23 PRENTICE
ss HALL

PRENTICE HALL OPEN SOURCE SOFTWARE DEVELOPMENT SERIES

The Definitive Guide to the
Xen Hypervisor

*The Xen community s leading the industry forword in virtudlization. ond this
book will play on important role in helping it to grow and develop both the
Xen hypervisor and products that deliver it to morket.”

—From the foreword by lan Pratt

David Chisnall
Foroword Dy lan Proft. Xen Project Lead and Founde of XenSourco




The Definitive Guide
to the
Xen Hypervisor



Prentice Hall
Open Source Software Development Series

Arnold Robbins, Series Editor

“Real world code from real world applications”

Open Source technology has revolutionized the computing world. Many large-scale projects are in

production use worldwide, such as Apache, MySQL, and Postgres, with programmers writing applications
in a variety of languages including Perl, Python, and PHP. These technologies are in use on many different
systems, ranging from proprietary systems, to Linux systems, to traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed to bring you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn
from them. By seeing real code from real applications, you will learn the best practices of Open Source
developers the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning SELinux by Example
Steve Best Frank Mayer, David Caplan, Karl MacMillan
0131492470, Paper, ©2006 0131963694, Paper, ©2007
The Definitive Guide to the Xen Hypervisor UNIX to Linux® Porting
David Chisnall Alfredo Mendoza, Chakarat Skawratananond,
013234971X, Hard, ©2008 Artis Walker

0131871099, Paper, ©2006
Understanding AJAX
Joshua Eichorn Rapid Web Applications with TurboGears
0132216353, Paper, ©2007 Mark Ramm, Kevin Dangoor, Gigi Sayfan

0132433885, Paper, © 2007
The Linux Programmers Toolbox

John Fusco Linux Programming by Example
0132198576, Paper, ©2007 Arnold Robbins
0131429647, Paper, ©2004
Embedded Linux Primer 31429647, Paper
Christopher Hallinan The Linux® Kernel Primer
0131679848, Paper, ©2007 Claudia Salzberg, Gordon Fischer,
The Apache Modules Book Steven Smolski
Nick Kew 0131181637, Paper, ©2006
0132409674, Paper, © 2007 Rapid GUI Programming with Python and Qt

Mark Summerfield
S 0132354187, Hard, © 2008
New to the series: Digital Short Cuts
Short Cuts are short, concise, PDF documents designed specifically for busy technical professionals like
you. Each Short Cut is tightly focused on a specific technology or technical problem. Written by industry
experts and best selling authors, Short Cuts are published with you in mind — getting you the technical
information that you need — now.

Understanding AJAX: Debugging Embedded Linux
Consuming the Sent Data with XML and JSON Christopher Hallinan
Joshua Eichorn 0131580132, Adobe Acrobat PDE © 2007
0132337932, Adobe Acrobat PDE © 2007 .
Using BusyBox
Christopher Hallinan

0132335921, Adobe Acrobat PDE, © 2007



The Definitive Guide
to the

Xen Hypervisor

David Chisnall

L & J
[ a4
([ X J

PRENTICE
HALL

Upper Saddle River, NJ e Boston e Indianapolis e San Francisco
New York e Toronto e Montreal e London ¢ Munich e Paris ¢ Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

Xen, XenSource, XenEnterprise, XenServer and XenExpress, are either registered trademarks
or trademarks of XenSource Inc. in the United States and/or other countries.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact: U.S. Corporate and Government Sales, (800) 382-3419,
corpsales@pearsontechgroup.com. For sales outside the United States please contact: Inter-
national Sales, international@pearsoned.com.

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Chisnall, David.
The definitive guide to the Xen hypervisor / David Chisnall.
p. cm.

Includes index.

ISBN-13: 978-0-13-234971-0 (hardcover : alk. paper) 1. Xen
(Electronic resource) 2. Virtual computer systems. 3. Computer
organization. 4. Parallel processing (Electronic computers) I. Title.

QA76.9.V5C427 2007

005.4'3—dc22

2007036152
Copyright (© 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write
to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite
900, Boston, MA 02116; fax: (617) 671-3447.

ISBN-13: 978-0-13-234971-0
ISBN-10: 0-13-234971-X

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, November 2007

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nabhil

Technical Reviewer
Glenn Tremblay

Cover Designer
Alan Clements

Composition
David Chisnall


http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com

Contents

List of Figures xi
List of Tables xiii
Foreword XV
Preface xvii

I The Xen Virtual Machine 1
1 The State of Virtualization 3
1.1 What Is Virtualization? . . . . ... ... .. ... ... ...... 3
1.1.1 CPU Virtualization . . . . .. ... .. ... .. ...... 4
1.1.2  I/O Virtualization . . ... ... ... ... ... ...... 5

1.2 Why Virtualize? . . . . .. .. ... .. 7
1.3 The First Virtual Machine . . . . . .. .. .. ... .. ... .... 8
1.4 The Problem of x86 . . . . . . .. .. . .. ... .. ........ 9
1.5 Some Solutions . . . . . . . . ... ... 9
1.5.1 Binary Rewriting . . . . . . . . ... .. oL 10
1.5.2 Paravirtualization . . ... ... ... ... ... ...... 10
1.5.3 Hardware-Assisted Virtualization . . . . . .. .. ... ... 13

1.6 The Xen Philosophy . . . . .. ... ... ... 0. 15
1.6.1 Separation of Policy and Mechanism . . . . ... ... ... 15
1.6.2 LessIsMore . ... ... ... ... ... .......... 15

1.7 The Xen Architecture . . .. . .. ... ... .. ... .. ..... 16
1.7.1 The Hypervisor, the OS, and the Applications . . . . . .. 16
1.72 The Roleof Domain O . . . . .. ... ... ... ...... 19
1.7.3 Unprivileged Domains . . . . . .. ... ... ... ..... 22
1.74 HVM Domains . . . . . . . . . . . i 22
1.7.5 Xen Configurations . . . . . . ... ... ... ... ... 23



vi Contents
2 Exploring the Xen Virtual Architecture 27
2.1 Booting as a Paravirtualized Guest . . . . . . ... ... ... ... 27
2.2 Restricting Operations with Privilege Rings . . . . . . .. ... .. 28
2.3 Replacing Privileged Instructions with Hypercalls . . . . . . . . .. 30
2.4 Exploring the Xen Event Model . . . . . . . .. ... .. ... ... 33
2.5 Communicating with Shared Memory . . . . ... ... ... ... 34
2.6 Split Device Driver Model . . . . . . ... .. ... ... ...... 35
2.7 The VM Lifecycle. . . . . . .. ... ... oo 37
2.8 Exercise: The Simplest Xen Kernel . . . . . . ... ... ... ... 38
2.8.1 The Guest Entry Point . . . . ... ... ... ... ... 40

2.8.2 Putting It All Together . . . . ... ... ... ... .... 43

3 Understanding Shared Info Pages 47
3.1 Retrieving Boot Time Info . . . . . . . ... ... ... ... .... 47
3.2 The Shared Info Page . . . . ... .. ... ... ... .. ... 51
3.3 Time Keepingin Xen. . . . . ... .. ... .. ... .. ...... 53
3.4 Exercise: Implementing gettimeofday() . . . . . . . ... ... ... 54

4 Using Grant Tables 59
4.1 Sharing Memory . . . . . . ... L e 59
4.1.1 Mapping a Page Frame . . . .. ... ... ... ...... 61

4.1.2 Transferring Data between Domains . . . . . .. .. .. .. 63

42 Device /ORIngs . . . . . . .. oo 65
4.3 Granting and Revoking Permissions . . . . . ... ... ... ... 66
4.4 Exercise: Mapping a Granted Page . . . . . . ... ... ... ... 69
4.5 Exercise: Sharing Memory between VMs . . . . . . ... ... ... 71

5 Understanding Xen Memory Management 75
5.1 Managing Memory with x86 . . . . . . ... ... ... ... ... . 75
5.2 Pseudo-Physical Memory Model . . . . .. ... ... ....... 78
5.3 Segmenting on 32-bit x86 . . . . . ... ... 80
5.4 Using Xen Memory Assists . . . . . ... . ... ... ... ... 82
5.5 Controlling Memory Usage with the Balloon Driver . . . . . . . .. 84
5.6 Other Memory Operations . . . . . . . . .. . ... ... ...... 86
5.7 Updating the Page Tables . . . . . . .. ... ... ... ...... 89
5.7.1 Creating a New VM Instance . . . . . ... ... ... ... 93

5.7.2 Handling a Page Fault . . . . . .. ... ... ... ... 94

5.7.3 Suspend, Resume, and Migration . . . . . . ... ... ... 94

5.8 Exercise: Mapping the Shared Info Page . . . . . . . .. ... ... 95



Contents vii

IT Device I/O 97
6 Understanding Device Drivers 99
6.1 The Split Driver Model . . . . .. ... .. .. ... . ...... 100
6.2 Moving Drivers out of Domain 0 . . ... ... ... ........ 102
6.3 Understanding Shared Memory Ring Buffers. . . . . ... ... .. 103
6.3.1 Examining the Xen Implementation . . .. .. ... .. .. 105

6.3.2 Ordering Operations with Memory Barriers . . . . . . . .. 107

6.4 Connecting Devices with XenBus . . . . .. ... ... ... .. .. 109
6.5 Handling Notifications from Events . . . . . . . .. ... ... ... 111
6.6 Configuring via the XenStore . . . . . ... .. ... ... ..... 112
6.7 Exercise: The Console Device . . . . . ... ... ... ... .... 112

7 Using Event Channels 119
7.1 Events and Interrupts . . . . . .. ... oL 119
7.2 Handling Traps . . . . . . . . .. L e 120
7.3 Event Types. . . . . . . . . 123
7.4 Requesting Events . . . . .. ... ... 0oL 124
7.5 Binding an Event Channel toa VCPU . . . . ... ... ... ... 127
7.6 Operations on Bound Channels . . . . ... ... .. ........ 128
7.7 Getting a Channel’s Status . . . . . .. ... ... L. 129
7.8 Masking Events . . . . . . . ... Lo o 130
7.9 Events and Scheduling . . . . ... ... L0000 132
7.10 Exercise: A Full Console Driver . . . . . . .. .. ... ... .... 133

8 Looking through the XenStore 141
8.1 The XenStore Interface . . . . .. ... .. ... ... ... ... 141
8.2 Navigating the XenStore . . . . . . . .. ... ... ... .. 142
8.3 The XenStore Device . . . . . . .. ... ... oL 145
8.4 Reading and Writinga Key . . . . ... .. .. ... ... 147
8.4.1 The Userspace Way . . . ... ... ... ... ....... 148

8.4.2 From the Kernel . . . . . ... ... ... ... ... ... 150

8.5 Other Operations . . . . . . . . . ... ... .. ... ... ..., 158

9 Supporting the Core Devices 161
9.1 The Virtual Block Device Driver . . . . . .. .. ... ... .... 161
9.1.1 Setting Up the Block Device . . ... .. ... ... .... 162

9.1.2 Data Transfer . . . . . . ... . ... ... L. 165

9.2 Using Xen Networking . . . . . .. ... ... ... ... ... . 169
9.2.1 The Virtual Network Interface Driver . . . . . ... .. .. 169

9.2.2 Setting Up the Virtual Interface . . . ... ... ... ... 169

9.2.3 Sending and Receiving . . . . . ... ... oL 170



viii

Contents

9.24 NetChannel2 . . . . . . . . . . . . . .. e

10 Other Xen Devices

10.1
10.2
10.3
10.4

10.5

CD Support . . . . . ..
Virtual Frame Buffer . . . . . . . ... ... ... 0.
The TPM Driver . . . . . . . . . . i e
Native Hardware . . . . . . . . . . . . . .. ... .. ...
10.4.1 PCI Support . . . . . . . . . ..
10.4.2 USB Devices . . . . . .. ..
Adding a New Device Type . . . . . . .. . . ... .. ... ....
10.5.1 Advertising the Device . . . . . . . ... .. ... ... ...
10.5.2 Setting Up Ring Buffers . . . . ... ... ... ... . ...
10.5.3 Difficulties. . . . . . . .. oo
10.5.4 Accessing the Device . . . . . . .. ... ... ... .....
10.5.5 Designing the Back End . . . . . . ... ... .. ... ...

