them. The task
of name—SID conversion is handled by the Local Security Authority
Subsystem (LSASS), which runs inside a privileged process independent from
any logged-in users.

It’s infeasible to represent every possible SID as a name, so Microsoft
defines the Security Descriptor Definition Language (SDDL) format to
represent a SID as a string. SDDL can represent the entire security descriptor
of a resource, but for now we’ll just use it to represent the SID. In Listing 2-
1, we use PowerShell to look up the Users group name using the Get-NtSid
command; this should retrieve the SDDL string for the SID.

PS> Get-NtSid -Name "Users"
Name Sid

BUILTIN\Users S-1-5-32-545

Listing 2-1: Querying the SID of the Users group using Get-NtSid

We pass the name of the Users group to Get -NtSid, which returns the
fully qualified name, with the local domain BUILTIN attached. The

BUILTIN\Users SID is always the same between different Windows systems.

The output also contains the SID in SDDL format, which can be broken
down into the following dash-separated parts:

e The s character prefix. This indicates that what follows is an SDDL SID.
e The version of the SID structure in decimal. This has a fixed value of 1.
e The security authority. Authority 5 indicates the built-in NT authority.

e Two relative identifiers (RIDs), in decimal. The RIDs (here, 32 and 545)
represent the NT authority group.

We can also use Get-NtSid to perform the reverse operation, converting
an SDDL SID back to a name, as shown in Listing 2-2.

PS> Get-NtSid -Sddl "S-1-5-32-545"
Name Sid

BUILTIN\Users S-1-5-32-545

Technet24

https://technet24.ir

Listing 2-2: Using Get-NtSid to find the name associated with a SID

I’1l describe the SRM and its functions in much greater depth in Chapters
4 through 9, and we’ll revisit the SID structure in Chapter 5, when we discuss
security descriptors. For now, remember that SIDs represent users and groups
and that we can represent them as strings in SDDL form. Next, we’ll move
on to another of the core Windows kernel executive subsystems, the object
manager.

The Object Manager

On Unix-like operating systems, everything is a file. On Windows,
everything is an object, meaning that every file, process, and thread is
represented in kernel memory as an object structure. Importantly for security,
each of these objects can have an assigned security descriptor, which restricts
which users can access the object and determines the type of access they have
(for example, read or write).

The object manager is the component of the kernel responsible for
managing these resource objects, their memory allocations, and their
lifetimes. In this section, we’ll first discuss the types of objects the object
manager supports. Then, we’ll explore how kernel objects can be opened
through a naming convention using a system call. Finally, we’ll look at how
to use a handle returned by the system call to access the object.

Object Types

The kernel maintains a list of all the types of objects it supports. This is
necessary, as each object type has different supported operations and security
properties. Listing 2-3 shows how to use the Get-NtType command to list all
supported types in the kernel.

PS> Get-NtType
Name

Type
Directory
SymbolicLink
Token

Job

Process
Thread
--snip--

Listing 2-3: Executing Get-NtType

I’ve truncated the list of types (the machine I’m using supports 72 of
them), but there are some noteworthy entries even in this short section. The
first entry in the generated list is Type; even the list of kernel types is built
from objects! Other types of note here are Process and Thread, which
represent the kernel objects for a process and a thread, respectively. We’ll
examine other object types in more detail later in this chapter.

You can display the properties of a type with Format-List, which
returns additional information about that type. We’ll look at an example later,
but for now the question is how to access each of these types. To answer it,
we’ll need to talk about the object manager namespace.

The Object Manager Namespace

As a user of Windows, you typically see your filesystem drives in Explorer.
But underneath the user interface is a whole additional filesystem just for
kernel objects. Access to this filesystem, referred to as the object manager
namespace (OMNS), isn’t very well documented or exposed to most
developers, which makes it even more interesting.

The OMNS is built out of Directory objects. The objects act as if they
were in a filesystem, so each directory contains other objects, which you can
consider to be files. However, they are distinct from the file directories you’re
used to. Each directory is configured with a security descriptor that
determines which users can list its contents and which users can create new
subdirectories and objects inside it. You can specify the full path to an object
with a backslash-separated string.

We can enumerate the OMNS by using a drive provider that is part of
this book’s PowerShell module. As shown in Listing 2-4, this exposes the
OMNS as if it were a filesystem by listing the NtObject drive.

PS> 1s NtObject:\ | Sort-Object Name
Name TypeName

Technet24

https://technet24.ir

ArcName Directory
BaseNamedObjects Directory

BindFltPort FilterConnectionPort
Callback Directory

CLDMSGPORT FilterConnectionPort
clfs Device
CsrSbSyncEvent Event

Device Directory

Dfs SymbolicLink
DosDevices SymbolicLink
--snip- -

Listing 2-4: Listing the root OMNS directory

Listing 2-4 shows a short snippet of the root OMNS directory. By
default, this output includes the name of each object and its type. We can see
a few Directory objects; you can list them if you have permission to do so.
We can also see another important type, SymbolicLink. You can use
symbolic links to redirect one OMNS path to another. A SymbolicLink object
contains a SymbolicLinkTarget property, which itself contains the target that
the link should open. For example, Listing 2-5 shows the target for a
symbolic link in the root of the OMNS.

PS> 1s NtObject:\Dfs | Select-Object SymbolicLinkTarget
SymbolicLinkTarget

\Device\DfsClient

PS> Get-Item NtObject:\Device\DfsClient | Format-Table
Name TypeName

DfsClient Device

Listing 2-5: Showing the target of a symbolic link

Here, we list the \Dfs OMNS path, then extract the SymbolicLinkTarget
property to get the real target. Next, we check the target path,
Device\DfsClient, to show it’s a Device type, which is what the symbolic link
can be used to access.

Windows preconfigures several important object directories, shown in

Table 2-2.

Table 2-2: Well-Known Object Directories and Descriptions

Path Description

\BaseNamedObjects Global directory for user objects

\Device Directory containing devices such as mounted filesystems
\GLOBAL?? Global directory for symbolic links, including drive mappings
\KnownDills Directory containing special, known DLL mappings
\ObjectTypes Directory containing named object types

\Sessions Directory for separate console sessions

\Windows Directory for objects related to the Window Manager

\RPC Control Directory for remote procedure call endpoints

The first directory in Table 2-2, BaseNamedObjects (BNO), is important
in the context of the object manager. It allows any user to create named
kernel objects. This single directory allows the sharing of resources between
different users on the local system. Note that you don’t have to create objects
in the BNO directory; it’s only a convention.

I’11 describe the other object directories in more detail later in this
chapter. For now, you can list them in PowerShell by prefixing the path with
NtObject:, as I’ve shown in Listing 2-5.

System Calls

How can we access the named objects in the OMNS from a user-mode
application? If we’re in a user-mode application, we need the kernel to access
the objects, and we can call kernel-mode code in a user-mode application
using the system call interface. Most system calls perform some operation on
a specific type of kernel object exposed by the object manager. For example,
the NtCreateMutant system call creates a Mutant object, a mutual exclusion
primitive used for locking and thread synchronization.

The name of a system call follows a common pattern. It starts with either
Nt or zw. For user-mode callers, the two prefixes are equivalent; however, if
the system call is invoked by code executing in the kernel, the zw prefix
changes the security checking process. We’ll come back to the implications
of the zw prefix in Chapter 7, when we talk about access modes.

After the prefix comes the operation’s verb: Create, in the case of

Technet24

https://technet24.ir

NtCreateMutant. The rest of the name relates to the kernel object type the
system call operates on. Common system-call verbs that perform an operation
on a kernel object include:

create Creates a new object. Maps to New-Nt<Type> PowerShell
commands.

open Opens an existing object. Maps to Get -Nt<Type> PowerShell
commands.

QueryInformation Queries object information and properties.

SetInformation Sets object information and properties.

Certain system calls perform type-specific operations. For example,
NtQueryDirectoryFile is used to query the entries in a File object
directory. Let’s look at the C-language prototype for the NtCreateMutant
system call to understand what parameters need to be passed to a typical call.
As shown in Listing 2-6, the NtCreateMutant system call creates a new
Mutant object.

NTSTATUS NtCreateMutant(
HANDLE* FileHandle,
ACCESS_MASK DesiredAccess,
OBJECT_ATTRIBUTES* ObjectAttributes,
BOOLEAN InitialOwner

);
Listing 2-6: The C prototype for NtCreateMutant

The first parameter for the system call is an outbound pointer to a
HANDLE. Common in many system calls, this parameter is used to retrieve an
opened handle to the object (in this case, a Mutant) when the function
succeeds. We use handles along with other system calls to access properties
and perform operations. In the case of our Mutant object, the handle allows
us to acquire and release the lock to synchronize threads.

Next is DesiredAccess, which represents the operations the caller wants
to be able to perform on the Mutant using the handle. For example, we could
request access that allows us to wait for the Mutant to be unlocked. If we
didn’t request that access, any application that tried to wait on the Mutant

would immediately fail. The access granted depends on the results of the
SRM’s access check. We’ll discuss handles and DesiredAccess in more
detail in the next section.

Third is the objectAttributes parameter, which defines the attributes
for the object to open or create. The 0BJECT_ATTRIBUTES structure is defined
as shown in Listing 2-7.

struct OBJECT_ATTRIBUTES {

ULONG Length;

HANDLE RootDirectory;
UNICODE_STRING* ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor;

PVOID SecurityQualityOfService;

Listing 2-7: The OBJECT_ATTRIBUTES structure

This C-language structure starts with Length, which represents the length
of the structure. Specifying the structure length at the start is a common C-
style idiom to ensure that the correct structure has been passed to the system
call.

Next come RootDirectory and ObjectName. These are taken together, as
they indicate how the system call should look up the resource being accessed.
The RootDirectory is a handle to an opened kernel object to use as the base
for looking up the object. The objectName field is a pointer to a
UNICODE_STRING structure. This is a counted string, defined in Listing 2-8 as
a C-language structure.

struct UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
WCHAR* Buffer;

iy
Listing 2-8: The UNICODE_STRING structure

The structure references the string data through Buffer, which is a
pointer to an array of 16-bit Unicode characters. The string is represented in

Technet24

https://technet24.ir

UCS-2 encoding; Windows predates many of the changes to Unicode, such
as UTF-8 and UTF-16.

The UNICODE_STRING structure also contains two length fields, Length
and MaximumLength. The first length field represents the total valid length of
the string pointed to by Buffer, in bytes (not in Unicode characters). If
you’re coming from a C programming background, this length does not
include any NUL terminating character. In fact, a NUL character is permitted
in object names.