IIT Xen Internals

11 The Xen API

11.1

11.2
11.3

114
11.5
11.6
11.7
11.8

XML-RPC . . o
11.1.1 XML-RPC Data Types . . . . . . ... ... ... ....
11.1.2 Remote Procedure Calls . . . . . .. ... .. ... ... ...
Exploring the Xen Interface Hierarchy . . .. ... ... ... ...
The Xen APIClasses . . . . . . . . . . . . ...
11.3.1 The CBindings . . . . . . . . .. .. .. .. ... ...
The Function of Xend . . . . . .. ... .. ... ... .......
Xm Command Line . . .. ... .. ... ... ... .. ...
Xen CIM Providers . . . . . . . . . .. . ... ...
Exercise: Enumerating Running VMs . . . . . . ... .. ... ..
SUMMATrY . . . . o e

12 Virtual Machine Scheduling

12.1
12.2

12.3

124
12.5

Overview of the Scheduler Interface . . . . . . . .. ... ... ...
Historical Schedulers . . . . . . . ... ... ... ... .......
12.2.1 SEDF . . . . . . .
12.2.2 Credit Scheduler . . . . . ... ... ... ... ..
Using the Scheduler APT . . . . . . ... ... ... .. .......
12.3.1 Running a Scheduler . . . . .. ... ... ...
12.3.2 Domain 0 Interaction . . .. ... .. ... .. .......
Exercise: Adding a New Scheduler . . . ... ... ... ......
SUMMATY . . . . o o v v s e

177
177
178
183
184
184
186
187
187
188
189
191
191

195

197
198
198
199
200
201
203
206
208
209
210
215



Contents ix
13 HVM Support 235
13.1 Running Unmodified Operating Systems . . . . . . . .. ... ... 235
13.2 Intel VT-x and AMD SVM . . . ... ... ... ... ....... 237
13.3 HVM Device Support . . . . . . . ... 239
13.4 Hybrid Virtualization . . . . .. .. ... ... .. ... 240
13.5 Emulated BIOS . . . . . . . .. .. . 244
13.6 Device Models and Legacy I/O Emulation . . . . . . ... ... .. 245
13.7 Paravirtualized I/O . . . . . . . .. ... Lo 246
13.8 HVM Supportin Xen . . . . . . . ... .. ... .. .. ...... 248
14 Future Directions 253
14.1 Real to Virtual, and Back Again . . . . .. ... ... ... .... 253
14.2 Emulation and Virtualization . . . . . ... .. ... ... .. ... 254
14.3 Porting Efforts . . . . . . . ... L o 255
14.4 The Desktop . . . . . . . . . . 257
14.5 Power Management . . . . . . . . ... .. oL 259
14.6 The Domain 0 Question . . . . . .. . ... ... ... ... .... 261
147 Stub Domains . . . . . . . ... L 263
14.8 New Devices . . . . . . . . . . e 264
14.9 Unusual Architectures . . . . . . . . . .. ... ... ... 265
14.10The Big Picture . . . . . . . . . . ... . 267
IV  Appendix 271
PV Guest Porting Cheat Sheet 273
A.1 Domain Builder . . . . . . . . ... ... ... 273
A2 Boot Environment . . . ... .. ... ... ... ... 274
A.3 Setting Up the Virtual IDT . . . . . .. ... ... ... .. .... 274
A.4 Page Table Management . . . . . . . .. .. ... ... ... .... 275
A5 Drivers. . . . o oL 276
A.6 Domain 0 Responsibilities . . . . . .. ... ... ... ....... 276
A7 Efficiency . . ... 277
A8 Summary . ... 278
Index 279



This page intentionally left blank



List of Figures

1.1 An instruction streamina VM . . . ... .. ... ... ... ... 11
1.2 System calls in native and paravirtualized systems . . . . ... .. 12
1.3 Ring usage in native and paravirtualized systems . . . . . ... .. 17
1.4 Ring usage in x86-64 native and paravirtualized systems . . . . . . 18
1.5 The path of a packet sent from an unprivileged guest through the
system . . ... 20
1.6 A simple Xen configuration . . . . . ... ... ... . 24
1.7 A Xen configuration showing driver isolation and an unmodified
guest OS. . . . . .o 25
1.8 A single node in a clustered Xen environment . . . . . . .. .. .. 25
2.1 The lifecycle of a real machine . . . . ... ... ... ..., .. 37
2.2 The lifecycle of a virtual machine . . . . . . . ... ... ... ... 38
3.1 The hierarchy of structures used for the shared info page . . . . . . 51
4.1 The structure of an I/Oring . . . . . . . .. ... ... ... 67
5.1 The three layers of Xen memory . . . . ... ... ... ...... 80
5.2 Memory layout on x86 systems . . . . . ... ... 81
6.1 The composition of a split device driver . . . . . .. .. ... ... 101
6.2 A sequence of actions on a ring buffer . . . ... ... 104
7.1 The process of delivering an event . . . . . ... ... ... ... .. 131
11.1 The Xen interface hierarchy . . . . . .. . ... ... ... .. 201
11.2 Objects associated with a host . . . . . . ... .. ... ... ... 202
11.3 Objects associated with a VM instance . . . . . . . . .. ... ... 203

xi



This page intentionally left blank



List of Tables

2.1

4.1

5.1
5.2
5.3

7.1

Xen components and their UNIX counterparts . . .. .. ... .. 34
Grant table status codes . . . . .. ... oL 63
Segment descriptors on x86 . . . . ... ... oL L 76
Available VM assists . . . . . . . . .. ... 84
Extended MMU operation commands . . . . ... ... ... ... 92
Event channel status values . . . . .. ... ... ... ....... 130

xiii



This page intentionally left blank



Foreword

With the recent release of Xen 3.1 the Xen community has delivered the world’s
most advanced hypervisor, which serves as an open source industry standard for
virtualization. The Xen community benefits from the support of over 20 of the
world’s leading I'T vendors, contributions from vendors and research groups world-
wide, and is the driving force of innovation in virtualization in the industry.

The continued growth and excellence of Xen is a vindication of the project’s
component strategy. Rather than developing a complete open source product, the
project endorses an integrated approach whereby the Xen hypervisor is included as
the virtualization “engine” in multiple products and projects. For example, Xen
is delivered as an integrated hypervisor with many operating systems, including
Linux, Solaris, and BSD, and is also packaged as virtualizaton platforms such as
XenSource’s XenEnterprise. This allows Xen to serve many different use cases
and customer needs for virtualization.

Xen supports a wide range of architectures, from super-computer systems with
thousands of Intel Itanium CPUs, to Power PC and industry standard x86 servers
and clients, and even ARM-9 based PDAs. The project’s cross-architecture, multi-
OS approach to virtualization is another of its key strengths, and has enabled it to
influence the design of proprietary products, including the forthcoming Microsoft
Windows Hypervisor, and benefit from hardware-assisted virtualization technolo-
gies from CPU, chipset, and fabric vendors. The project also works actively in
the DMTF, to develop industry standard management frameworks for virtualized
systems.

The continued success of the Xen hypervisor depends substantially on the
development of a highly skilled community of developers who can both contribute
to the project and use the technology within their own products. To date, other
than the community’s limited documentation, and a steep learning curve for the
uninitiated, Xen has retained a mystique that is unmistakably “cool” but not
scalable. While there are books explaining how to use Xen in the context of
particular vendors’ products, there is a huge need for a definitive technical insider’s
guide to the Xen hypervisor itself. Continuing the “engine” analogy, there are
books available for “cars” that integrate Xen, but no manuals on how to fix the

XV



xvi Foreword

“engine.” The publication of this book is therefore of great importance to the
Xen community and the industry of vendors around it.

David Chisnall brings to this project the deep systems expertise that is required
to dive deep inside Xen, understand its complex subsystems, and document its
workings. With a Ph.D. in computer science, and as an active systems software
developer, David has concisely distilled the complexity of Xen into a work that
will allow a skilled systems developer to get a firm grip on how Xen works, how
it interfaces to key hardware systems, and even how to develop it. To complete
his work, David spent a considerable period of time with the XenSource core
team in Cambridge, U.K., where he developed a unique insight into the history,
architecture, and inner workings of Xen. Without doubt his is the most thorough
in-depth book on the Xen hypervisor available, and fully merits its description as
the definitive insider’s guide.

It is my hope and belief that this work will contribute significantly to the con-
tinued development of the Xen project, and the adoption of Xen worldwide. The
opportunity for open source virtualization is huge, and the open source commu-
nity is the foundation upon which rapid innovation and delivery of differentiated
solutions is founded. The Xen community is leading the industry forward in vir-
tualization, and this book will play an important role in helping it to grow and
develop both the Xen hypervisor and products that deliver it to market.

Tan Pratt
Xen Project Lead and Founder of XenSource



Preface

This book aims to serve as a guide to the Xen hypervisor. The interface to
paravirtualized guests is described in detail, along with some description of the
internals of the hypervisor itself.

Any book about an open source project will, by nature, be less detailed than
the code of the project that it attempts to describe. Anyone wishing to fully un-
derstand the Xen hypervisor will find no better source of authoritative information
than the code itself. This book aims to provide a guided tour, indicating features
of interest to help visitors find their way around the code. As with many travel
books, it is to be hoped that readers will find it an informative read whether or
not they visit the code.

Much of the focus of this book is on the kernel interfaces provided by Xen.
Anyone wishing to write code that runs on the Xen hypervisor will find this mate-
rial relevant, including userspace program developers wanting to take advantage
of hypervisor-specific features.

Overview and Organization

This book is divided into three parts. The first two describe the hypervisor inter-
faces, while the last looks inside Xen itself.

Part I begins with a description of the history and current state of virtualiza-
tion, including the conditions that caused Xen to be created, and an overview of
the design decisions made by the developers of the hypervisor. The remainder of
this part describes the core components of the virtual environment, which must
be supported by any non-trivial guest kernel.

The second part focuses on device support for paravirtualized and
paravirtualization-aware kernels. Xen provides an abstract interface to devices,
built on some core communication systems provided by the hypervisor. Virtual
equivalents of interrupts and DMA and the mechanism used for device discov-
ery are all described in Part II, along with the interfaces used by specific device
categories.

xvii



xviil Preface

Part I1I takes a look at how the management tools interact with the hypervisor.
It looks inside Xen to see how it handles scheduling of virtual machines, and how
it uses CPU-specific features to support unmodified guests.

An appendix provides a quick reference for people wishing to port operating
systems to run atop Xen.

Typographical Conventions

0O~ DO b W N =

This book uses a number of different typefaces and other visual hints to describe
different types of material.

Filenames, such as /bin/sh, are all shown in this font. This same convention
is also used for structures which closely resemble a filesystem, such as paths in
the XenStore.

Variable or function names, such as example(), used in text will be typeset
like this. Registers, such as EAX, and instructions, such as POP will be shown
in uppercase lettering. Single line listings will appear like this:

eg = example_function(argl);

Longer listings will have line numbers down the left, and a gray background, as
shown in Listing 1. In all listings, bold is used to indicate keywords, and italicized
text represents strings and comments.

Listing 1: A.n eXample hStlng [from: example/hello.c]

#include <stdio.h>

int main(void)

{
/* Print hello world x/
printf(”Hello_World!\n");
return 0;

}

Listings which are taken from external files will retain the line numbers of the
original file, allowing the referenced section to be found easily by the reader. The
captions contain the original source in square brackets. Those beginning with
example/ are from the example sources. All others, unless otherwise specified,
are from the Xen sources.

Comments from files in the Xen source code have been preserved, complete
with errors. Since the Xen source code predominantly uses U.K. English for
comments, and variable and function names, this convention has been preserved
in examples from this book.

During the course of this book, a simple example kernel is constructed. The
source code for this can be downloaded from:



Preface xix

http://www.prenhallprofessional.com/title/9780132349710.
Output from command-line interaction is shown in the following way:

$ gcc hello.c
$ ./a.out
Hello World!

A $ prompt indicates commands that can be run as any user, while a # is used
to indicate that root access is likely to be required.

Use as a Text

In addition to the traditional uses for hypervisors, Xen makes an excellent teaching
tool. Early versions of Xen only supported paravirtualized guests, and newer ones
continue to support these in addition to unmodified guests. The architecture
exposed by the hypervisor to paravirtualized guests is very similar to x86, but
differs in a number of ways. Driver support is considerably easier, with a single
abstract device being exposed for each device category, for example. In spite of
this, a number of things are very similar. A guest operating system must handle
interrupts (or their virtual equivalent), manage page tables, schedule running
tasks, etc.

This makes Xen an excellent platform for development of new operating sys-
tems. Unlike a number of simple emulated systems, a guest running atop Xen
can achieve performance within 10% that of the native host. The simple device
interfaces make it easy for Xen guests to support devices, without having to worry
about the multitude of peripherals available for real machines.

The similarity to real hardware makes Xen an ideal platform for teaching op-
erating systems concepts. Writing a simple kernel that runs atop Xen is a signifi-
cantly easier task than writing one that runs on real hardware, and significantly
more rewarding than writing one that runs in a simplified machine emulator.

An operating systems course should use this text in addition to a text on
general operating systems principles to provide the platform-specific knowledge
required for students to implement their own kernels.

Xen is also a good example of a successful, modern, microkernel (although it
does more in kernelspace than many microkernels), making it a good example for
contrasting with popular monolithic systems.

Acknowledgments

First, I have to thank Mark Taub for the opportunity to write this book. Since
first contacting Mark in 2002, he has given me the opportunity to work on several


http://www.prenhallprofessional.com/title/9780132349710

XX Preface

projects. This included working with Mark Sobell, from whom I learned a lot
about writing.

I also have to thank Debra Williams Cauley who coordinated everything for
this book, along with the rest of her team who helped to transform it into the
form you are now seeing.

I began writing this book near the end of the third year of my Ph.D., and
would like to thank my supervisor, Professor Min Chen, for his forbearance when
my thesis became a lower priority than getting this book finished. I would also
like to thank the other members of the Swansea University Computer Science
Department who kept me supplied with coffee while I was writing.

For technical assistance, I could have had no one more patient than Keir Fraser
who answered my questions in great detail by email and in person when I visited
XenSource. Without his help, this book would have taken a lot longer to write.
A number of other people at XenSource and at the Spring 2007 XenSummit also
provided valuable advice. I'd like to thank all of the people doing exciting things
with Xen for helping to make this book so much fun to write.

I would also like to thank Glenn Tremblay of Marathon Technologies Corp.
who performed a detailed technical review. While I can’t guarantee that this
book is error free, I can be very sure it wouldn’t have been without his assistance.
Glenn is a member of a growing group of people using Xen as a foundation for
their own products, and I hope his colleagues find this book useful.

This book was written entirely in Vim. Subversion was used for revision track-
ing and the final manuscript was typeset using BTEX. Without the work of Bram
Moolenaar, Leslie Lamport, Donald Knuth, and many others, writing a book using
Free Software would be much harder, if not impossible.

Finally, I would like to thank all of the members of the Slashdot community
for helping me to procrastinate when I should have been writing.



Part |

The Xen Virtual Machine



This page intentionally left blank



1.1

Chapter 1

The State of Virtualization

Xen is a virtualization tool, but what does this mean? In this chapter, we will
explore some of the history of virtualization, and some of the reasons why people
found, and continue to find, it useful. We will have a look in particular at the
x86, or IA32, architecture, why it presents such a problem for virtualization, and
some possible ways around these limitations from other virtualization systems and
finally from Xen itself.

What Is Virtualization?

Virtualization is very similar conceptually to emulation. With emulation, a system
pretends to be another system. With virtualization, a system pretends to be two
or more of the same system.

Most modern operating systems contain a simplified system of virtualization.
Each running process is able to act as if it is the only thing running. The CPUs
and memory are virtualized. If a process tries to consume all of the CPU, a modern
operating system will preempt it and allow others their fair share. Similarly, a
running process typically has its own virtual address space that the operating
system maps to physical memory to give the process the illusion that it is the
only user of RAM.

Hardware devices are also often virtualized by the operating system. A process
can use the Berkeley Sockets API, or an equivalent, to access a network device
without having to worry about other applications. A windowing system or virtual
terminal system provides similar multiplexing to the screen and input devices.

Since you already use some form of virtualization every day, you can see that
it is useful. The isolation it gives often prevents a bug, or intentionally malicious
behavior, in one application from breaking others.



4 Chapter 1. The State of Virtualization

Unfortunately, applications are not the only things to contain bugs. Operating
systems do too, and often these allow one application to compromise the isolation
that it usually experiences. Even in the absence of bugs, it is often convenient to
provide a greater degree of isolation than an operating system can.

1.1.1 CPU Virtualization

Virtualizing a CPU is, to some extent, very easy. A process runs with exclusive
use of it for a while, and is then interrupted. The CPU state is then saved, and
another process runs. After a while, this process is repeated.

This process typically occurs every 10ms or so in a modern operating system.
It is worth noting, however, that the virtual CPU and the physical CPU are
not identical. When the operating system is running, swapping processes, the
CPU runs in a privileged mode. This allows certain operations, such as access
to memory by physical address, that are not usually permitted. For a CPU to
be completely virtualized, Popek and Goldberg put forward a set of requirements
that must be met in their 1974 paper “Formal Requirements for Virtualizable
Third Generation Architectures.”! They began by dividing instructions into three
categories:

Privileged instructions are defined as those that may execute in a privileged
mode, but will trap if executed outside this mode.

Control sensitive instructions are those that attempt to change the configura-
tion of resources in the system, such as updating virtual to physical memory
mappings, communicating with devices, or manipulating global configura-
tion registers.

Behavior sensitive instructions are those that behave in a different way de-
pending on the configuration of resources, including all load and store oper-
ations that act on virtual memory.

In order for an architecture to be virtualizable, Popek and Goldberg deter-
mined that all sensitive instructions must also be privileged instructions. Intu-
itively, this means that a hypervisor must be able to intercept any instructions
that change the state of the machine in a way that impacts other processes.

One of the easiest architectures to virtualize was the DEC? Alpha. The Al-
pha didn’t have privileged instructions in the normal sense. It had one special
instruction that jumped to a specified firmware (‘PALCode’) address and entered
a special mode where some usually hidden registers were available.

1Published in Communications of the ACM.
2Digital Equipment Corporation (DEC) was later renamed Digital, then was bought by HP,
which later merged with Compagq.



1.1. What Is Virtualization? 5

Once in this mode, the CPU could not be preempted. It would execute a
sequence of normal instructions and then another instruction would return the
CPU to the original mode. To perform context switches into the kernel, the
userspace code would raise an exception, causing an automatic jump to PALCode.
This would set a flag in a hidden register and then pass control to the kernel.
The kernel could then call other PALCode instructions, which would check the
value of the flag and permit special features to be accessed, before finally calling a
PALCode instruction that would unset the flag and return control to the userspace
program. This mechanism could be extended to provide the equivalent of multiple
levels of privilege fairly easily by setting the privilege level in a hidden register,
and checking it at the start of any PALCode routines.

Everything normally implemented as a privileged instruction was performed
as a set of instructions stored in the PALCode. If you wanted to virtualize the
Alpha, all you needed to do was replace the PALCode with a set of instructions
that passed the operations through an abstraction layer.

1.1.2 1/0 Virtualization

An operating system requires more than a CPU to run; it also depends on main
memory, and a set of devices. Virtualizing memory is relatively easy; it can just
be partitioned and every privileged instruction that accesses physical memory
trapped and replaced with one that maps to the permitted range. A modern CPU
includes a Memory Management Unit (MMU ), which performs these translations,
typically based on information provided by an operating system.

Other devices are somewhat more complicated. Most are not designed with
virtualization in mind, and for some it is not entirely obvious how virtualization
would be supported. A block device, such as a hard disk, could potentially be
virtualized in the same way as main memory—by dividing it up into partitions
that can be accessed by each virtual machine (VM). A graphics card, however,
is a more complex problem. A simple frame buffer might be handled trivially by
providing a virtual frame buffer to each VM and allow the user to either switch
between them or map them into ranges on a physical display.

Modern graphics cards, however, are a lot more complicated than frame
buffers; they provide 2D and 3D acceleration, and have a lot of internal state.
Worse, most don’t provide a mechanism for saving and restoring this state, and
so even switching between VMs is problematic. This has already been a problem
for people working on power management. If you are running a GUI, such as X11,
some state may be stored in the graphics hardware—the current video mode, at
the very least—which will be lost when the device is powered down. This means
that the GUI must be modified to ensure that it also saves the state elsewhere, and
can restore it when required (for example, by instructing every window to redraw



6 Chapter 1. The State of Virtualization

itself). This is obviously not possible for a true virtual environment, because the
virtualized system is not aware that it has been disconnected from the hardware.

Another issue comes from the way in which devices interact with the sys-
tem. Typically, data is transferred to and from devices via Direct Memory Access
(DMA) transfers. The device is given a physical memory address by the driver
and writes a chunk of data there. Because the device exists outside the normal
framework of the operating system, it must use physical memory rather than a
virtual address space.

This works fine if the operating system really is in complete control of the
platform, but it raises some problems if it is not. In a virtualized environment,
the kernel is running in a hypervisor-provided virtual address space in much the
same way that a userspace process runs in a kernel-provided virtual address space.
Allowing the guest kernel to tell devices to write to an arbitrary location in the
physical address space is a serious security hole. The situation is even worse if the
kernel, or device driver, is not aware that it is running in a virtualized environment.
In this case, it could provide an address it believes points to a buffer in the kernel’s
address space, but that really points somewhere completely different.