The second length field represents the maximum length of the string
pointed to by Buffer, in bytes. Because the structure has two separate
lengths, it’s possible to allocate an empty string with a large maximum length
and a valid length of zero, then update the string value using the Buffer
pointer. Note that the lengths are stored as USHORT values, which are unsigned
16-bit integers. Coupled with the length-representing bytes, this means a
string can be at most 32,767 characters long.

To specify the name of an object, you have two options: you can set
ObjectName to an absolute path of, for example, \BaseNamedObjects\ABC, or
you can set RootDirectory to a Directory object for \BaseNamedObjects
and then pass ABC as the objectName. These two actions will open the same
object.

Returning to Listing 2-7, after the objectName parameter comes
Attributes, which is a set of flags to modify the object name lookup process
or change the returned handle’s properties. Table 2-3 shows the valid values
for the Attributes field.

Table 2-3: Object Attribute Flags and Descriptions

PowerShell name Description

Inherit Marks the handle as inheritable.

Permanent Marks the handle as permanent.

Exclusive Marks the handle as exclusive if creating a new object. Only the same
process can open a handle to the object.

CaseInsensitive Looks up the object name in a case-insensitive manner.

OpenIf If using a create call, opens a handle to an existing object if available.

OpenLink Opens the object if it's a link to another object; otherwise, follows the link.

This is used only by the configuration manager.

KernelHandle Opens the handle as a kernel handle when used in kernel mode. This
prevents user-mode applications from accessing the handle directly.

ForceAccessCheck When used in kernel mode, ensures all access checks are performed,
even if calling the zw version of the system call.

IgnoreImpersonatedDeviceMap Disables the device map when impersonating.

DontReparse Indicates not to follow any path that contains a symbolic link.

The final two fields in the 0BJECT_ATTRIBUTES structure allow the caller
to specify the Security Quality of Service (SQoS) and security descriptor for
the object. We’ll come back to SQoS in Chapter 4 and the security descriptor

in Chapter 5.
Next in the NtCreateMutant system call in Listing 2-6 is the

Initialowner Boolean parameter, which is specific to this type. In this case,
it represents whether the created Mutant is owned by the caller or not. Many
other system calls, especially for files, have more complex parameters, which
we’ll discuss in more detail later in the book.

NTSTATUS Codes

All system calls return a 32-bit NTSTATUS code. This status code is composed
of multiple components packed into the 32 bits, as shown in Figure 2-3.

Severity| CC | R Facility Status code
|
Bits Bit Bit Bits Bits
31-30 29 28 27-16 15-0

Figure 2-3: The NT status code structure

The most significant two bits (31 and 30) indicate the severity of the
status code. Table 2-4 shows the available values.

Table 2-4: NT Status Severity Codes
Severity hame Value

STATUS_SEVERITY_SUCCESS
STATUS_SEVERITY_INFORMATIONAL
STATUS_SEVERITY_WARNING
STATUS_SEVERITY_ERROR

w N B o

If the severity level indicates a warning or error, then bit 31 of the status

Technet24

https://technet24.ir

code will be set to 1. If the status code is treated as a signed 32-bit integer,
this bit represents a negative value. It’s a common coding practice to assume
that if the status code is negative it represents an error, and if it’s positive it
represents a success. As we can see from the table, this assumption isn’t
completely true—the negative status code could also be a warning—but it
works well enough in practice.

The next component in Figure 2-3, CC, is the customer code. This is a
single-bit flag that indicates whether the status code is defined by Microsoft
(a value of 0) or defined by a third party (a value of 1). Third parties are not
obliged to follow this specification, so don’t treat it as fact.

Following the customer code is the R bit, a reserved bit that must be set
to 0.

The next 12 bits indicate the facility—that is, the component or
subsystem associated with the status code. Microsoft has predefined around
50 facilities for its own purposes. Third parties should define their own
facility and combine it with the customer code to distinguish themselves from
Microsoft. Table 2-5 shows a few commonly encountered facilities.

Table 2-5: Common Status Facility Values

Facility name Value Description

FACILITY_DEFAULT 0 The default used for common status codes
FACILITY_DEBUGGER 1 Used for codes associated with the debugger
FACILITY_NTWIN32 7 Used for codes that originated from the Win32 APIs

The final component, the status code, is a 16-bit number chosen to be
unique for the facility. It’s up to the implementer to define what each number
means. The PowerShell module contains a list of known status codes, which
we can query using the Get -NtStatus command with no parameters (Listing
2-9).

PS> Get-NtStatus

Status StatusName Message
00000000 STATUS_SUCCESS STATUS_SUCCESS
00000001 STATUS_WAIT_1 STATUS_WAIT_1

000000680 STATUS_ABANDONED_WAIT_O STATUS_ABANDONED_WAIT_O
0000006COo STATUS_USER_APC STATUS_USER_APC

OOOOOOFF STATUS_ALREADY_COMPLETE
completed by...

00000100 STATUS_KERNEL_APC
00000101 STATUS_ALERTED

00000102 STATUS_TIMEOUT

00000103 STATUS_PENDING

guested is p...

--snip--

Listing 2-9: Example output from Get-NtStatus

The requested action was

STATUS_KERNEL_APC
STATUS_ALERTED
STATUS_TIMEOUT

The operation that was re

Notice how some status values, such as STATUS_PENDING, have a human-
readable message. This message isn’t embedded in the PowerShell module;
instead, it’s stored inside a Windows library and can be extracted at runtime.

When we call a system call via a PowerShell command, its status code is
surfaced through a .NET exception. For example, if we try to open a
Directory object that doesn’t exist, we’ll see the exception shown in Listing

2-10 displayed in the console.

PS> Get-NtDirectory \THISDOESNOTEXIST

@ Get-NtDirectory
--snip--

(OxCOO0OO34) - Object Name not found.

PS> Get-NtStatus 0xC0000034 | Format-List

Status 1 3221225524

@ statusSigned 1073741772
StatusName STATUS_OBJECT_NAME_NOT_FOUND
Message Object Name not found.
Win32Error ERROR_FILE_NOT_FOUND
Win32ErrorCode 2
Code 52
CustomercCode False
Reserved False
Facility FACILITY_DEFAULT
Severity STATUS_SEVERITY_ERROR

Listing 2-10: An NTSTATUS exception generated when trying to open a nonexistent

directory

In Listing 2-10, we use Get-NtDirectory to open the nonexistent path
THISDOESNOTEXIST. This generates the NTSTATUS 0xC0000034 exception,

Technet24

https://technet24.ir

shown here along with the decoded message €. If you want more
information about the status code, you can pass it to Get-NtStatus and
format the output as a list to view all its properties, including Facility and
Severity. The NT status code is an unsigned integer value; however, it’s
common to also see it printed (incorrectly) as a signed value €.

Object Handles

The object manager deals with pointers to kernel memory. A user-mode
application cannot directly read or write to kernel memory, so how can it
access an object? It does this using the handle returned by a system call, as
discussed in the previous section. Each running process has an associated
handle table containing three pieces of information:

e The handle’s numeric identifier
e The granted access to the handle; for example, read or write
e The pointer to the object structure in kernel memory

Before the kernel can use a handle, the system call implementation must
look up the kernel object pointer from the handle table using a kernel API
such as ObReferenceObjectByHandle. By providing this handle indirectly, a
kernel component can return the handle number to the user-mode application
without exposing the kernel object directly. Figure 2-4 shows the handle
lookup process.

NTOS kernel executive

Mutant type
h
Sl Process object
interface
® 4 R | OxZFFF.
) Mutant
8 RWX Ox7FFE.. / object
N 12 Rw Ox7FFD... (]
Handle table
¥
Kernelmode \® |
User mode
\
Mutant] gcmdle User process

Figure 2-4: The handle table lookup process

In Figure 2-4, the user process is trying to perform some operation on a
Mutant object. When a user process wants to use a handle, it must first pass
the handle’s value to the system call we defined in the previous section €.
The system call implementation then calls a kernel API to convert the handle
to a kernel pointer by referencing the handle’s numeric value in the process’s
handle table @.

To determine whether to grant the access, the conversion API considers
the type of access that the user has requested for the system call’s operation,
as well as the type of object being accessed. If the requested access doesn’t
match the granted access recorded in the handle table entry, the API will
return STATUS_ACCESS_DENIED and the conversion operation will fail.
Likewise, if the object types don’t match @), the API will return
STATUS_OBJECT_TYPE_MISMATCH.

These two checks are crucial for security. The access check ensures that
the user can’t perform an operation on a handle to which they don’t have
access (for example, writing to a file for which they have only read access).
The type check ensures the user hasn’t passed an unrelated kernel object type,

Technet24

https://technet24.ir

which might result in type confusion in the kernel, causing security issues
such as memory corruption. If the conversion succeeds, the system call now
has a kernel pointer to the object, which it can use to perform the user’s
requested operation.

Access Masks
The granted access value in the handle table is a 32-bit bitfield called an
access mask. This is the same bitfield used for the DesiredAccess parameter
specified in the system call. We’ll discuss how DesiredAccess and the access
check process determine the granted access in more detail in Chapter 7.

An access mask has four components, as shown in Figure 2-5.

Generic Special Standard T p
access access access ypespacliic gacess
\ | |
Bits Bits Bits Bits
31=28 27=21 20-16 15-0

Figure 2-5: The access mask structure

The most important one is the 16-bit type-specific access component,
which defines the operations that are allowed on a particular kernel object
type. For example, a File object might have separate bits to specify whether
the file is allowed to be read or written to when using the handle. In contrast,
a synchronization Event might only have a single bit that allows the event to
be signaled.

Working backward, the standard access component of the access mask
defines operations that can apply to any object type. These operations
include:

Delete Removes the object; for example, by deleting it from disk or
from the registry
ReadControl Reads the security descriptor information for the object

WriteDac Writes the security descriptor’s discretionary access control
(DAC) to the object

Writeowner Writes the owner information to the object

synchronize Waits on the object; for example, waits for a process to
exit or a mutant to be unlocked

We’ll cover security-related access in more detail in Chapters 5 and 6.
Before this are the reserved and special access bits. Most of these bits
are reserved, but they include two access values:

AccessSystemSecurity Reads or writes audit information on the object

MaximumAllowed Requests the maximum access to an object when
performing an access check

We’ll cover AccessSystemSecurity access in Chapter 9 and
MaximumAllowed access in Chapter 7.

Finally, the four high-order bits of the access mask (the generic access
component) are used only when requesting access to a kernel object using the
system call’s DesiredAccess parameter. There are four broad categories of
access: GenericRead, GenericWrite, GenericExecute, and GenericAll.

When you request one of these generic access rights, the SRM will first
convert the access into the corresponding type-specific access. This means
you’ll never receive access to a handle with GenericRead; instead, you’ll be
granted access to the specific access mask that represents read operations for
that type. To facilitate the conversion, each type contains a generic mapping
table, which maps the four generic categories to type-specific access. We can
display the mapping table using Get-NtType, as shown in Listing 2-11.