In theory, it might be possible for a hypervisor to trap writes to devices and
rewrite the DMA addresses to something in the permitted address range. In prac-
tice, this is not feasible. Even discounting the (significant) performance penalty
that this would incur, detecting a DMA instruction is nontrivial. Each device
defines its own protocol for talking to drivers, and so the hypervisor would have
to understand this protocol, parse the instruction stream, and perform the sub-
stitution. This would end up being more effort than writing the driver in the first
place.

On some platforms, it is possible to make use of an Input/Output Memory
Management Unit (IOMMU). This performs a similar feature to a standard MMU;
it maps between a physical and a virtual address space. The difference is the
application; whereas an MMU performs this mapping for applications running on
the CPU, the IOMMU performs it for devices.

The first IOMMU appeared in some early SPARC systems. These came with
a network interface that did not have sufficient address space to write into all of
main memory. The IOMMU was added to allow pages of the real address space
to be mapped to the devices’ address space. A different approach was used on
x86 platforms when 8- and 16-bit ISA cards were used with 32-bit systems; they
simply reserved a block of memory near the bottom of the address space for I/O.

AMD’s x86-64 systems also have an IOMMU, for a similar purpose. Many
devices connected to x86-64 machines are likely to be legacy PCI devices that
only support a 32-bit address space. Without an IOMMU, these are limited to
accessing the bottom 4GB of physical memory. The most obvious time this is
a problem is when implementing the mmap system call, or virtual memory in
general. When a page fault occurs, the block device driver can only perform



1.2

1.2. Why Virtualize? 7

DMA transfers into the bottom part of physical memory. If the page fault occurs
elsewhere, it must use the CPU to write the data, one word at a time, to the
correct address, which is very slow.

A similar mechanism has been used in AGP cards for a while. The Graphics
Address Remapping Table (GART) is a simple IOMMU used to allow loading of
textures into an AGP graphics card using DMA transfers, and to allow such cards
to use main memory easily. It does not, however, do much to address the needs of
virtualization, since not all interactions with an AGP or PCle graphics card pass
through the GART. It is primarily used by on-board GPUs to allow the operating
system to allocate more memory to graphics than the BIOS did by default.

Why Virtualize?

The basic motivation for virtualization is the same as that for multitasking operat-
ing systems; computers have more processing power than one task needs. The first
computers were built to do one task. The second generation was programmable;
these computers could do one task, and then do another task. Eventually, the
hardware became fast enough that a machine could do one task and still have
spare resources. Multitasking made it possible to take advantage of this unused
computing power.

A lot of organizations are now finding that they have a lot of servers all doing
single tasks, or small clusters of related tasks. Virtualization allows a number of
virtual servers to be consolidated into a single physical machine, without losing the
security gained by having completely isolated environments. Several Web host-
ing companies are now making extensive use of virtualization, because it allows
them to give each customer his own virtual machine without requiring a physical
machine taking up rack space in the data center.

In some cases, the situation is much worse. An organization may need to run
two or more servers for a particular task, in case one fails, even though neither is
close to full resource usage. Virtualization can help here, because it is relatively
easy to migrate virtual machines from one physical computer to another, mak-
ing it easy to keep redundant virtual server images synchronized across physical
machines.

A virtual machine gets certain features, like cloning, at a very low cost. If
you are uncertain about whether a patch will break a production system, you can
clone that virtual machine, apply the patch, and see what breaks. This is a lot
easier than trying to keep a production machine and a test machine in the same
state.

Another big advantage is migration. A virtual machine can be migrated to
another host if the hardware begins to experience faults, or if an upgrade is sched-
uled. It can then be migrated back when the original machine is working again.



1.3

8 Chapter 1. The State of Virtualization

Power usage also makes virtualization attractive. An idle server still consumes
power. Consolidating a number of servers into virtual machines running on a
smaller number of hosts can reduce power costs considerably.

Moving away from the server, a virtual machine is more portable than a phys-
ical one. You can save the state of a virtual machine onto a USB flash drive, or
something like an iPod, and transport it more easily than even a laptop. When
you want to use it, just plug it in and restore.

Finally, a virtual machine provides a much greater degree of isolation than a
process in an operating system. This makes it possible to create virtual appli-
ances: virtual machines that just provide a single service to a network. A virtual
appliance, unlike its physical counterpart, doesn’t take up any space, and can
be easily duplicated and run on more nodes if it is too heavily loaded (or just
allocated more runtime on a large machine).

The First Virtual Machine

The first machine to fully support virtualization was IBM’s VM, which began life
as part of the System/360 project. The idea of System/360 (often shortened to
S/360) was to provide a stable architecture and upgrade path to IBM customers.
A variety of machines was produced with the same basic architecture, so small
businesses could buy a minicomputer if that was all they needed, but upgrade to
a large mainframe with the same software later.

One key market IBM identified at the time was people wishing to consolidate
System/360 machines. A company with a few System/360 minicomputers could
save money by upgrading to a single S/360 mainframe, assuming the mainframe
could provide the same features. The Model 67 introduced the idea of a self-
virtualizing instruction set.

This meant that a Model 67 could be partitioned easily and appear to be a
number of (less powerful) versions of itself. It could even be recursively virtualized;
each virtual machine could be further partitioned. This made it very easy to
migrate from having a collection of minicomputers to having a single mainframe.
FEach minicomputer would simply be replaced with a virtual machine, which would
be administrated in exactly the same way, from a software perspective.

The latest iteration of VM is z/VM, which runs on IBM’s zSeries (later re-
branded to System z) machines. These can run a variety of operating systems,
from old systems for legacy applications to newer systems such as Linux and AIX in
a fully virtualized environment, as well as running native VM /CMS applications.



14

15

1.5. Some Solutions 9

The Problem of x86

The 80386 CPU was designed with virtualization in mind. One of the design
goals was to allow the running of multiple existing DOS applications at once. At
the time, DOS was a 16-bit operating system running 16-bit applications on a
16-bit CPU. The 80386 included a virtual 8086 mode, which allowed an operating
system to provide an isolated 8086 environment to older programs, including the
old real-mode addressing model running on top of protected mode addressing.

Because there were no existing IA32 applications, and it was expected that
future operating systems would natively support multitasking, there was no need
to add a virtual 80386 mode.

Even without such a mode the processor would be virtualizable if, according
to Popek and Goldberg, the set of control sensitive instructions is a subset of
the set of privileged instructions. This means that any instruction that modifies
the configuration of resources in the system must either be executed in privileged
mode, or trap if it isn’t. Unfortunately, there is a set of 17 instructions in the x86
instruction set that does not have this property.

Some of the offending instructions have to do with the segmented memory
functions of x86. For example, the LAR and LSL instructions load information
about a specified segment. Because these cannot be trapped, there is no way for
the hypervisor to rearrange the memory layout without a guest OS finding out.
Others, such as SIDT, are problematic because they allow the values of certain
condition registers to be set, but have no corresponding load instructions. This
means that every time they execute they must be trapped and the new value stored
elsewhere as well, so it can be restored when the virtual machine is re-activated.

Some Solutions

Although x86 is difficult to virtualize, it is also a very attractive target, because
it is so widespread. For example, virtualizing the Alpha is much easier, however
the installed base of Alpha CPUs is insignificant compared to that of x86, giving
a much smaller potential market.

Since the IBM PC, x86-based systems have been very popular for business
use, leading to a wide selection of legacy business systems. Because of the large
potential returns from delivering a working virtualization solution for x86, much
effort has been put into getting around the limitations intrinsic to the platform,
and a few solutions have been proposed.



10 Chapter 1. The State of Virtualization

1.5.1 Binary Rewriting

One approach, popularized by VMWare, is binary rewriting. This has the nice
benefit that it allows most of the virtual environment to run in userspace, but
imposes a performance penalty.

The binary rewriting approach requires that the instruction stream be scanned
by the virtualization environment and privileged instructions identified. These are
then rewritten to point to their emulated versions.

Performance from this approach is not ideal, particularly when doing anything
I/0O intensive. Aggressive caching of the locations of unsafe instructions can give
a speed boost, but this comes at the expense of memory usage. Performance is
typically between 80-97% that of the host machine, with worse performance in
code segments high in privileged instructions.

There are a few things that make binary rewriting difficult. Some applications,
particularly debuggers, inspect the instruction stream themselves. For this reason,
virtualization software employing this approach is required to keep the original
code in place, rather than simply replacing the invalid instructions.

In implementation, this is actually very similar to how a debugger works. For
a debugger to be useful, it must provide the ability to set breakpoints, which
will cause the running process to be interrupted and allow it to be inspected by
the user. A virtualization environment that uses this technique does something
similar. It inserts breakpoints on any jump and on any unsafe instruction. When
it gets to a jump, the instruction stream reader needs to quickly scan the next part
for unsafe instructions and mark them. When it reaches an unsafe instruction, it
has to emulate it.

Pentium and newer machines include a number of features to make implement-
ing a debugger easier. These features allow particular addresses to be marked, for
example, and the debugger automatically activated. These can be used when
writing a virtual machine that works in this way. Consider the hypothetical in-
struction stream in Figure 1.1. Here, two breakpoint registers would be used, DRO
and DR1, with values set to 4 and 8, respectively. When the first breakpoint is
reached, the system emulates the privileged instruction, sets the program counter
to 5, and resumes. When the second is reached, it scans the jump target and sets
the debug registers accordingly. Ideally, it caches these values, so the next time it
jumps to the same place it can just load the debug register values.

1.5.2 Paravirtualization

The paravirtualization approach involves taking a step back from the problem
and modifying the question slightly. Because we cannot easily virtualize x86, par-
avirtualization asks the question, “What is the closest system to x86 that we can



=W N

1.5. Some Solutions 11

123!5678'

Instruction Stream

[ ] Unprivileged Instruction
™ Privileged Instruction
Qdump Instruction

Figure 1.1: An instruction stream in a VM

virtualize?” Rather than dealing with problematic instructions, paravirtualization
systems like Xen simply ignore them.

If a guest system executes an instruction that doesn’t trap while inside a
paravirtualized environment, then the guest has to deal with the consequences.
Conceptually, this is similar to the binary rewriting approach, except that the
rewriting happens at compile time (or design time), rather than at runtime.

The environment presented to a Xen guest is not quite the same as that of a
real x86 system. It is sufficiently similar, however, in that it is usually a fairly
simple task to port an operating system to Xen.

From the perspective of an operating system, the biggest difference is that it
runs in ring 1 on a Xen system, instead of ring 0. This means that it cannot
perform any privileged instructions. In order to provide similar functionality, the
hypervisor exposes a set of hypercalls that correspond to the instructions.

A hypercall is conceptually similar to a system call. On UNIX? systems, the
convention for invoking a system call is to push the values and then raise an
interrupt, or invoke a system call instruction if one exists. To issue the exit (0)
system call on FreeBSD, for example, you would execute a sequence of instructions
similar to that shown in Listing 1.1.

Listing 1.1: A simple FreeBSD system call

push dword 0
mov eax, 1

push eax

int 80h

When interrupt 80h is raised, a kernel interrupt handler is invoked. This reads

3Note that Linux uses the MS-DOS system call convention, and so passes parameters in
registers.



12 Chapter 1. The State of Virtualization

the value of EAX and discovers that it is 1. It then jumps to the handler for this
system call, POPs the parameters off the stack, and then handle it.