PS> Get-NtType | Select-Object Name, GenericMapping

Name GenericMapping

Type R:00020000 W:00020000 E:000200
00 A:000F0001

Directory R:00020003 W:0002000C E:000200
03 A:000FO0OF

SymbolicLink R:00020001 W:00020000 E:000200
01 A:000F0001

Token R:0002001A W:000201E0 E:000200
05 A:Q00FO1FF

--snip--

Listing 2-11: Displaying the generic mapping table for object types

Technet24

https://technet24.ir

The type data doesn’t provide names for each specific access mask.
However, for all common types, the PowerShell module provides an
enumerated type that represents the type-specific access. We can access this
type through the Get -NtTypeAccess command. Listing 2-12 shows an
example for the File type.

PS> Get-NtTypeAccess -Type File

Mask Value GenericAccess

00000001 ReadData Read, All

000060002 WriteData Write, All

00000004 AppendData Write, All

00000008 ReadEa Read, All

000060010 WriteEa Write, All

00000020 Execute Execute, All

00000040 DeleteChild All

00000080 ReadAttributes Read, Execute, All
00000100 WriteAttributes Write, All

000100060 Delete All

00020000 ReadControl Read, Write, Execute, All
00040000 WriteDac All

0008000600 WriteOwner All

00100000 Synchronize Read, Write, Execute, All

Listing 2-12: Displaying the access mask for the File object type

The output of the Get -NtTypeAccess command shows the access mask
value, the name of the access as known to the PowerShell module, and the
generic access from which it will be mapped. Note how some access types
are granted only to All; this means that even if you requested generic read,
write, and execute access, you wouldn’t be granted access to those rights.

-

SOFTWARE DEVELOPMENT KIT NAMES

To improve usability, the PowerShell module has modified the original names of
the access rights found in the Windows software development kit (SDK). You can
view the equivalent SDK names using the sbkName property with the Get -
NtTypeAccess command:

PS> Get-NtTypeAccess -Type File | Select SDKName, Value

SDKName Value

FILE_READ_DATA ReadData
FILE_WRITE_DATA WriteData
FILE_APPEND_DATA AppendData
--snip--

These name mappings are useful for porting native code to PowerShell.

You can convert between a numeric access mask and specific object
types using the Get -NtAccessMask command, as shown in Listing 2-13.

PS> Get-NtAccessMask -FileAccess ReadData, ReadAttributes, Rea
dControl
Access

00020081

PS> Get-NtAccessMask -FileAccess GenericRead
Access

80000000

PS> Get-NtAccessMask -FileAccess GenericRead -MapGenericRights
Access

0012006089

PS> Get-NtAccessMask 0x120089 -AsTypeAccess File
ReadData, ReadEa, ReadAttributes, ReadControl, Synchronize

Listing 2-13: Converting access masks using Get-NtAccessMask

In Listing 2-13, we first request the access mask from a set of File
access names and receive the numeric access mask in hexadecimal. Next, we
get the access mask for the GenericRead access; as you can see, the value
returned is just the numeric value of GenericRead. We then request the
access mask for GenericRead but specify that we want to map the generic
access to a specific access by using the MapGenericRights parameter. As
we’ve specified the access for the File type, this command uses the File

Technet24

https://technet24.ir

type’s generic mapping to convert to the specific access mask. Finally, we
convert the raw access mask back to a type access using the AsTypeAccess
parameter, specifying the kernel type to use.

As shown in Listing 2-14, you can query an object handle’s granted
access mask through the PowerShell object’s GrantedAccess property. This
returns the enumerated type format for the access mask. To retrieve the
numeric value, use the GrantedAccessMask property.

PS> $mut = New-NtMutant

PS> $mut.GrantedAccess

ModifyState, Delete, ReadControl, WriteDac, WriteOwner, Synchr
onize

PS> $mut.GrantedAccessMask
Access

001FO001

Listing 2-14: Displaying the numeric value of the access mask using GrantedAccessMask

The kernel provides a facility to dump all handle table entries on the
system through the NtQuerySystemInformation system call. We can access
the handle table from PowerShell using the Get-NtHandle command, as
illustrated in Listing 2-15.

PS> Get-NtHandle -ProcessId $pid

ProcessId Handle ObjectType Object
GrantedAccess

22460 4 Process FFFF800224F02080
OO1FFFFF

22460 8 Thread FFFF800224F1A140
OO1FFFFF

22460 12 SymbolicLink FFFF9184AC639FCO
000F0001

22460 16 Mutant FFFF800224F26510
001F0001

--snip--

Listing 2-15: Displaying the handle table for the current process using Get-NtHandle

Each handle entry contains the type of the object, the address of the
kernel object in kernel memory, and the granted access mask.

Once an application has finished with a handle, it can be closed using the
NtClose API. If you’ve received a PowerShell object from a Get or New call,
then you can call the close method on the object to close the handle. You can
also close an object handle automatically in PowerShell by using the use-
NtObject command to invoke a script block that closes the handle once it
finishes executing. Listing 2-16 provides examples of both approaches.

PS> $m = New-NtMutant \BaseNamedObjects\ABC
PS> $m.IsClosed
False

PS> $m.Close()
PS> $m.IsClosed
True

PS> Use-NtObject($m = New-NtMutant \BaseNamedObjects\ABC) {
$m.FullPath
}

\BaseNamedObjects\ABC

PS> $m.IsClosed
True

Listing 2-16: Closing an object handle

If you do not close handles manually, the .NET garbage collector will
close them automatically for objects that are not referenced (for example,
held in a PowerShell variable). You should get into the habit of manually
closing handles, though; otherwise, you might have to wait a long time for
the resources to be released, as the garbage collector could run at any time.

If the kernel object structure is no longer referenced, either through a
handle or by a kernel component, then the object will also be destroyed. Once
an object is destroyed, all its allocated memory is cleaned up and, if it exists,
its name in the OMNS is removed.

PERMANENT OBJECTS

Technet24

https://technet24.ir

It is possible to get the kernel to mark an object as permanent, preventing the
object from being destroyed when all handles close and allowing its name to
remain in the OMNS. To make an object permanent, you need to either specify the
Permanent attribute flag when creating the object or use the system call
NtMakePermanentObject, which is mapped to the makePermanent call on any object
handle returned by a Get or New command. You need a special privilege,
SeCreatePermanentPrivilege, to do this; we’ll discuss privileges in Chapter 4.

The reverse operation, NtMakeTemporaryObject (Or the MakeTemporary method in
PowerShell), removes the permanent setting and allows an object to be destroyed.
The destruction won’t happen until all handles to the object have closed. This
operation doesn’t require any special privileges, but it does require belete access
on the object to succeed.

Note that File and Key objects always have permanent names as they don’t
exist in the OMNS; to remove the names for these types of objects, you must use
a system call to explicitly delete them.

Handle Duplication

You can duplicate handles using the NtDuplicateObject system call. The
primary reason you might want to do this is to allow a process to take an
additional reference to a kernel object. The kernel object won’t be destroyed
until all handles to it are closed, so creating a new handle maintains the
kernel object.

Handle duplication can additionally be used to transfer handles between
processes if the source and destination process handles have DupHandle
access. You can also use handle duplication to reduce the access rights on a
handle. For example, when you pass a file handle to a new process, you could
grant the duplicated handle only read access, preventing the new process
from writing to the object. However, you should not rely on this approach for
reducing the handle’s granted access; if the process with the handle has
access to the resource, it can just reopen it to get write access.

Listing 2-17 shows some examples of using the Copy-Ntobject
command, which wraps NtDuplicateObject, to perform some duplication in
the same process. We’ll come back to handle duplication and security checks

in Chapter 8.

i} PS> $mut = New-NtMutant "\BaseNamedObjects\ABC"
PS> $mut.GrantedAccess
ModifyState, Delete, ReadControl, WriteDac, WriteOwner, Synchr
onize

® ps> Use-NtObject($dup = Copy-NtObject $mut) {

$mut
$dup
Compare-NtObject $mut $dup
}
Handle Name NtTypeName Inherit ProtectFromClose
1616 ABC Mutant False False
2212 ABC Mutant False False
True

@) PS> $mask = Get-NtAccessMask -MutantAccess ModifyState
PS> Use-NtObject($dup = Copy-NtObject $mut -DesiredAccessMask
$mask) {
$dup.GrantedAccess
Compare-NtObject $mut $dup

}
ModifyState

True

Listing 2-17: Using Copy-NtObject to duplicate handles

First, we create a new Mutant object to test handle duplication and
extract the current granted access, which shows six access rights €. For the
initial duplication, we’ll keep the same granted access €. You can see in the
first column of the output that the handles are different. However, our call to
Compare-NtObject to determine whether the two handles refer to the same
underlying kernel object returns True. Next, we get an access mask for
Mutant ModifyState access and duplicate the handle, requesting that access
©. We can see in the output that the granted access is now only
ModifyState. However, the Compare-NtObject return value still indicates the
handles refer to the same object.

Also relevant to handle duplication are the handle attributes Inherit and
ProtectFromClose. Setting Inherit allows a new process to inherit the
handle when it’s created. This allows you to pass handles to a new process to
perform tasks such as redirecting console output text to a file.

Setting ProtectFromClose protects the handle from being closed. You
can set this attribute by setting the ProtectFromClose property on the object,

Technet24

https://technet24.ir

which will set the attribute on the native handle. Listing 2-18 shows an
example of its use.

PS> $mut = New-NtMutant

PS> $mut.ProtectFromClose = $true

PS> Close-NtObject -SafeHandle $mut.Handle -CurrentProcess
STATUS_HANDLE_NOT_CLOSABLE

Listing 2-18: Testing the ProtectFromClose handle attribute

Any attempt to close the handle will fail with a
STATUS_HANDLE_NOT_CLOSABLE status code, and the handle will stay open.

Query and Set Information System Calls

A kernel object typically stores information about its state. For example, a
Process object stores a timestamp of when it was created. To allow us to
retrieve this information, the kernel could have implemented a specific “get
process creation time” system call. However, due to the volume of
information stored for the various types of objects, this approach would
quickly become unworkable.

Instead, the kernel implements generic Query and Set information
system calls whose parameters follow a common pattern for all kernel object
types. Listing 2-19 shows the Query information system call’s pattern, using
the Process type as an example; for other types, just replace Process with
the name of the kernel type.

NTSTATUS NtQueryInformationProcess(

HANDLE Handle,
PROCESS_INFORMATION_CLASS InformationClass,
PVOID Information,

ULONG InformationLength,
PULONG ReturnLength

Listing 2-19: An example Query information system call for the Process type

All Query information system calls take an object handle as the first
parameter. The second parameter, InformationClass, describes the type of

process information to query. The information class is an enumerated value;
the SDK specifies the names of the information classes, which we can extract
and implement in PowerShell. Querying certain kinds of information might
require special privileges or administrator access.

For every information class, we need to specify an opaque buffer to
receive the queried information, as well as the length of the buffer. The
system call also returns a length value, which serves two purposes: it
indicates how much of the buffer was populated if the system call was
successful, and if the system call failed, it indicates how big the buffer needs
to be with STATUS_INFO_LENGTH_MISMATCH or STATUS_BUFFER_TOO_SMALL.

You should be careful about relying on the returned length to determine
how big a buffer to pass to the query, however. Some information classes and
types do not correctly set the length needed if you supply a buffer that is too
small. This makes it difficult to query data without knowing its format in
advance. Unfortunately, even the SDK rarely documents the exact sizes
required.

As shown in Listing 2-20, the Set information call follows a similar
pattern. The main differences are that there’s no return length parameter, and
in this case the buffer is an input to the system call rather than an output.

NTSTATUS NtSetInformationProcess(

HANDLE Handle,
PROCESS_INFORMATION_CLASS InformationClass,
PVOID Information,
ULONG InformationLength

Listing 2-20: An example Set information system call for the Process type

In the PowerShell module, you can query a type’s information class
names using the Get-NtObjectInformationClass command, as shown in
Listing 2-21. Bear in mind that some information class names might be
missing from the list, as Microsoft doesn’t always document them.

PS> Get-NtObjectInformationClass Process
Key Value

ProcessBasicInformation 0]

Technet24

https://technet24.ir

ProcessQuotalLimits 1
ProcessIoCounters 2
ProcessVmCounters 3
ProcessTimes 4
--snip- -

Listing 2-21: Listing the information classes for the Process type

To call the Query information system call, use Get -
NtObjectInformation, specifying an open object handle and the information
class. To call setInformation, use Set-NtObjectInformation. Listing 2-22
shows an example of how to use Get-NtObjectInformation.

PS> $proc = Get-NtProcess -Current

i) PS> Get-NtObjectInformation $proc ProcessTimes
Get-NtObjectInformation : (OxC0000023) - {Buffer Too Small}
The buffer is too small to contain the entry. No information h
as been written to the buffer.

--snip- -

® rps> Get-NtObjectInformation $proc ProcessTimes -Length 32
43
231
39
138
--snip--

@) PS> Get-NtObjectInformation $proc ProcessTimes -AsObject
CreateTime ExitTime KernelTime UserTime

132480295787554603 0 35937500 85312500

Listing 2-22: Querying a Process object for basic information

The Process type doesn’t set the return length for the ProcessTimes
information class, so if you don’t specify any length, the operation generates
a STATUS_BUFFER_T00_SMALL error €). However, through inspection or brute
force, you can discover that the length of the data is 32 bytes. Specifying this
value using the Length parameter @ allows the query to succeed and return
the data as an array of bytes.

For many information classes, the Get-NtObjectInformation command
knows the size and structure of the query data. If you specify the Asobject
parameter €), you can get a preformatted object rather than an array of bytes.

Also, for many information classes the handle object already exposes
properties and methods to set or query values. The values will be decoded
into a usage format; for example, in Listing 2-22, the times are in an internal
format. The creationTime property on the object will take this internal
format and convert it to a human-readable date and time.

You can easily inspect properties by accessing them on the object or
using the Format-List command. For example, Listing 2-23 lists all the
properties on a Process object, then queries for the formatted CreationTime.

PS> $proc | Format-List

SessionlId P2

ProcessId . 5484
ParentProcessId : 8108
PebAddress 1 46725963776
--snip--

PS> $proc.CreationTime
Saturday, October 24, 17:12:58

Listing 2-23: Querying a handle object for properties and inspecting the CreationTime

The QueryInformation and SetInformation classes for a type typically
have the same enumerated values. The kernel can restrict the information
class’s enumerated values to one type of operation, returning the
STATUS_INVALID _INFO_CLASS status code if it’s not a valid value. For some
types, such as registry keys, the information class differs between querying
and setting, as you can see in Listing 2-24.

PS> Get-NtObjectInformationClass Key

Key Value
KeyBasicInformation 0
--snip--

PS> Get-NtObjectInformationClass Key -Set
Key Value

Technet24

https://technet24.ir

KeyWriteTimeInformation 0
--snip--

Listing 2-24: Inspecting the QueryInformation and Setinformation classes for the Key type

Calling Get-NtObjectInformationClass with just the type name returns
the QueryInformation class. If you specify the type name and the Set
parameter, you get the SetInformation class. Notice how the two entries
shown have different names and therefore represent different information.

The Input/Output Manager

The input/output (I/O) manager provides access to I/O devices through device
drivers. The primary purpose of these drivers is to implement a filesystem.
For example, when you open a document on your computer, the file is made
available through a filesystem driver. The I/O manager supports other kinds
of drivers, for devices such as keyboards and video cards, but these other
drivers are really just filesystem drivers in disguise.

You can manually load a new driver through the NtLoadDriver system
call or do so automatically using the Plug and Play (PnP) manager. For every
driver, the I/O manager creates an entry in the Driver directory. You can list
the contents of this directory only if you’re an administrator. Fortunately, as a
normal user, you don’t need to access anything in the Driver directory.
Instead, you can interact with the driver through a bevice object, normally
created in the Device directory.

Drivers are responsible for creating new Device objects using the
IoCreateDevice API. A driver can have more than one Device object
associated with it; it may also have zero associated Device objects if it
doesn’t require user interaction. As Listing 2-25 shows, we can list the
contents of the Device directory as a normal user through the OMNS.

PS> 1s NtObject:\Device

Name TypeName
_HIDOOOOOO34 Device
DBUtil 2 3 Device

0O0000C7 Device

0000060b3 Device
UMDFCtrlDev-0f8ff736-55d7-11ea-b5d8-2... Device
O0O0006a Device
--snip--

Listing 2-25: Displaying the Device objects

In the output, we can see that the objects’ type names are all bevice.
However, if you go looking for a system call with Device in the name, you’ll
come up empty. That’s because we don’t interact with the I/O manager using
dedicated system calls; rather, we use File object system calls such as
NtCreateFile. We can access these system calls through New-NtFile and
Get-NtFile, which create and open files, respectively, as shown in Listing 2-
26.

PS> Use-NtObject($f = Get-NtFile "\SystemRoot\notepad.exe") {
$f | Select-Object FullPath, NtTypeName

}
FullPath NtTypeName

i} \Device\HarddiskVolume3\Windows\notepad.exe File

PS> Get-Item NtObject:\Device\HarddiskVolume3
Name TypeName

HarddiskVolume3 Device

Listing 2-26: Opening a device object and displaying its volume path

In this example, we open notepad.exe from the Windows directory. The
SystemRoot symbolic link points to the Windows directory on the system
drive. As the SystemRoot symbolic link is part of the OMNS, the OMNS
initially handles file access. With an open handle, we can select the full path
to the file and the type name.

Looking at the result, we can see that the full path starts with
Device\HarddiskVolume3\, followed by Windows\notepad.exe @. If we try to
display the device, we find it’s of type Device. Once the object manager finds
the Device object, it hands off responsibility for the rest of the path to the I/O
manager, which calls an appropriate method inside the kernel driver.

Technet24

https://technet24.ir

We can list the drivers loaded into the kernel using the Get -
NtKernelModule command (Listing 2-27).

PS> Get-NtKernelModule
Name ImageBase ImageSize

ntoskrnl.exe FFFFF8053BEAAOGO 11231232
hal.dll FFFFFBO53BEQ7000 667648
kd.dll FFFFF8053B42E000 45056
msrpc.sys FFFFF8053B48EOOO 393216
ksecdd.sys FFFFF8053B45E000 172032
--snip- -

Listing 2-27: Enumerating all loaded kernel drivers

Unlike other operating systems, such as Linux, Windows does not
implement core network protocols like TCP/IP using built-in system calls.
Instead, Windows has an I/O manager driver, the Ancillary Function Driver
(AFD), which provides access to networking services for an application. You
don’t need to deal with the driver directly; Win32 provides a BSD sockets-
style API, called WinSock, to handle access to it. In addition to the standard
internet protocol suite, such as TCP/IP, AFD also implements other network
socket types, such as Unix sockets and bespoke Hyper-V sockets for
communication with virtual machines.

That’s all we’ll say for now about the I/O manager. Next, let’s turn to
another important subsystem, the process and thread manager.

The Process and Thread Manager

All user-mode code lives in the context of a process, each of which has one
or more threads that control the execution of the code. Processes and threads
are both securable resources. This makes sense: if you could access a process,
you could modify its code and execute it in the context of a different user
identity. So, unlike most other kernel objects, you can’t open a process or
thread by name. Instead, you must open them via a unique, numeric process
ID (PID) or thread ID (TID).

To get a list of running processes and threads you could brute-force the
ID space by calling the open system call with every possible ID, but that

would take a while. Fortunately, the NtQuerySystemInformation system call
provides the SystemProcessInformation information class, which lets us
enumerate processes and threads without having access to the Process
object.

We can access the list of processes and threads by using the Get -
NtProcess and Get-NtThread commands and passing them the Infoonly
parameter, as shown in Listing 2-28. We can also use the built-in Get -
Process command to produce a similar output. Each of the returned objects
has a Threads property that we can query for the thread information.

PS> Get-NtProcess -InfoOnly

PID PPID Name SessionId
0] 0] Idle 0]
4 0] System 0]
128 4 Secure System 0
192 4 Registry 0
812 4 smss.exe 0]
920 892 csrss.exe 0

--snip- -

PS> Get-NtThread -InfoOnly
TID PID ProcessName StartAddress

0] 0] Idle FFFFF8004C9CAFDO
(0] (0] Idle FFFFF8004COCAFDO
--snip--

Listing 2-28: Displaying processes and threads without high privilege

The first two processes listed in the output are special. The first is the
Idle process, with PID o. This process contains threads that execute when
the operating system is idle, hence its name. It’s not a process you’ll need to
deal with regularly. The System process, with PID 4, is important because it
runs entirely in kernel mode. When the kernel or a driver needs to execute a
background thread, the thread is associated with the System process.

To open a process or thread, we can pass Get-NtProcess or Get -
NtThread the PID or TID we want to open. The command will return a
Process or Thread object that we can then interact with. For example, Listing

Technet24

https://technet24.ir

2-29 shows how to query the command line and executable path of the
current process.