Native Paravirtualized

RS AT |
‘Ringt l """"""""" |
‘ Kernel '—

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
0

‘Ring2 1 Vo
)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e

‘Ring3 |y e

Application ' —’ Application '
— — - Hypercall

——P» System Call
----- P> Accelerated System Call

Figure 1.2: System calls in native and paravirtualized systems

Hypercalls work in a very similar manner. The main difference is that they
use a different interrupt number (82h, in the case of Xen). Figure 1.2 illustrates
the difference, and shows the ring transitions when a system call is issued from an
application running in a virtualized OS. Here, the hypervisor, not the kernel, has
interrupt handlers installed. Thus, when interrupt 80h is raised, execution jumps
to the hypervisor, which then passes control back to the guest OS. This extra
layer of indirection imposes a small speed penalty, but it does allow unmodified
applications to be run. Xen also provides a mechanism for direct system calls,
although these require a modified libc.

Note that Xen, like Linux, uses the MS-DOS calling convention, rather than
the UNIX convention used by FreeBSD. This means that parameters for hypercalls
are stored in registers, starting at EBX, rather than being passed on the stack.

In more recent versions of Xen, hypercalls are issued via an extra layer of
indirection. The guest kernel calls a function in a shared memory page (mapped
by the hypervisor) with the arguments passed in registers. This allows more
efficient mechanisms to be used for hypercalls on systems that support them,



1.5. Some Solutions 13

without requiring the guest kernel to be recompiled for every minor variation
in architecture. Newer chips from AMD and Intel provide mechanisms for fast
transitions to and from ring 0. This layer of indirection allows these to be used
when available.

1.5.3 Hardware-Assisted Virtualization

The first x86 chip, the 8086, was a simple 16-bit design, with no memory manage-
ment unit or hardware floating point capability. Gradually, the processor family
has evolved, gaining memory management with the 286, 32-bit extensions, on-chip
floating point with the 486 and vector extensions with the Pentium series.

At some points, different manufacturers have extended the architecture in
different ways. AMD added 3DNow! vector instructions, while Intel added MMX
and SSE. VIA added some extra instructions for cryptography, and enabled page-
level memory protection.

Now, both Intel and AMD have added a set of instructions that makes virtu-
alization considerably easier for x86. AMD introduced AMD-V, formerly known
as Pacifica, whereas Intel’s extensions are known simply as (Intel) Virtualization
Technology (IVT or VT'). The idea behind these is to extend the x86 ISA to make
up for the shortcomings in the existing instruction set. Conceptually, they can be
thought of as adding a “ring -1” above ring 0, allowing the OS to stay where it
expects to be and catching attempts to access the hardware directly. In imple-
mentation, more than one ring is added, but the important thing is that there is
an extra privilege mode where a hypervisor can trap and emulate operations that
would previously have silently failed.

IVT adds a new mode to the processor, called VMX. A hypervisor can run in
VMX mode and be invisible to the operating system, running in ring 0. When
the CPU is in VMX mode, it looks normal from the perspective of an unmodified
OS. All instructions do what they would be expected to, from the perspective of
the guest, and there are no unexpected failures as long as the hypervisor correctly
performs the emulation.

A set of extra instructions is added that can be used by a process in VMX root
mode. These instructions do things like allocating a memory page on which to
store a full copy of the CPU state, start, and stop a VM. Finally, a set of bitmaps is
defined indicating whether a particular interrupt, instruction, or exception should
be passed to the virtual machine’s OS running in ring 0 or by the hypervisor
running in VMX root mode.

In addition to the features of Intel’s VT4, AMD’s Pacifica provides a few extra
things linked to the x86-64 extensions and to the Opteron architecture. Current
Opterons have an on-die memory controller. Because of the tight integration

4Technically, VT-x for x86. Intel also added similar instructions to Itanium (TA64), known
as VT-i.



14 Chapter 1. The State of Virtualization

between the memory controller and the CPU, it is possible for the hypervisor to
delegate some of the partitioning to the memory controller.

Using AMD-V, there are two ways in which the hypervisor can handle mem-
ory partitioning. In fact, two modes are provided. The first, Shadow Page Tables,
allows the hypervisor to trap whenever the guest OS attempts to modify its page
tables and change the mapping itself. This is done, in simple terms, by marking
the page tables as read only, and catching the resulting fault to the hypervisor,
instead of the guest operating system kernel. The second mode is a little more
complicated. Nested Page Tables allow a lot of this to be done in hardware.
Nested page tables do exactly what their name implies; they add another layer
of indirection to virtual memory. The MMU already handles virtual to physical
translations as defined by the OS. Now, these “physical” addresses are translated
to real physical addresses using another set of page tables defined by the hyper-
visor. Because the translation is done in hardware, it is almost as fast as normal
virtual memory lookups.

The other additional feature of Pacifica is that it specifies a Device Ezxclusion
Vector interface. This masks the addresses that a device is allowed to write to, so
a device can only write to a specific guest’s address space.

In some cases, hardware virtualization is much faster than doing it in software.
In other cases, it can be slower. Programs such as VMWare now use a hybrid
approach, where a few things are offloaded to the hardware, but the rest is still
done in software.

When compared to paravirtualization, hardware assisted virtualization, often
referred to as HVM (Hardware Virtual Machine), offers some trade-offs. It allows
the running of unmodified operating systems. This can be particularly useful,
because one use for virtualization is running legacy systems for which the source
code may not be available. The cost of this is speed and flexibility. An unmodified
guest does not know that it is running in a virtual environment, and so can’t take
advantage of any of the features of virtualization easily. In addition, it is likely to
be slower for the same reason.

Nevertheless, it is possible for a paravirtualization system to make some use of
HVM features to speed up certain operations. This hybrid virtualization approach
offers the best of both worlds. Some things are faster for HVM-assisted guests,
such as system calls. A guest in an HVM environment can use the accelerated
transitions to ring 0 for system calls, because it has not been moved from ring 0
to ring 1. It can also take advantage of hardware support for nested page tables,
reducing the number of hypercalls required for virtual memory operations. A
paravirtualized guest can often perform I/O more efficiently, because it can use
lightweight interfaces to devices, rather than relying on emulated hardware. A
hybrid guest combines these advantages.



1.6. The Xen Philosophy 15

1.6 The Xen Philosophy

The rest of this book will discuss the Xen system in detail, but in order to un-
derstand the details, it is worth taking the time to understand the broad design
of Xen. Understanding this, the philosophy of Xen, makes it easier to see why
particular design decisions were made, and how all of the parts fit together.

1.6.1 Separation of Policy and Mechanism

One key idea in good system design is that of separation of policy and mechanism,
and this is a fundamental part of Xen design. The Xen hypervisor implements
mechanisms, but leaves policy up to the Domain 0 guest.

Xen does not support any devices natively. Instead, it provides a mechanism
by which a guest operating system can be given direct access to a physical device.
The guest OS can then use an existing device driver.

Of course, an existing device driver is not the whole story, because it is unlikely
to have been written with virtualization in mind. There also needs to be a way
of providing access to the device to more than one guest. Again, Xen provides
only a mechanism. The grant table interface allows developers to grant access to
memory pages to other guests, in much the same way as POSIX shared memory,
whereas the XenStore provides a filesystem-like hierarchy (complete with access
control) that can be used to implement discovery of shared pages.

This is not to say that complete anarchy reigns. The Xen hypervisor only
implements these basic mechanisms, but guests are required to cooperate if they
want to use them; if a device advertises its presence in one part of the XenStore
tree, other guests must know to look there if they want to find a device of this
type. As such, there are a number of conventions that exist, and some higher-
level mechanisms, such as ring buffers, that are used for passing requests and
responses between domains for supporting I/O. These are defined by specifications
and documentation, however, and not enforced in the code, which makes the Xen
system very flexible.

1.6.2 LesslIs More

In contrast with most other software packages, each new release of Xen attempts
to do less than the previous version. The reason for this is that Xen runs at a
very high level of privilege—above even the operating system. A bug in a program
may compromise the data that that program can access, a bug in a kernel might
compromise an entire system, but a bug in Xen can compromise every virtual
machine running on a machine. For this reason, it is important that the Xen code
be as secure and bug-free as possible.



16 Chapter 1. The State of Virtualization

To make it easier to audit, the Xen code-base is kept as small as possible.
Efficient use of developer time is also important. The Xen developer community
is relatively small compared to projects such as Linux (although this may change)
and it makes more sense for them to focus on features unique to a hypervisor than
duplicate the work of other projects. If Linux already supports a device, then
writing a device driver for Xen would be a waste of effort. Instead, Xen delegates
device support to existing operating systems.

To maintain flexibility, Xen does not enforce mechanisms for communicating
between domains. Instead, it provides simple mechanisms, such as shared memory,
and allows guest operating systems to use this as they will. This means that adding
support for a new category of device does not require modifying Xen.

Early versions of Xen did a lot more in the hypervisor. Network multiplexing,
for example, was part of Xen 1.0, but was later moved into Domain 0. Most
operating systems already include very flexible features for bridging and tunnelling
virtual network interfaces, so it makes more sense to use these than implement
something new.

Another advantage of relying on Domain 0 features is ease of administration.
In the case of networks, a tool such as pf or iptables is incredibly complicated, and
a BSD or Linux administrator already has a significant amount of time and effort
invested in learning about it. Such an administrator can use Xen easily, since she
can re-use her existing knowledge.

1.7 The Xen Architecture

Xen sits between the OS and the hardware, and provides a virtual environment in
which a kernel can run. The three core components of any system involving Xen
are the hypervisor, kernel, and userspace applications. How they all fit together
is important. The layering in Xen is not quite absolute; not all guests are created
equal, one in particular is significantly more equal than the others.

1.7.1 The Hypervisor, the OS, and the Applications

As mentioned before, one of the biggest changes for a kernel running under Xen
is that it has been evicted from ring 0. Where it goes varies from platform to
platform. On IA32 systems, it is moved down to ring 1, as shown in Figure 1.3.
This allows it to access memory allocated to applications that run in ring 3, but
protects it from applications and other kernels. The hypervisor, in ring 0, is
protected from kernels in ring 1, and applications in ring 3.

When AMD tidied up the TA32 architecture as part of the process of creating
x86-64, one of the things it did was reduce the number of rings. With the exception
of 0S/2, and (optionally) NetWare, no one at the time made much use of rings 1



1.7. The Xen Architecture 17

and 2, so they wouldn’t be missed. Unfortunately, the virtualization community
was among those affected.

Native Paravirtualized

@ Hypervisor @ Kemel (O Applications (O Unused

Figure 1.3: Ring usage in native and paravirtualized systems

In the absence of rings 1 and 2, it was necessary to modify Xen to put the
operating system in ring 3, along with the applications. Figure 1.4 shows the
difference between the two approaches. This approach is also taken by Xen on
other platforms, such as TA64, which only have two protection rings. x86-64 also
removed segment-based memory protection. This means that Xen has to rely on
the paging protection mechanisms to isolate itself from guests.

From the perspective of a paravirtualized kernel, there are quite a few differ-
ences between running in Xen and running on the metal. The first is the CPU
mode at boot time. All x86 processors since the 8086 have started in real mode.
For the 8086 and 8088, this was the only mode available; a 16-bit mode with ac-
cess to a 20-bit address space and no memory management. Since all subsequent
x86 machines have been expected to be able to run legacy software, including
operating systems, all IBM-compatible PCs have started with the CPU in real
mode. One of the first tasks for a modern operating system is to switch the CPU
into protected mode, which provides some facilities for isolating process memory
states, and allows execution of 32-bit instructions.