PS> $proc = Get-NtProcess -ProcessId $pid
PS> $proc.CommandLine
"C:\Windows\System32\WindowsPowerShell\v1l.0\powershell.exe"

PS> $proc.Win32ImagePath
C:\Windows\System32\WindowsPowerShell\v1l.0\powershell.exe

Listing 2-29: Opening the current process by its process ID

When you open a Process or Thread object using its ID, you’ll receive a
handle. For convenience, the kernel also supports two pseudo handles that
refer to the current process and the current thread. The current process’s
pseudo handle is the value -1 converted to a handle, and for the current
thread, it’s -2. You can access these pseudo handles by passing the current
parameter instead of an ID to the Get -NtProcess and Get-NtThread
commands.

Note that the security of a process and its threads is independent. If you
know the ID of a thread, it’s possible to access the thread handle inside a
process even if you can’t access the process itself.

The Memory Manager

Every process has its own virtual memory address space for a developer to
use as they see fit. A 32-bit process can access up to 2GB of virtual memory
address space (4GB on 64-bit Windows), while a 64-bit process can access
up to 128TB. The kernel’s memory manager subsystem controls the
allocation of this address space.

You’re unlikely to have 128TB of physical memory in your computer,
but the memory manager has ways of making it look like you have more
physical memory than you do. For example, it can use a dedicated file on
your filesystem, called a pagefile, to temporarily store memory when it’s not
currently needed. As your filesystem’s available storage space is much larger
than your computer’s physical memory, this can provide the appearance of a
large amount of memory.

The virtual memory space is shared by memory allocations, and it stores

each process’s running state as well as its executable code. Each memory
allocation can have a range of protection states, such as ReadOnly or
Readwrite, which must be set according to the memory’s purpose. For
example, for code to be executed, the memory must have a protection state of
ExecuteRead or ExecuteReadWrite.

You can query all memory status information for a process by calling
NtQueryVirtualMemory, if you have the QueryLimitedInformation access
right on the process handle. However, reading and writing the memory data
requires the VmRead and vmwrite access rights, respectively, and a call to
NtReadVirtualMemory and NtWriteVirtualMemory.

It’s possible to allocate new memory and free memory in a process using
NtAllocateVirtualMemory and NtFreeVirtualMemory, which both require
the vmoperation access right. Finally, you can change the protection on
memory using NtProtectVirtualMemory, which also requires Vmoperation
access.

NtVirtualMemory Commands

PowerShell wraps these system calls using the Get -, Add-, Read-, Write-,
Remove-, and Set-NtVirtualMemory commands. Note that these commands
all accept an optional Process parameter that lets you access memory in a
different process from the current one. Listing 2-30 shows the commands in
action.

@ Ps> Get-NtvirtualMemory

Address Size Protect Type State Name
OO0OOOOOO7FFEOOLOO 4096 ReadOnly Private Commit
0OO0OPOOO7FFEFOO0O 4096 ReadOnly Private Commit
OOOOOOE706390000 241664 None Private Reserve
OOOOOOE7063CBOOO 12288 ReadWrite, Guard Private Commit
OOOOOOE7063CEONOGO 8192 ReadWrite Private Commit
0000OOF6583FOO0O 12288 ReadOnly Mapped Commit power
shell.exe.mui

--snip- -

9 PS> $addr = Add-NtVirtualMemory -Size 1000 -Protection ReadWr
ite

Technet24

https://technet24.ir

PS> Get-NtVirtualMemory -Address $addr
Address Size Protect Type State Name

000002624A440000 4096 Readwrite Private Commit

© rs> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump
00 00 00 00

(} PS> Write-NtVirtualMemory -Address $addr -Data @(1,2,3,4)
4

@) PS> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump
01 02 03 04

(3 PS> Set-NtVirtualMemory -Address $addr -Protection ExecuteRea
d -Size 4
ReadWrite

ii PS> Get-NtVirtualMemory -Address $addr
Address Size Protect Type State Name

000002624A440000 4096 ExecuteRead Private Commit

© ps> Remove-NtVirtualMemory -Address $addr
PS> Get-NtVirtualMemory -Address $addr
Address Size Protect Type State Name

000002624A440000 196608 NOAccess None Free

Listing 2-30: Performing various memory operations on a process

Here, we perform several operations. First we use Get -NtVirtualMemory
to list all the memory regions being used by the current process €. The
returned list will be large, but the excerpt shown here should give you a
rough idea of how the information is presented. It includes the address of the
memory region, its size, its protection, and its state. There are three possible
state values:

commit Indicates that the virtual memory region is allocated and
available for use.
Reserve Indicates that the virtual memory region has been allocated but

there is currently no backing memory. Using a reserved memory region
will cause a crash.

Free Indicates that the virtual memory region is unused. Using a free
memory region will cause a crash.

You may wonder what the difference is between Reserve and Free, if
using both reserved and free memory regions will cause a crash. The Reserve
state allows you to reserve virtual memory regions for later use so that
nothing else can allocate memory within that range of memory addresses.
You can later convert the Reserve state to Commit by re-calling
NtAllocateVvirtualMemory. The Free state indicates regions freely available
for allocation. We’ll cover what the Type and Name columns indicate later in
this section.

Next, we allocate a 1,000-byte read/write region and capture the address
in a variable €. Passing the address to Get -NtVirtualMemory allows us to
query only that specific virtual memory region. You might notice that
although we requested a 1,000-byte region, the size of the region returned is
4,096 bytes. This is because all virtual memory allocations on Windows have
a minimum allocation size; on the system I’m using, the minimum is 4,096
bytes. It’s therefore not possible to allocate a smaller region. For this reason,
these system calls are not particularly useful for general program allocations;
rather, they’re primitives on which “heap” memory managers are built, such
as malloc from the C library.

Next, we read and write to the memory region we just allocated. First we
use Read-NtVirtualMemory to read out 4 bytes of the memory region and
find that the bytes are all zeros @. Next, we write the bytes 1, 2, 3, and 4 to
the memory region using write-NtvirtualMemory @. We read the bytes to
confirm that the write operation succeeded @; the two values should match,
as shown in the output.

With the memory allocated, we can change the protection using Set -
NtVirtualMemory. In this case, we make the allocated memory executable by
specifying the protection as ExecuteRead . Querying the current state of
the memory region using the Get-NtVirtualMemory command @ shows that
the protection has changed from Readwrite to ExecuteRead. Also notice that
although we requested to change the protection of only 4 bytes, the entire

Technet24

https://technet24.ir

4,096-byte region is now executable. This is again due to the minimum
memory allocation size.

Finally, we free the memory using Remove-NtVirtualMemory and verify
that the memory is now in the Free state @. Memory allocated using
NtAllocateVirtualMemory is considered private, as indicated by the value of
the Type property shown in Listing 2-30.

Section Objects

Another way of allocating virtual memory is through Section objects. A
Section object is a kernel type that implements memory-mapped files. We
can use Section objects for two related purposes:

e Reading or writing a file as if it were all read into memory

e Sharing memory between processes so that the modification in one
process is reflected in the other

We can create a Section object via the NtCreateSection system call or
the New-NtSection PowerShell command. We must specify the size of the
mapping, the protection for the memory, and an optional file handle; in
return, we get a handle to the section.

However, creating a section doesn’t automatically allow us to access the
memory; we first need to map it into the virtual memory address space using
NtMapViewOfSection or Add-NtSection. Listing 2-31 provides an example in
which we create an anonymous section and map it into memory.

i) PS> $s = New-NtSection -Size 4096 -Protection ReadWrite

@ Ps> $m = Add-NtSection -Section $s -Protection ReadWrite
PS> Get-NtVirtualMemory $m.BaseAddress
Address Size Protect Type State Name

00O0OO1C3DDOEOOOO 4096 ReadWrite Mapped Commit

© Ps> Remove-NtSection -Mapping $m
PS> Get-NtVirtualMemory -Address 0x1C3DDOEOQOO
Address Size Protect Type State Name

OOOOO1C3DDOEOOOO 4096 NoAccess None Free

@ ps> Add-NtSection -Section $s -Protection ExecuteRead
Exception calling "Map" with "9" argument(s):
"(OXCOOOOO4E) - A view to a section specifies a protection w
hich is
incompatible with the initial view's protection."

Listing 2-31: Creating a section and mapping it into memory

To start, we create a Section object with a size of 4,096 bytes and
protection of Readwrite @. We don’t specify a File parameter, which means
it’s anonymous and not backed by any file. If we gave the Section object an
OMNS path, the anonymous memory it represents could be shared with other
processes.

We then map the section into memory using Add-NtSection, specifying
the protection we want for the memory, and query the mapped address to
verify that the operation succeeded €. Note that the Type is set to Mapped.
When we’re done with the mapping, we call Remove-NtSection to unmap the
section and then verify that it’s now free €.

Finally, we demonstrate that we can’t map a section with different
protection than that granted when we created the Section object €. When
we try to map the section with read and execute permissions, which aren’t
compatible, we see an exception.

The protection you’re allowed to use to map a Section object into
memory depends on two things. The first is the protection specified when the
Section object was created. For example, if the section was created with
ReadOnly protection, you can never map it to be writable.

The second dependency is the access granted to the section handle you’re
mapping. If you want to map the section as readable, then the handle must
have MapRead access. To map it to be writable, you need both MapRead and
Mapwrite access. (And, of course, having just Mapwrite access isn’t
sufficient to map the section as writable if the original Section object was
not specified with a writable protection.)

It’s possible to map a section into another process by specifying a
process handle to Add-NtSection. We don’t need to specify the process to
Remove-NtSection, as the mapping object knows what process it was
mapped in. In the memory information output, the Name column would be

Technet24

https://technet24.ir

populated by the name of the backing file, if it exists.

The section we created was anonymous, so we don’t see anything in the
Name column, but we can perform a query to find mapped sections that are
backed by files using the command shown in Listing 2-32.

PS> Get-NtVirtualMemory -Type Mapped | Where-Object Name -ne "

Address Size Protect Type State Name

000001760DB90GOO 815104 ReadOnly Mapped Commit locale.nls
000001760DC6OOOO 12288 ReadOnly Mapped Commit powershell.exe
.mui

000001760DEEQOOO 20480 ReadOnly Mapped Commit winnlsres.dll
000001760F720000 3371008 ReadOnly Mapped Commit SortDefault.nl
S

--snip--

Listing 2-32: Listing mapped files with names

In addition to the Anonymous and Mapped types, there is a third section
type, the Image type. When provided with a file handle to a Windows
executable, the kernel will automatically parse the format and generate
multiple subsections that represent the various components of the executable.
To create a mapped image from a file, we need only Execute access on the
file handle; the file doesn’t need to be readable for us.

Windows uses image sections extensively to simplify the mapping of
executables into memory. We can specify an image section by passing the
Image flag when creating the Section object or by using the New-
NtSectionImage command, as shown in Listing 2-33.

PS> $sect = New-NtSectionImage -Win32Path "C:\Windows\notepad.
exe"

O rs> $map = Add-NtSection -Section $sect -Protection ReadOnly
PS> Get-NtVirtualMemory -Address $map.BaseAddress
Address Size Protect Type State Name

é) O00O7FF667150000 4096 ReadOnly Image Commit notepad.exe

G) PS> Get-NtVirtualMemory -Type Image -Name "notepad.exe"

Address Size Protect Type State Name

O0PO7FF667150000 4096 ReadOnly Image Commit notepad.exe
O00O7FF667151000 135168 ExecuteRead Image Commit notepad.exe
O00O7FF667172000 36864 ReadOnly Image Commit notepad.exe
00007FF66717BOOO 12288 WriteCopy Image Commit notepad.exe
OOOO7FF66717EQO0 4096 ReadOnly Image Commit notepad.exe
OOOO7FF66717FO00 4096 WriteCopy Image Commit notepad.exe
O0PO7FF667180000 8192 ReadOnly Image Commit notepad.exe

(} PS> Out-HexDump -Buffer $map -ShowAscii -Length 128
4D 5A 90 00 03 0O 0O 00 04 OO0 GO GO FF FF 60 GO - MZ.........
éé.éé 00 00 OO0 OO OO 00 40 OO OO 0O 6O 00 GO GO - @..
éé.éé 00 00 OO0 OO OO OO OO0 OO0 OO GO0 00 00 GO GO -
éé.éé 00 00 OO0 OO0 OO0 OO OO OO OO0 GO0 F8 00 GO GO -

OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 - L

L.!Th

69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F - 1s program

canno

74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 - t be run in
DOS

6D 6F 64 65 2E OD OD OA 24 00 00 00 00 00 00 00

mode....$..

Listing 2-33: Mapping notepad.exe and viewing the loaded image

As you can see, we don’t need to specify ExecuteRead or
ExecuteReadwWrite protection when mapping the image section. Any
protection, including Readonly, will work €. When we get the memory
information for a map-based address, we see that there is no executable
memory there and that the allocation is only 4,096 bytes @, which seems far
too small for notepad.exe. This is because the section is made up of multiple
smaller mapped regions. If we filter out the memory information for the
mapped name @), we can see the executable memory. Using the out - HexDump
command, we can print the contents of the mapped file buffer @.

Code Integrity

Technet24

https://technet24.ir

One important security task is ensuring that the code running on your
computer is the same code the manufacturer intended you to run. If a
malicious user has modified operating system files, you might encounter
security issues such as the leaking of private data.

Microsoft considers the integrity of code running on Windows to be so
important that there is an entire subsystem to deal with it. This code integrity
subsystem verifies and restricts what files can execute in the kernel, and
optionally in user mode, by checking the code’s integrity. The memory
manager can consult with the code integrity subsystem when it loads an
image file if it needs to check whether the executable is correctly signed.

Almost every executable on a default Windows installation is signed
using a mechanism called Authenticode. This mechanism allows a
cryptographic signature to be embedded in the executable file or collected
inside a catalog file. The code integrity subsystem can read this signature,
verify that it’s valid, and make trust decisions based on it.

We can use the Get-AuthenticodeSignature command to query the
signing status of an executable, as shown in Listing 2-34.

PS> Get-AuthenticodeSignature "$env:WinDir\system32\notepad.ex
e" | Format-List
SignerCertificate : [Subject]

CN=Microsoft Windows, 0=Microsoft Corporation, L=Redmond,
S=Washington, C=US

--snip--

Status : Valid

StatusMessage : Signature verified.

Path : C:\WINDOWS\system32\notepad.exe
SignatureType : Catalog

IsOSBinary : True

Listing 2-34: Displaying the Authenticode signature for a kernel driver

Here, we query the signing status of the notepad.exe executable file,
formatting the command’s output as a list. The output starts with information
about the signer’s X.509 certificate. Here, I’ve shown only the subject name,
which clearly indicates that this file is signed by Microsoft.

Next is the status of the signature; in this case, the status indicates that
the file is valid and that the signature has been verified. It’s possible to have a

signed file whose signature is invalid; for example, when the certificate has
been revoked. In that case, the status is likely to show an error, such as
NotSigned.

The SignatureType property shows that this signature was based on a
catalog file rather than being embedded in the file. We can also see that this
file is an operating system binary, as determined by information embedded in
the signature.

The most common trust decision the code integrity subsystem makes is
checking whether a kernel driver can load. Each driver file must have a
signature that derives its trust from a Microsoft-issued key. If the signature is
invalid or doesn’t derive from a Microsoft-issued key, then the kernel can
block loading of the driver to preserve system integrity.

Advanced Local Procedure Call

The advanced local procedure call (ALPC) subsystem implements local,
cross-process communication. To use ALPC, you must first create a server
ALPC port using the NtCreateAlpcPort system call and specify a name for it
inside the OMNS. A client can then use this name by calling the
NtConnectAlpcPort system call to connect to the server port.

At a basic level, the ALPC port allows the secure transmission of
discrete messages between a server and a client. ALPC provides the
underlying transport for local remote procedure call APIs implemented in
Windows.

The Configuration Manager

The configuration manager, known more commonly as the registry, is an
important component for configuring the operating system. It stores a variety
of configuration information, ranging from the system-critical list of available
I/0 manager device drivers to the (less critical) last position on the screen of
your text editor’s window.

You can think of the registry as a filesystem in which keys are like
folders and values are like files. You can access it through the OMNS,
although you must use registry-specific system calls. The root of the registry
is the OMNS path REGISTRY. You can list the registry in PowerShell using

Technet24

https://technet24.ir

the NtObject drive, as shown in Listing 2-35.

PS> 1s NtObject:\REGISTRY

Name TypeName
A Key
MACHINE Key
USER Key
WwC Key

Listing 2-35: Enumerating the registry root key

You can replace NtObject : \REGISTRY in Listing 2-35 with NtKey:\ to
make accessing the registry simpler.

The kernel pre-creates the four keys shown here when it initializes. Each
of the keys is a special attachment point at which you can attach a registry
hive. A hive is a hierarchy of Key objects underneath a single root key. An
administrator can load new hives from a file and attach them to these
preexisting keys.

Note that PowerShell already comes with a drive provider that you can
use to access the registry. However, this drive provider exposes only the
Win32 view of the registry, which hides the internal details about the registry
from view. We’ll cover the Win32 view of the registry separately in Chapter
3.

You can interact with the registry directly, using the Get -NtKey and New-
NtKey commands to open and create Key objects, respectively. You can also
use Get-NtKeyValue and Set-NtKeyValue to get and set key values. To
remove keys or values, use Remove-NtKey or Remove-NtKeyValue. Listing 2-

36 shows a few of these commands in action.

PS> $key = Get-NtKey \Registry\Machine\SOFTWARE\Microsoft\.NET
Framework
PS> Get-NtKeyValue -Key $key

Name Type DataObject

Enable64Bit Dword 1

InstallRoot String C:\Windows\Microsoft.NET\Frame
work64\

UseRyuJIT Dword 1

DbgManagedDebugger String "C:\Windows\system32\vsjitdebu
gger.exe"...
DbgJITDebugLaunchSetting Dword 16

Listing 2-36: Opening a registry key and querying its values

We open a Key object using the Get -NtKey command. We can then query
the values stored in the Key object using the Get -NtKeyvalue command. Each
entry in the output shows the name of the value, the type of data stored, and a
string representation of the data.

Worked Examples

Using PowerShell, you can easily change this book’s example scripts to do
many different things. To encourage experimentation, each chapter wraps up
with a set of worked examples repurposing the various commands you’ve
learned.

In these examples, I’ll also highlight times where I’ve discovered
security vulnerabilities using this tooling. This should give you a clear
indication of what to look for in Microsoft or third-party applications if
you’re a security researcher; likewise, for developers, it will help you avoid
certain pitfalls.

Finding Open Handles by Name

The objects returned by the Get-NtHandle command have additional
properties that allow you to query the object’s name and security descriptor.
These properties are not shown by default, as they’re expensive to look up;
doing so requires opening the process containing the handle for bupHandle
access, duplicating the handle back to the calling PowerShell instance, and
finally querying the property.

If performance doesn’t matter to you, then you can use the code in
Listing 2-37 to find all open files matching a specific filename.

PS> $hs = Get-NtHandle -ObjectType File | Where-Object Name -M
atch Windows

PS> $hs | Select-Object ProcessId, Handle, Name

ProcessId Handle Name

Technet24

https://technet24.ir

3140 64 \Device\HarddiskVolume3\Windows\System32

3140 1628 \Device\HarddiskVolume3\Windows\System32\en-U
S\KernelBase.dll.mui

3428 72 \Device\HarddiskVolume3\Windows\System3

3428 304 \Device\HarddiskVolume3\Windows\System32\en-U
S\svchost.exe.mui

3428 840 \Device\HarddiskVolume3\Windows\System32\en-U
S\crypt32.dll.mui

3428 1604 \Device\HarddiskVolume3\Windows\System32\en-U
S\winnlsres.dll.mui
--snip- -

Listing 2-37: Finding File object handles that match a specific name

This script queries for all File object handles and filters them to only the
ones with the string windows in the Name property, which represents the
filepath. Once the Name property has been queried, it’s cached so you can
then display it to the console with a custom selection.

Note that because it duplicates the handle from the process, this script
can only show handles in processes the caller can open. To get the best
results, run it as an administrator user who can open the maximum number of
processes.

Finding Shared Objects

When you query the list of handles using the Get-NtHandle command, you
also get the address of the object in kernel memory. When you open the same
kernel object, you’ll get different handles, but they will still point to the same
kernel object address.

You can use the object address to find processes that share handles. This
can be interesting for security in cases where an object is shared between two
processes with different privileges. The lower-privileged process might be
able to modify the properties of the object to bypass security checks in the
higher-privileged process, enabling it to gain additional privileges.

In fact, I used this technique to find security issue CVE-2019-0943 in
Windows. At the root of the issue was a privileged process, the Windows
Font Cache, that shared section handles with a low-privileged process. The
low-privileged process could map the shared section to be writable and
modify contents that the privileged process assumed couldn’t be modified.

This effectively allowed the low-privileged process to modify arbitrary
memory in the privileged process, resulting in privileged code execution.

Listing 2-38 gives an example of finding writable Section objects shared
between two processes.