Because Xen is responsible for system start, it performs this transition itself. If
it did not, it would not be able to isolate itself from interference by guest operating



18 Chapter 1. The State of Virtualization

Native Paravirtualized

@ Hypervisor @ Kemel (O Applications (O Unused

Figure 1.4: Ring usage in x86-64 native and paravirtualized systems

systems. This means that the guest kernel boots in quite a different environment.
Newer x86 systems come with Intel’s Extended Firmware Interface (EFI), which
is a replacement for the aging PC BIOS. Any system with EFI can also boot in
protected mode, although most tend to reuse old boot code and require a BIOS
compatibility EFT module to be loaded.

The next obvious change is the fact that privileged instructions must be re-
placed with hypercalls, as covered earlier. A more obvious change, however, is
how time keeping is handled. An operating system needs to keep track of time in
two ways: it needs to know the amount of actual time that has elapsed and the
amount of CPU time. The first is required for user interfacing, so the user is given
a real clock both for display and for programs such as cron, and for synchronizing
events across a network. The second is required for multitasking. Each process
should get a fair share of the CPU.

When running outside a hypervisor, real time and CPU time are the same
thing. All the kernel has to do is keep track of how much time it allocates to
running processes and its own threads. When running in Xen, however, it has to
share the available CPUs with other operating systems. This is likely to mean
that it will only receive some portion of a second of CPU time for every second of
real time. As such, it must continually resynchronize its internal clock with the
timekeeping facilities provided by Xen.



1.7. The Xen Architecture 19

1.7.2 The Role of Domain 0

The purpose of a hypervisor is to allow guests to be run. Xen runs guests in
environments known as domains, which encapsulate a complete running virtual
environment. When Xen boots, one of the first things it does is load a Domain 0
(dom0) guest kernel. This is typically specified in the boot loader as a module,
and so can be loaded without any filesystem drivers being available. Domain 0 is
the first guest to run, and has elevated privileges. In contrast, other domains are
referred to as domain U (domU)—the “U” stands for unprivileged. However, it
is now possible to delegate some of dom0’s responsibilities to domU guests, which
blurs this line slightly.

Domain 0 is very important to a Xen system. Xen does not include any device
drivers by itself, nor a user interface. These are all provided by the operating
system and userspace tools running in the dom0O guest. The Domain 0 guest is
typically Linux, although NetBSD and Solaris can also be used and other operating
systems such as FreeBSD are likely to add support in the future. Linux is used by
most of the Xen developers, and both are distributed under the same conditions—
the GNU General Public License.

The most obvious task performed by the dom0O guest is to handle devices.
This guest runs at a higher level of privilege than others, and so can access the
hardware. For this reason, it is vital that the privileged guest be properly secured.

Part of the responsibility for handling devices is the multiplexing of them for
virtual machines. Because most hardware doesn’t natively support being accessed
by multiple operating systems (yet), it is necessary for some part of the system
to provide each guest with its own virtual device.

Figure 1.5 shows what happens to a packet when it is sent by an application
running in a domU guest. First, it travels through the TCP/IP stack as it would
normally. The bottom of the stack, however, is not a normal network interface
driver. It is a simple piece of code that puts the packet into some shared memory.
The memory segment has been previously shared using Xen grant tables and
advertised via the XenStore.

The other half of the split device driver, running on the dom( guest, reads
the packet from the buffer, and inserts it into the firewalling components of the
operating system—typically something like iptables or pf, which routes it as it
would a packet coming from a real interface. Once the packet has passed through
any relevant firewalling rules, it makes its way down to the real device driver.
This is able to write to certain areas of memory reserved for I/0O, and may require
access to IRQs via Xen. The physical network device then sends the packet.

Note that the split network device here is the same irrespective of the real
networking card. Xen provides a simplified interface to these devices, which is
easy to implement for people porting systems to Xen. There are three components
to any driver:



20 Chapter 1. The State of Virtualization

‘Domain U Guest | Domain 0 Guest

Application

v

TCP/IP Stack

\

Split Device Driver

Split Device Driver Real Device Driver

I
I
|
|
|
I
I
I
I
:
|

TCP/IP Stack !
|
|
|
I
|
I
|
I
|
|
|

|

|

|

|

|

|

|

|

|

|

|

:

i (Routing / Bridging) '
|

| 1 l
|

|

|

|

|

I

| Shared Memory
} Segment
|

Figure 1.5: The path of a packet sent from an unprivileged guest through the
system

e The split driver
e The multiplexer
e The real driver

The split driver is typically as simple as it can be. It is designed to move data
from the domU guests to the dom0O guest, usually using ring buffers in shared
memory.

The real driver should already exist in the dom0O operating system, and so it
cannot really be considered part of Xen. The multiplexer may or may not. In the
example of networking, the firewalling component of the network stack already
provides this functionality. In others, there may be no existing operating system
component that can be pressed into use.

The domO guest is also responsible for handling administrative tasks. While
Xen itself creates new domU guests, it does so in response to a hypercall from the
dom0 guest. This is typically done via a set of Python tools (scripts) that handles
all of the policy related to guest creation in userspace and issue the relevant
hypercalls.

Domain 0 provides the user interface to the hypervisor. The two deemons xend
and xenstored running in this domain provide important features for the system.



1.7. The Xen Architecture 21

The first is responsible for providing an administrative interface to the hypervisor,
allowing a user to define policy. The second provides the back-end storage for the
XenStore.



22 Chapter 1. The State of Virtualization

1.7.3 Unprivileged Domains

An unprivileged domain (domU) guest is more restricted. A domU guest is typi-
cally not allowed to perform any hypercalls that directly access hardware, although
in some situations it may be granted access to one or more devices.

Instead of directly accessing hardware, a domU guest typically implements the
front end of some split device drivers. At a minimum, it is likely to need the
XenStore and console device drivers. Most also implement the block and network
interfaces. Because these are generic, abstract, devices, a domain U guest only
needs to implement one driver for each device category. For this reason, there have
been a number of operating systems ported to run as domain U Xen guests, which
have relatively poor hardware support when running directly on real hardware.
Xen allows these guests to take advantage of the Domain 0 guest’s hardware
support.

Unlike dom0 guests, you can have an arbitrary number of domU guests on
a single machine, and they may be able to be migrated. Whether migration is
possible depends largely on the configuration; guests configured with tight cou-
pling to hardware cannot be moved. A guest that uses something like NFS or
iSCSI for all of its storage requirements can be migrated live, whereas one that
uses a block device driver could be suspended to a flash drive and moved to a
different machine, as long as it does not depend on any other hardware that does
not support migration yet.

For security reasons, it is advisable to do as little in Domain 0 as possible.
A root exploit in Domain 0 could potentially compromise the entire system. As
such, most work should be done in paravirtualized domain U guests or HVM
guests (discussed in the next section).

The line between dom0 and domU is sometimes blurred. It is possible to
allow a domU guest direct access to some hardware, and even to host split device
drivers in one. For example, a laptop might use Linux as the dom0 guest, but run
a NetBSD domU VM in order to support a particular WiFi card. On platforms
without an IOMMU, doing this can compromise security, because it potentially
allows the domU guest access to the entire address space.

1.7.4 HVM Domains

When Xen was created, the x86 architecture did not meet Popek and Goldberg’s
requirements for virtualization. A virtual machine monitor for x86 needed to
emulate the architecture, although it could do it very quickly for a large subset of
instructions. Xen implemented naravirtualization to avoid this problem.

More recent x86 chips have not suffered from this limitation, and so it made
sense to extend Xen to support unmodified guests. Most of the discussion in this
chapter has related to paravirtualized guests, which, until the 3.x series, were



1.7. The Xen Architecture 23

the only kind supported by Xen. More recent versions, however, also allow the
running of Hardware Virtual Machine (HVM) guests.

Running unmodified guests in Xen requires hardware support as described
earlier, and so is not an option for older machines. Any x86 system bought in
2007 or later should support HVM, and some machines from 2006 will.

An unmodified OS is not likely to have support for Xen split device drivers
(although if a driver development kit is available, it may be possible to implement
them). This means that Xen must emulate something that the guest is likely to
support. A small number of devices are available in this way, using code from
QEMU.

HVM guests differ from paravirtualized guests in a number of ways. This
is apparent from boot time. A paravirtualized guest begins in protected mode,
with some memory pages containing boot information mapped by the hypervisor,
whereas an HVM guest begins in real mode and gets configuration information
from an emulated BIOS.

If an HVM guest wants to take advantage of Xen-specific features, it needs
to use the CPUID instruction to access a (virtual) machine specific register and
access the hypercall page. It can then issue hypercalls in the same way as a
paravirtualized guest, by calling an offset in the hypercall page. This then uses
the correct instruction (e.g., VMCALL) for a fast transition to the hypervisor.

For virtualization-aware HVM guests, much of the information otherwise avail-
able is accessed via the platform PCI device, a virtual PCI device that exports
hypervisor functionality to the guest.

1.7.5 Xen Configurations

The simplest possible configuration for Xen is to run nothing other than a single
dom0 guest. Here, Xen does little other than act as a simple hardware abstraction
layer, hiding some of the messier parts of the x86 architecture from the kernel.
This configuration is not very useful, however.

In practice, a Xen system typically has at least one domU guest. The simplest
useful configuration would look something like Figure 1.6.

In this example, all of the hardware is being controlled by the host in Domain
0. This is not always ideal. If a driver for a particular device contains bugs,
it can crash the dom0 kernel, which in turn can bring down all guests on the
system. Therefore, it is often beneficial to isolate a driver in its own domain,
which does nothing other than export the split device driver. This can either be a
full-fledged operating system, such as Linux or a BSD variant, or a driver housed
in a lightweight OS, such as the miniOS example included with Xen. On platforms
with an IOMMU, this can completely prevent the buggy driver from interfering
with other guests. On systems without the benefit of an IOMMU, the remaining



24 Chapter 1. The State of Virtualization

Domain 0 Guest Domain U Guest

Xen Control User Interface Applications

Device Split Device Split Device
Drivers Drivers Drivers

Virtual CPU anal Scheduling
emory
Physical Physical Block

Figure 1.6: A simple Xen configuration

guests are still vulnerable to erroneous DMA requests and possible I/O outages,
but are isolated from other bugs.

When Xen is used for backward-compatibility by running a legacy operating
system concurrently with a new system, it is likely that running an unmodified
guest is going to be required. In this situation, unmodified guests will not use
the split device drivers directly. Instead, they will use emulated devices run from
Domain 0. This configuration is shown in Figure 1.7.

Finally, in a clustering environment, it might be useful to be able to dynami-
cally redistribute guests depending on the current load on the system. To do this,
a typical configuration might have a single file server mounted over NFS for each
of the clients, and a single router handling external routing.® In this situation,
no guest would depend on the local block device driver, and could be migrated
between nodes easily. This configuration is shown in Figure 1.8. Note that the
individual nodes do not even possess a local block device, simplifying cluster costs.
In this situation, it is likely that Xen and the Domain 0 guest would be booted

5In a high-availability environment, it is possible to add redundancy to these, for example, by
using automatic fail-over for the firewall and backup NFS servers connected to the same SAN.