PS> $ss = Get-NtHandle -ObjectType Section -GroupByAddress |
Where-Object ShareCount -eq 2
PS> $mask = Get-NtAccessMask -SectionAccess MapWrite
PS> $ss = $ss | Where-Object {Test-NtAccessMask $_.AccessInter
section $mask}
PS> foreach($s in $ss) {
$count = ($s.ProcessIds | Where-Object {
Test-NtProcess -ProcessId $_ -Access DupHandle
}) .Count
if ($count -eq 1) {
$s.Handles | Select ProcessId, ProcessName, Handle
}
}

ProcessId ProcessName Handle

9100 Chrome.exe 4400
4072 audiodg.exe 2560

Listing 2-38: Finding shared Section handles

We first get the handles, specifying the GroupByAddress parameter. This
returns a list of groups organized based on the kernel object address, instead
of a list of handles. You can also group handles using the built-in Group-
Object command; however, the groups returned by GroupByAddress have
additional properties, including ShareCount, which indicates the number of
unique processes an object is shared with. Here, we filter to include only
handles that are shared between two processes.

Next, we want to find Section objects that can be mapped as writable.
We first check that all the handles have Mapwrite access. As mentioned
earlier, the Section object’s protection must also be writable for us to be able
to map it as writable. Oddly, we can’t query for the original protection that
was assigned when the Section object was created, but checking for
MapwWrite access is a simple proxy. We use the AccessIntersection
property, which contains the granted access rights shared among all the

Technet24

https://technet24.ir

handles.

Now that we have potential candidates for shared sections, we need to
work out which meet the criterion that we can access only one of the
processes containing the section handle. We’re making another assumption
here: if we can open only one of the two processes that share the handle for
DupHandle access, then we’ve got a section shared between a privileged and a
low-privileged process. After all, if you had bupHandle access to both
processes, you could already compromise the processes by stealing all their
handles or duplicating their process handles, and if you couldn’t get
DupHandle access to either process, then you couldn’t get access to the
section handle at all.

The result shown in Listing 2-38 is a section shared between Chrome and
the Audio Device Graph process. The shared section is used to play audio
from the browser, and it’s probably not a security issue. However, if you run
the script on your own system, you might find shared sections that are.

Note that once the Section object is mapped into memory, the handle is
no longer required. Therefore, you might miss some shared sections that were
mapped when the original handle closed. It’s also highly likely you’ll get
false positives, such as Section objects that are intentionally writable by
everyone. The goal here is to find a potential attack surface on Windows.
You must then go and inspect the handles to see if sharing them has
introduced a security issue.

Modifying a Mapped Section

If you find an interesting Section object to modify, you can map it into
memory using Add-NtSection. But how do you modify the mapped memory?
The simplest approach from the command line is to use the Write-
NtVirtualMemory command, which supports passing a mapped section and
an array of bytes to write. Listing 2-39 demonstrates this technique by
assuming you have a handle of interest in the $handle variable.

PS> $sect = $handle.GetObject()

PS> $map = Add-NtSection -Section $sect -Protection ReadWrite
PS> $random = Get-RandomByte -Size $map.Length

PS> Write-NtVirtualMemory -Mapping $map -Data $random

4096

PS> Out-HexDump -Buffer $map -Length 16 -ShowAddress -ShowHead
er
00 01 02 03 04 05 06 07 08 09 GA 0B OC OD OE

000001811C860000: DF 24 04 E1 AB 2A E1 76 EB 19 00 8D 79 28 9C
BA

Listing 2-39: Mapping and modifying a Section object

We first call the Getobject method on the handle to duplicate it into the
current process and return a Section object. For this to succeed, the process
in which we’re running this command must be able to access the process with
the handle. We then map the handle as Readwrite into the current process’s
memory.

We can now create a random array of bytes up to the size of the mapped
section and write them to the memory region using Write-NtVirtualMemory.
This is a quick and dirty fuzzer for the shared memory. The hope is that by
modifying the memory, the privileged process will mishandle the contents of
the memory region. If the privileged process crashes, we should investigate to
determine whether we can control the crash using a more targeted
modification of the shared memory.

We can display the memory using out -HexDump. One of the useful
features of this command over the built-in Format -Hex is that it’ll print the
address in memory based on the mapped file, whereas Format -Hex just prints
an offset starting at o.

You can also create a GUI hex editor with the Show-NtSection
command, specifying a Section object to edit. As the section can be mapped
into any process, writing it in the GUI hex editor will also modify all other
mappings of that section. Here is the command to display the hex editor:

PS> Show-NtSection -Section $sect

Figure 2-6 shows an example of the editor generated by running the
previous command.

Technet24

https://technet24.ir

L. Handle 4908 - 0x133936D0000 (ReadWrite) - O X

=

00 91 02 93 04 05 @6 07 ©8 09 A OB ©C @D OF OF ~
00000000 DF 24 04 E1 AB 2A E1 76 EB 19 00 8D 79 28 9C BA R$.4«*avé...y(.°
PoeoEe1e 7C D6 8B D6 CB F8 2F B@ 55 19 7A CC @7 B9 6D BB |0.0Ep/°U.2zI.2m»
Q00020 34 F6 A2 98 DF DA D7 F5 22 58 85 C8 83 Al D2 A8 48¢.RUx3"X.E. 0"
00e00038 30 FF 87 84 GA 4F EF E7 F4 53 8B 91 AF 14 6E 32 @y...0i¢dS.. .n2
PeE00R48 AB 45 58 82 85 03 DB A2 FF 95 B4 73 73 66 2D B4 «EX...0¢y. ssf-~
00e0ee50 47 D1 9C ©8 31 E8 Bl ES ©7 BB A3 8B 4E 46 45 oD GN..1&+a.»£.NFE.
00000060 E9 52 1D 3E 48 50 22 2C 24 E4 85 74 9B 7B 74 8E éR.>HP",$i.t.{t.
P0eePe70 26 D7 49 DE 78 66 ©1 C2 93 73 7A CA 60 50 54 B9 &xIpbxf.A.szE PT?
0000EE30 50 A6 89 20 49 EE 6B F7 AE 70 E4 4D 63 3D 49 88 P|. Iik+®p3Mc=I.
P0e00E98 47 15 64 76 FC 67 94 82 51 SA AA D4 D5 58 CC D3 G.dviig..Qz200xi6
00ePREAe 9@ CB 24 F4 F2 53 45 38 6B 52 2F ©8 82 B3 SE 56 .E$OOSE8KR/..3~V

Position 0/0x0 ~
Selection Length 0/0x0

Byte 223/0xDF

SByte -33/0xDF

Int16 (Little Endian) 9439/0x24DF

Int16 (Bia Endian) _ -8412/0xDF24 b

Figure 2-6: The section editor GUI

The GUI shown in Figure 2-6 maps the section into memory and then
displays it in a hex editor form. If the section is writable, you can modify the
contents of the memory through the editor.

Finding Writable and Executable Memory

In Windows, for a process to execute instructions, the memory must be
marked as executable. However, it’s also possible to map the memory as both
writable and executable. Malware sometimes uses this combination of
permissions to inject shell code into a process and run malicious code using
the host process’s identity.

Listing 2-40 shows how to check for memory in a process that is both
writable and executable. Finding such memory might indicate that something
malicious is going on, although in most cases this memory will be benign.
For example, the .NET runtime creates writable and executable memory to
perform just-in-time (JIT) compilation of the .NET byte code into native
instructions.

PS> $proc = Get-NtProcess -ProcessId $pid -Access QueryLimited
Information

PS> Get-NtVirtualMemory -Process $proc | Where-Object {
$_.Protect -band "ExecuteReadWrite"
}

Address Size Protect Type State Name

0000018176450000 4096 ExecuteReadwWrite Private Commit
0000O18176490000 8192 ExecuteReadWrite Private Commit
000OO18176F6OOOO 61440 ExecuteReadWrite Private Commit
--sSnip- -

PS> $proc.Close()

Listing 2-40: Finding executable and writable memory in a process

We start by opening a process for QueryLimitedInformation access,
which is all we need to enumerate the virtual memory regions. Here, we’re
opening the current PowerShell process; as PowerShell is .NET, we know it
will have some writable and executable memory regions, but the process you
open can be anything you want to check.

We then enumerate all the memory regions using Get-NtVirtualMemory
and filter on the ExecuteReadwrite protection type. We need to use a bitwise
AND operation as there are additional flags that can be added to the
protection, such as Guard, which creates a guard page that prevents doing a
direct equality check.

Wrapping Up

This chapter provided a tour through the Windows kernel and its internals.
The kernel consists of many separate subsystems, such as the Security
Reference Monitor, the object manager, the configuration manager (or
registry), the I/O manager, and the process and thread manager.

You learned about how the object manager manages kernel resources
and types, how to access kernel resources through system calls, and how
handles are allocated with specific access rights. You also accessed object
manager resources through the NtObject drive provider as well as through
individual commands.

I then discussed the basics of process and thread creation and
demonstrated the use of commands such as Get -NtProcess to query for
process information on the system. I explained how to inspect the virtual

Technet24

https://technet24.ir

memory of a process, as well as some of the individual memory types.

A user doesn’t directly interact with the kernel; instead, user-mode
applications power the user experience. In the next chapter, we’ll discuss the
user-mode components in more detail.

3

USER-MODE APPLICATIONS

In the previous chapter, we discussed the
Windows kernel. But a user doesn’t
typically interact directly with the kernel. Instead, they
interact with user-facing applications, such as word
processors and file managers. This chapter will detail
how these user-mode applications are created and how
they interface with the kernel to provide services to the

user.

We’ll start by discussing the Win32 application programming interfaces
(APIs) designed for user-mode application development and how they relate
to the design of the Windows operating system. Then we’ll cover the
structure of the Windows user interface and how you can inspect it
programmatically. Multiple users of a Windows system can all access a user
interface at the same time; we’ll also look at how console sessions can isolate
one user’s interface and application resources from those of other users on
the same system.

To understand how user-mode applications function, it’s important to
understand how the provided APIs interface with the underlying kernel
system call interface. We’ll examine this too, along with the conversion
process that filepaths must undergo to become compatible with the kernel.
Next, we’ll cover how Win32 applications access the registry; then we’ll

Technet24

https://technet24.ir

consider how Win32 handles process and thread creation and look at some
important system processes.

Win32 and the User-Mode Windows APIs

Most of the code that runs on Windows does not directly interact with system
calls. This is an artifact of the Windows NT operating system’s original
design. Microsoft initially developed Windows NT as an updated version of
IBM’s OS/2 operating system, intending it to have multiple subsystems that
implemented different APIs. At various times, it supported POSIX, OS/2, and
the Win32 APIs.

Eventually, Microsoft’s relationship with IBM went sour, and Microsoft
took the API set it had developed for Windows 95, Win32, and built a
subsystem to implement it. The largely unloved OS/2 subsystem was
removed in Windows 2000, while POSIX survived until Windows 8.1. By
Windows 10, Win32 was the only remaining subsystem (though Microsoft
subsequently implemented Linux compatibility layers, such as Windows
Subsystem for Linux, that don’t use the old subsystem extension points).

To allow for these multiple APIs, the Windows kernel implements a
generic set of system calls. It’s the responsibility of each subsystem’s specific
libraries and services to convert their APIs to the low-level system call
interface. Figure 3-1 shows an overview of the Win32 subsystem API
libraries.

NTOS kernel executive

System call

interface
Kernel mode
User mode

NTDLL
v N\
KERNELBASE < = KERNEL32
User application

Figure 3-1: The Win32 APl modules

As you can see, the core of the Win32 APIs is implemented in the
KERNEL32 and KERNELBASE libraries. These libraries call methods in the
system-provided NT Layer dynamic link library (NTDLL), which implements
system call dispatches as well as runtime library APIs to perform common
low-level operations.

Most user-mode applications do not directly contain the implementation
of the Windows system APIs. Instead, NTDLL includes the DLL loader,
which loads new libraries on demand. The loading process is mostly opaque
to the developer: when building a program, you link against a set of libraries,
and the compiler and toolchain automatically add an import table to your
executable file to reflect your dependencies. The DLL loader then inspects
the import table, automatically loads any dependent libraries, and resolves the
imports. You can also specify exported functions from your application so

Technet24

https://technet24.ir

that other code can rely on your APIs.

Loading a New Library

It’s possible to access exported functions manually at runtime without
needing an import table entry. You can load a new library using the
LoadLibrary Win32 API, which is exposed to PowerShell using the Import-
win32Module command. To find the memory address of a function exported
by a DLL, use the Win32 API GetProcAddress, exposed with the PowerShell
Get-Win32ModuleExport command (Listing 3-1).

f) PS> $1ib = Import-Win32Module -Path "kernel32.d1l1l"

® rs> $lib
Name ImageBase EntryPoint

KERNEL32.DLL OOOO7FFAO88A0000 OOOO7FFAG88B7C70

@) PS> Get-Win32ModuleExport -Module $1lib

Ordinal Name Address

1 AcquireSRWLockExclusive NTDLL.RtlAcquireSRWLockExclusi
ve

2 AcquireSRWLockShared NTDLL.Rt1lAcquireSRWLockShared
3 ActivateActCtx OX7FFAG88BE640

4 ActivateActCtxWorker OX7FFAOG88BA950

--snip--

C} PS> "{0:X}" -f (Get-Win32ModuleExport -Module $1lib
-ProcAddress "AllocConsole")
7FFAO88C27C0

Listing 3-1: Exports for the KERNEL32 library

Here, we use PowerShell to load the KERNEL32 library and enumerate
the exported and imported APIs. First we load it into memory using Import -
win32Module €. The KERNEL32 library is always loaded, so this command
will just return the existing loaded address; for other libraries, however, the
load will cause the DLL to be mapped into memory and initialized.

The Import-win32Module command will load a DLL into memory and
potentially execute code. In this example, this is acceptable, as KERNEL32
is one of the trusted system libraries. However, do not use the command on
an untrusted DLL, especially if you’re analyzing malware, as it might result
in malicious code execution. To be safe, always perform malware analysis on
a segregated system dedicated to that purpose.

Once it’s loaded into memory, we can display some of the library’s
properties @. These include the name of the library, as well as the loaded
memory address and the address of the EntryPoint. A DLL can optionally
define a function, D11Main, to run when it’s loaded. The EntryPoint address
is the first instruction in memory to execute when the DLL is loaded.

Next, we dump all exported functions from the DLL @. In this case, we
see three pieces of information for each: ordinal, Name, and Address. The
ordinal is a small number that uniquely identifies the exported function in
the DLL. It’s possible to import an API by its ordinal number, which means
there is no need to export a name; you’ll see certain names missing from
export tables in DLLs whenever Microsoft doesn’t want to officially support
the function as a public API.

The Name is just the name of the exported function. It doesn’t need to
match what the function was called in the original source code, although
typically it does. Finally, Address is the address in memory of the function’s
first instruction. You’ll notice that the first two exports have a string instead
of an address. This is a case of export forwarding; it allows a DLL to export a
function by name and has the loader automatically redirect it to another DLL.
In this case, AcquireSRwWLockExclusive is implemented as
Rt1AcquireSRWLockExclusive in NTDLL. We can also use Get -
win32ModuleExport to look up a single exported function using the
GetProcAddress API @.

Viewing Imported APIs

In a similar fashion, we can view the APIs that an executable has imported
from other DLLs using the Get-win32ModuleImport command, as shown in

Listing 3-2.

Technet24

https://technet24.ir

PS> Get-Win32ModuleImport -Path "kernel32.d1l1l"

D11Name FunctionCount DelayL
oaded

api-ms-win-core-rtlsupport-11-1-0.dll 13 False
ntdll.dll 378 False
KERNELBASE .d11 90 False
api-ms-win-core-processthreads-11-1-0.d1l1 39 False
--snip--

PS> Get-Win32ModuleImport -Path "kernel32.dl1l" -DllName "ntdll
Ld11" |
Where-Object Name -Match "ANt"

Name Address
NtEnumerateKey 7TFFAG90BCGFO
NtTerminateProcess 7FFA090BC630
NtMapUserPhysicalPagesScatter 7FFAQ90BC110
NtMapViewOfSection 7FFAO90BC5BO
--snip- -

Listing 3-2: Enumerating imports for the KERNEL32 library

We start by calling Get -win32ModuleImport, specifying the KERNEL32
DLL as the path. When you specify a path, the command will call ITmport-
win32Module for you and display all the imports, including the name of the
DLL to load and the number of functions imported. The final column
indicates whether the DLL was marked by the developer as being delay
loaded. This is a performance optimization; it allows a DLL to be loaded
only when one of its exported functions is used. This delay avoids loading all
DLLs into memory during initialization, which decreases process startup time
and reduces runtime memory usage if the import is never used.

Next, we dump the imported functions for a DLL. As the executable can
import code from multiple libraries, we specify the one we want using the
D11Name property. We then filter to all imported functions starting with the Nt
prefix; this allows us to see exactly what system calls KERNEL32 imports
from NTDLL.

API SETS

You might notice something odd in the list of imported DLL names in Listing 3-2. If
you search your filesystem for the api-ms-win-core-rtisupport-11-1-0.dll file, you
won't find it. This is because the DLL name refers to an API set. AP/ sets were
introduced in Windows 7 to modularize the system libraries, and they abstract from
the name of the set to the DLL that exports the API.

API sets allow an executable to run on multiple different versions of Windows,
such as a client, a server, or an embedded version, and change its functionality at
runtime based on what libraries are available. When the DLL loader encounters
one of these API set names, it consults a table loaded into every process, sourced
from the file apisetschema.dll, that maps the name to the real DLL. You can query
the details for an API set by using the Get-NtApiSet command and specifying the
name of the API set:

PS> Get-NtApiSet api-ms-win-core-rtlsupport-11-1-0.dll
Name HostModule Flags

api-ms-win-core-rtlsupport-11-1-1 ntdll.dll Sealed

We can see that in this case the API set resolves to the NTDLL library. You
can also specify the ResolveApiSet parameter to the Get-win32ModuleImport
command to group the imports based on the real DLLs:

PS> Get-Win32ModuleImport -Path "kernel32.dll" -ResolveApiS
et

D11Name FunctionCount DelayLoade
d

ntdll.dll 392 False
KERNELBASE .d11 867 False
ext-ms-win-oobe-query-11-1-0.d11 1 True
RPCRT4.d11 10 True

If you compare the output in Listing 3-2 to that of the same command shown
here, you'll notice that the resolved imports list is much shorter and that the core
libraries have gained additional function imports. Also notice the unresolved API
set name, ext-ms-win-oobe-query-11-1-0.dll. Any API set with the prefix api should
always be present, whereas one with the prefix ext might not be. In this case, the
API set is not present, and trying to call the imported function will fail. However,
because the function is marked as delay loaded, an executable can check whether
the API set is available before calling the function by using the
IsApiSetImplemented Win32 API.

https://technet24.ir

L)

Searching for DLLs

When loading a DLL, the loader creates an image section object from the
executable file and maps it into memory. The kernel is responsible for
mapping the executable memory; however, user-mode code still needs to
parse the import and export tables.

Let’s say you pass the string ABC.DLL to the LoadLibrary API. How does
the API know where to find that DLL? If the file hasn’t been specified as an
absolute path, the API implements a path-searching algorithm. The
algorithm, as originally implemented in Windows NT 3.1, searches for files
in the following order:

1. The same directory as the current process’s executable file
The current working directory
The Windows System32 directory

The Windows directory
Each semicolon-separated location in the PATH environment variable

ok W

The problem with this load order is that it can lead to a privileged
process loading a DLL from an insecure location. For example, if a privileged
process changed its current working directory using the
SetCurrentDirectory API to a location a less privileged user could write to,
the DLL would be loaded from that location before any DLL from the
System32 directory. This attack is called DLL hijacking, and it’s a persistent
problem on Windows.

Vista changed the default load order to the following, which is safer:

The same directory as the current process’s executable file

The Windows System32 directory

The Windows directory

The current working directory

Each semicolon-separated location in the PATH environment variable

AR

Now we no longer load from the current working directory before the
System32 or Windows directory. However, if an attacker could write to the
executable’s directory, a DLL hijack could still take place. Therefore, if an

executable is run as a privileged process, only administrators should be able
to modify its directory to prevent a DLL hijack from occurring.

()\

THE .DLL FILE EXTENSION

A separate loading quirk involves the handling of file extensions in a DLL’s
filename. If no extension is specified, the DLL loader will automatically add a .DLL
extension. If any extension is specified, the filename is treated as is. Finally, if the
extension consists of a single period (for example, LIB.), the loader removes the
period and tries to load the file without an extension (here, LIB).

This file extension behavior can introduce mismatches between the DLL an
application is trying to load and the one it actually loads. For example, an
application might check that the file L/IB is valid (that is, correctly cryptographically
signed); however, the DLL loader would then load L/B.DLL, which was not
checked. This can result in security vulnerabilities if you can trick a privileged
application into loading the wrong DLL into memory, as the entry point will execute
in the privileged context.

While the DLL loader will normally turn to the disk to retrieve a library,
some libraries are used so often that it makes sense to pre-initialize them.
This improves performance and prevents the DLLs from being hijacked. Two
obvious examples are KERNEL32 and NTDLL.

Before any user applications start on W