1.7. The Xen Architecture 25

Domain 0 Guest Isolated Driver Domain Domain U
Guest HVM Guest

Xen Control o
User Interface Applications
Emulated Devices

. Split . Split Split .
gﬁ\\:cl:ri Device %ii\c:? Device Device gﬁ\‘ﬂ;ﬁ
Drivers Drivers Drivers

Legacy
Applications

Virtual ’
Memory Scheduling
Physical Physical Block
Hardware Memory Network Devices

Figure 1.7: A Xen configuration showing driver isolation and an unmodified
guest OS

Domain 0 Guest Domain U Domain U Domain U

Guest Guest Guest
Xen Control - - -
User Interface Applications Applications Applications

NFS NFS NFS
Client Client Client

Split Split Split
Device Device Device
Drivers Drivers Drivers

Split
Device
Drivers

Device
Drivers

) Virtual I
Virtual CPU Memory Scheduling
Physical Physical
rardware Memory Netuork

To NFS Server

Figure 1.8: A single node in a clustered Xen environment



26 Chapter 1. The State of Virtualization

using PXE, or some equivalent, allowing individual cluster nodes to be replaced
whenever they failed.

Migration in Xen causes very small amounts of downtime. In tests, a Quake
server was migrated among nodes in a cluster without the connected players notic-
ing.

There are a lot of different possible configurations for a Xen system, for a lot
of potential uses. It can aid debugging, testing, running legacy software, running
reliable systems, and dynamic load balancing. One of the earliest uses for virtual-
ization was consolidating various different minicomputer workloads onto a single
mainframe. More modern versions of this are still common, with virtual machines
being used to isolate independent workloads on the same machine. Often, these
workloads may be running the same operating system, with virtualization being
used to allow different individuals to administer their own workloads, or simply
to provide logical partitioning of the system.

The consolidation that this approach offers gives rise to a much greater de-
gree of efficiency than having large numbers of individual machines. This gives
cost savings in terms of required space, power, and cooling, as well as the initial
hardware investment.



2.1

Chapter 2

Exploring the Xen Virtual
Architecture

This chapter will examine the main features of Xen. The last chapter looked at
some of the reasons for virtualizing x86, why it is hard, and gave a very brief
overview of how Xen addresses some of these problems. We will now take a more
detailed look at how the various parts of Xen interact with each other, and what
each part does. We will also examine how a paravirtualized Xen guest environment
differs from real hardware.

Booting as a Paravirtualized Guest

When an x86 processor is started, it begins in real mode where it is compatible
with the 8088 found in the original IBM PC. One of the first things a modern
operating system does is enter protected mode and install interrupt handlers. Xen
is no exception; it enters protected mode and installs its own interrupt handlers.
This means that when an operating system boots inside a Xen virtual machine,
the CPU is already in protected mode.

Although Xen’s interrupt handlers are installed, most interrupts will not be
properly handled by Xen. Instead, they will be passed on to any guest that
requests them. Some forms of interrupt relate to CPU state, and will be bounced
back to the currently running guest. Others are used for communicating with
hardware and will be turned into Xen events and delivered via an upcall into the
domain containing the driver.

A multitasking operating system, at the very least, needs to register for the
clock interrupt to know when to switch execution to the next task. Typically, it
also registers some interrupts related to hardware devices, such as the keyboard.

27



2.2

28 Chapter 2. Exploring the Xen Virtual Architecture

Note that Xen needs to use the timer interrupt for scheduling guests, as well as
generating events in running guests for its own scheduling.

On most architectures, the correct way of installing interrupt handlers is to
write a jump address into a part of memory that corresponds to the interrupt
number, known as the interrupt vector. On Xen systems, hypercalls bind an event
port to a virtual or physical IRQ. Some things that must be handled immediately
(mainly CPU exceptions) are dispatched immediately to a running guest, if han-
dlers have been defined. Others, such as a notification that there is data available
from a particular virtual device might be less immediate.

A physical guest typically spends some of its boot time firing off queries to
the BIOS to determine what hardware is available, including CPU capabilities. In
a Xen guest, however, the BIOS is unavailable. Because the BIOS allows direct
access to the hardware, permitting guests to interact with it directly would break
the principle of isolation.

The BIOS is replaced by a variety of different facilities in Xen. The first is the
start info page, which contains basic information required by a guest to initialize
the kernel. Next is the shared info page, which gives some more data and is
updated while the guest is run. Finally, there is the XenStore. Among other
things, this is used to determine which (virtual) devices are available.

The devices available to a Xen guest are not real devices. Instead, they are ab-
stracted virtual devices. This means that a (domU) Xen guest only needs to supply
a single driver for each category of device it wants to support. It also removes
some of the overhead incurred by full-virtualization systems supporting emulated
hardware. Where real devices are emulated, the guest OS has to turn abstract
requests into device-specific commands. The emulator has to turn these back into
an abstract form, and the underlying driver has to turn these into commands for
the real device. Xen’s device architecture attempts to keep the commands in an
abstract form so only a small amount of processing time is required to get them
from the guest to the driver for the physical device.

Restricting Operations with Privilege Rings

The x86 architecture is quite unusual in the way it handles privileged instruc-
tions. Most architectures have two modes, privileged and unprivileged, and some
instructions may only be used from privileged mode. The system Intel created
for the 80386 was somewhat more flexible, providing four privilege levels, known
as rings. This design was similar to that of DEC’s VAX, a popular architecture
at the time of the design of the 80386. VMS, the native operating system for the
VAX, made use of all four rings, and so it was believed that this would aid porting
of VMS, and would be useful to designers of new operating systems. Since then,



2.2. Restricting Operations with Privilege Rings 29

VMS, which is now sold by HP, has been ported to the Alpha and Itanium (both
of which only support two rings), but not x86.

The concept of multiple hardware-enforced privilege layers originated in MUL-
TICS, which proposed a system of eight rings. The UNIX system was designed
to run on simpler systems (the DEC PDP-11) and so only required two: one for
the kernel and one for everyone else.

Most operating systems written for IA32, including Windows NT and most
UNIX-like systems, only use two. One exception to this was OS/2, which ran
device drivers in a lower privilege ring than the rest of the kernel. Another was
Novell Netware, which, in later versions, loaded modules in lower privileged rings.
As with many of the other unusual features of x86, it is only possible to efficiently
use the four ring architecture if you sacrifice portability. Because both Windows
NT and UNIX began life on non-x86 architecture, they could not do this. Windows
NT was first developed on the Intel i860, and later on MIPS, before being ported
to x86.

Because most operating systems only use rings 0 and 3, this leaves two spare.
Unfortunately, rings 1 and 2 are not very useful as a home for a hypervisor.
Because the hypervisor needs to run at a higher privilege level than a kernel, you
would ideally put it in at ring -1. Xen does the next best thing: It takes over ring
0, and runs the kernel in ring 1.

This is not always possible. Some non-x86 platforms (including x86-64) only
provide two protection levels. In these cases, the hypervisor lives in the privileged
mode and both the kernel and userspace applications are moved out to the same
unprivileged level. Fortunately, most of the architectures with only two privilege
modes support some form of hardware virtualization, and therefore include a
virtual ring -1. This allows the hypervisor to live in a higher privilege level (and
prevent the kernel from interfering with other running guests) without introducing
the complications involved with throwing the kernel out of its accustomed home.

From a practical perspective, this eviction means that a kernel running under
Xen can not execute certain privileged operations, without generating a general
protection fault. Due to some limitations of the x86 instruction set, a few things
will simply silently fail. It is the responsibility of a running guest to ensure that
it does not use any of these operations, and instead replaces them with equivalent
hypercalls. In the case of guest kernels running in a hardware-assisted virtualiza-
tion environment, it is still generally preferable from an efficiency perspective to
explicitly execute the hypercalls, rather than rely on the CPU trapping privileged
instructions and the hypervisor emulating them.

These restrictions only apply to paravirtualized guests. Guests running in
Hardware Virtual Machine (HVM) domains are presented with the appearance of
a normal x86 machine. Time keeping is accomplished via an emulated real time
clock, and privileged operations are trapped and emulated by the hypervisor.
The HVM domain has a set of emulated devices, and so can use existing drivers.



2.3

30 Chapter 2. Exploring the Xen Virtual Architecture

An HVM guest runs in a virtual ring 0, and has memory accesses translated
transparently for it. If it is written to be aware of virtualization, it can use some
hypervisor-specific functionality usually associated with paravirtualized guests.

Replacing Privileged Instructions with Hypercalls

Because the kernel is now running in ring 1 where it is not allowed to do every-
thing it wants, there has to be some mechanism for bypassing this restriction in
a controlled manner.

This is not a new problem. Userspace code, running in ring 3, encounters it
all the time. Displaying things on the screen, reading input from the keyboard,
and sending data over the network all involve interaction with hardware, which
can’t be performed by unprivileged code.

The solution is to use a system call, a formal mechanism for telling the kernel to
do something for you. System calls all work in roughly the same way, irrespective
of your operating system! or platform:

1. Marshal the arguments in registers or on the stack.
2. Issue a well-known interrupt, or invoke a special system call instruction.

3. Jump to the kernel’s (privileged) interrupt handler as a result of the inter-
rupt.

4. Process the system call at the kernel’s privilege.

5. Drop to a lower privilege level and return.

On x86 it is common to use interrupt 80h for system calls, although newer
CPUs have SYSENTER/SYSEXIT or SYSCALL/SYSRET instructions for fast
system calls, depending on the manufacturer.

The same mechanism was previously used by Xen. Hypercalls were generated
by a guest kernel in almost the same way as system calls are generated by userspace
applications, the difference being that interrupt 82h, instead of 80h, is used.

This still works as of Xen 3, but is now deprecated. Instead, hypercalls are
issued indirectly via the hypercall page. This is a memory page mapped in to the
guest’s address space when the system is started.

Hypercalls are issued by CALLing an address within this page. Listing 2.1
shows a macro that is used to issue a one-argument hypercall.

Line 5 of this contains some syntactic sugar using the C preprocessor to replace
the hypercall name with a macro that is then expanded to the hypercall number.

1Some microkernel operating systems replace this with a message passing mechanism; how-
ever, the messages tend to be sent using a mechanism similar to that described here.



2.3. Replacing Privileged Instructions with Hypercalls 31

Fast System Calls

You may have realized that the extra layer of indirection added by Xen adds
some overhead to invoking system calls. Rather than issuing an interrupt and it
being caught by the kernel’s interrupt handler, the interrupt will be caught by
Xen’s interrupt handler and then passed back to the kernel as an event. This
adds another two context switches (application to Xen and Xen to kernel),
which is expensive on an architecture like x86 where context switching is not
particularly fast.

To address this, Xen provides a fast system call interface. The guest kernel
may specify a handler for interrupt 80h, which is then installed by Xen when
the guest is running, bypassing the normal Xen handlers.

This is only required on x86 if maintaining compatibility with existing user-
land applications is required. If it is not, it is possible to use call gates to
handle the transition between ring 3 and ring 1 directly, without involving the
hypervisor. System calls can then be exposed as function calls accessed using
the CALL FAR instruction. Unfortunately, this mechanism is not available in
x86-64, and due to lack of use has not been heavily optimized in the design of
recent x86 CPUs.

This line calls the address at 32 times the hypercall number offset from the start
of the hypercall page. Because the page size on x86 is four kilobytes, this gives
a maximum of 128 hypercalls. At the time of writing there are currently 37
hypercalls defined with a further seven reserved for architecture-specific hypercalls,
giving some room for future growth.

For comparison, the Version 7 UNIX kernel supported 64 system calls (al-
though not all were implemented) and a modern FreeBSD kernel currently imple-
ments around 450 system calls. It may seem odd that Xen has fewer hypercalls
than a 1979 release of UNIX had system calls. This is an active example of the
Xen philosophy of less is more; the hypervisor should not do anything that it
doesn’t absolutely have to in order for guests to function. It should be noted
that this is not an entirely fair comparison. Several of the Xen hypercalls perform
clusters of operations, such as performing scheduler operations or updating the
page table. Equivalents would be performed by several different system calls on a
*NIX system.

The next two lines tell GCC about the register usage of the call. The return
value ( __res) is stored in EAX and the argument passed in EBX. For hypercalls
with more arguments, ECX etc. are used (on x86). The registers used for arguments
are clobbered, and certain hypercalls may make changes to the guest’s address
space or modify structures passed by reference, so memory is treated as clobbered




Tk W N =

O © 003 O

DU W N =

32 Chapter 2. Exploring the Xen Virtual Architecture

Listing 2.1: A macro issuing a one-argument new-style hypercall

#define _hypercalll (type, name, al) \
({ \
long __res, __ignl; \
asm volatile (
"call_hypercall_page_+.("STR(__HYPERVISOR ##name) " _x .
32)"\
"=a” (-_res), "=b" (-_ignl) \

“1" ((long)(al))
"memory” ) ;

(type) __res;

—

1)

as well. The value of EBX is stored in a temporary value and discarded to let the
compiler know that EBX is clobbered. This must be done this way because GCC
inline assembly does not permit input arguments to be in the explicit clobbered
list. The value of EAX is finally cast to the type specified with the macro.

When you are writing userspace code, it is very rare to have to do the messy
steps involved in entering kernelspace manually. Even in something like a C library
that makes system calls directly, they are usually wrapped up in a macro. The
same is true of hypercalls. A series of macros such as the one described earlier
are defined, which makes invoking hypercalls easy. These are then used to build
inline functions for common hypercalls.

Listing 2.2 shows an example of such a macro. This particular function issues
a hypercall related to scheduling, which takes two arguments. When writing
guest kernel code, most privileged operations are performed using functions like
this. These macros are defined in a header file which, unfortunately, is not in the
public part of the tree. This means that it must be copied by any guest wanting
to use Xen. One copy can be found in extras/minios/include/x86/x86_32/
hypercall-x86_32.h (replace 32 with 64 for the x86-64 version). This file, as
with the other Xen interface files, is under a liberal BSD-style license, and so it
can likely be included in any project without legal concerns.

Listing 2.2: An example hypercall inline function

static inline int
HYPERVISOR_sched_op (

int cmd, unsigned long arg)
{

}

return _hypercall2(int, sched_op, cmd, arg);



2.4

2.4. Exploring the Xen Event Model 33

A Xen guest uses the HYPERVISOR_ sched_op function with SCHEDOP _yield
argument?, instead of issuing the hlt instruction, in order to relinquish CPU time
to guests with running tasks. This is an important example, because it highlights
the fact that instructions may have different meanings in a virtual environment;
the physical CPU should only be put into a low power mode if all of the guests
are idling, not simply if one decides that it doesn’t have anything important to
do.

Exploring the Xen Event Model

Writing code for Xen is, in many ways, similar to writing code for UNIX. Table
2.1 shows some of the Xen equivalents for common UNIX interfaces. In a UNIX
system it is possible to set up handlers for signals. These are a simple asynchronous
mechanism that allows something outside the program to deliver a single bit of
data saying “event n has occurred.” The external entity can be either the kernel
or another application.

The Xen analog is the events mechanism. One of the first things that a guest
kernel should do is register a callback to be used for event delivery. When events
are delivered to the guest, various flags are set to indicate which event is present.
If event delivery is masked, these flags can be used later to check for waiting
messages. If not, the event will be delivered asynchronously.

Events can come from Xen directly, and may represent hardware or virtual
interrupts, or may be raised by other guests. As with UNIX signals, they can be
used to build more complex asynchronous communication paths, for example by
allocating an event channel to indicate that the contents of a shared memory page
have been updated.

Just like a signal, a Xen event is delivered via a callback. All upcalls are
delivered to the same address,® which can then call the relevant part of the guest
code. This is similar to the mechanism used for UNIX signals in some POSIX-like
microkernel operating systems, such as GNU HURD, where signals are delivered
via a message port to the userland application which then handles the vectoring
to the correct handler itself.

Xen events share a lot in common with hardware interrupts and with UNIX
signals, but they are conceptually a closer relative of Mach Ports. Xen events
are delivered via channels; you cannot receive arbitrary events from an arbitrary
sender. When a UNIX process wants to send a signal to another, it must first
discover the remote process ID and then it simply needs to use the kill system

2This is the guest kernel equivalent of calling sleep (0) in a UNIX program.
3 Actually, there are two callbacks registered for event delivery, but the second is only used if
a fault occurs.



2.5

34 Chapter 2. Exploring the Xen Virtual Architecture

Table 2.1: Xen components and their UNIX counterparts

UNIX ‘ Xen
System Calls Hypercalls
Signals Events
Filesystem XenStore

POSIX Shared Memory | Grant Tables

call. The equivalent operation in Xen is one guest sending an asynchronous event
to another domain. This requires the following steps:

1. Receiving guest creates a new, unbound port.

2. Receiving guest advertises the existence of the port (typically via the Xen-
Store).

3. The sending guest creates a new port if it doesn’t have any free.
4. The sending guest binds its port to the remote one.

5. The sending guest sends the event.

On a UNIX system, it is possible for one process to send another one a
SIG_SEGV (for example), causing it to crash. This is fine on UNIX where the
security model is based around users, so the worst thing that can happen is that
a user crashes his own applications. It would not work for Xen, however, because
isolation of domains is vital to secure virtualization. This mechanism ensures that
a guest kernel will only receive events that it knows how to handle.

Communicating with Shared Memory

The UNIX signal model is good for delivering events quickly, but it is not enough
to build a general purpose interprocess communication (IPC) mechanism. Other
mechanisms, such as pipes, message queues, and shared memory exist for this
purpose. Because it is possible to implement mechanisms like pipes and message
queues solely from shared memory, it is not necessary for Xen—a minimalist
hypervisor—to provide anything except shared memory.

Xen supports two basic interdomain operations on memory pages: sharing
and transferring. A shared page is similar to a page shared with POSIX shared
memory; both domains are able to access the contents. Page transfer is a coarse-
grained message-passing mechanism.



2.6

2.6. Split Device Driver Model 35

Experimental results showed that transferring pages was not as useful as it
might at first appear. Early implementations of the network device driver, for
example, used the transfer mechanism to transfer packet buffers between domains.
It turned out that the page table operations required for this were so expensive
that they overshadowed any performance gain that might have been had. Newer
versions of Xen implement a hypervisor-driven copy operation instead. Because
the hypervisor has all physical memory mapped, this allows data to be copied
between domains without modifying any page tables, which ends up being much
faster.

The most obvious difference between Xen grant tables and POSIX shared
memory is the fact that Xen deals with page tables directly. There is no abstrac-
tion presenting the idea of a flat, byte-granularity, address space. A Xen guest
can only manipulate shared memory on a page level.

The other significant difference is the way in which pages are identified. With
System V shared memory, shared memory regions are identified by an opaque
(scalar) type, but with POSIX they exist somewhere in the filesystem. Xen does
not have the concept of a filesystem, although the XenStore is similar. Shared
memory regions in Xen fall somewhere between the System V and POSIX models.
The region itself is identified by a grant reference, which is an integer (as with
System V). The value of this integer is communicated between domains using the
XenStore, in a manner reminiscent of how POSIX uses the filesystem.

It is, of course, possible to pass a grant reference using some mechanism other
than the XenStore—for example, sockets over an existing interface. Pages used to
transfer data to virtual device drivers will typically be in the /local/domain/0/
backend/ part of the XenStore, but there is nothing stopping cooperating domains
from sharing additional pages. This might be used to implement a fast network
connection similar to the loopback interface in most operating systems, or to
support the MIT shared memory extension for X11, allowing faster displays.

Split Device Driver Model

The Xen driver model is a good example of the Xen philosophy. Adding support
for the myriad devices available for the PC to Xen would be a lot of work (and thus
potential for bugs) and a duplication of effort. Instead, Xen delegates hardware
support to a guest. This is typically Domain 0, although it is possible to delegate
hardware to guests in other domains.

Xen device drivers typically consist of four main components:

e The real driver

e The bottom half of the split driver



36 Chapter 2. Exploring the Xen Virtual Architecture

e The shared ring buffer(s)
e The top half of the split driver

The real driver is any driver that exists in a current operating system. When
the kernel is ported to Xen, things like interrupt handling must be modified to
use Xen events, but in a well-designed kernel these are handled by an abstraction
layer, so drivers do not need to be modified.

The bottom half of the split driver has two main features: It handles multi-
plexing and provides a generic interface. A block device, for example, should have
a simple set of operations such as read block and write block, which are indepen-
dent of the real hardware. The multiplexing is to allow more than one guest to use
the device. Most devices don’t support this natively, but other operating system
features might already provide this service. One of the main uses for an operat-
ing system (as opposed to running applications directly on the hardware) is to
multiplex access to devices. Access to hard disks is multiplexed using a filesystem
abstraction, network devices using a socket abstraction, and so on.

Often, the multiplexing provided for applications is too high-level to be useful
to other guests. A filesystem abstraction is fine, because each file (on UNIX-like
systems) is effectively a virtual block device. For networks, the same is not true.
Exposing a socket interface to guests would require them to rewrite a large portion
of their networking stack. Fortunately, many operating systems provide lower-level
services for bridging, routing, and virtual interfaces that can be used for some of
this. A Xen network driver can be added to the Domain 0 kernel as a virtual
interface and then existing routing code can be used to handle multiplexing.

When the bottom half supports the necessary features, there needs to be some
mechanism for exporting it to other guests. This is typically done using ring
buffers in shared memory segments. The front-end driver initializes a memory
page with a ring data structure and exports it via the grant table mechanism.
It then advertises the grant reference via the XenStore where the back end can
retrieve it. The back end then maps it into its own address space, giving a shared
communication channel into which the front end inserts requests and the back end
places responses. Typically, an event channel is also configured for the device and
used by both ends to signal when data is waiting in the ring.

The top half of the driver, running in an unprivileged guest, is typically very
simple. It needs to inspect the XenStore to find the address of the shared memory
page and map it. Most Xen drivers use a ring buffer abstraction for communica-
tion. The top half writes commands into the ring while the bottom half writes
replies. An event channel may also be used to signal that there is waiting data in
the ring.

The ring buffer is located in a shared memory segment. For it to be usable, the
Domain 0 guest stores the associated grant table reference in the XenStore. Other
guests are then able to enumerate the available devices by reading the XenStore.



2.7

2.7. The VM Lifecycle 37

Device drivers use most of the features of Xen—grant tables, event channels
and the XenStore—to function.

The VM Lifecycle

The lifecycle of a real machine used to be fairly simple. It would be turned on,
would run, and would then be turned off. More recent machines have added one
or more suspend states to this, as shown in Figure 2.1. The suspend state in
this graph might represent multiple different levels of suspension—for example, a
suspend-to-RAM and a deeper suspend-to-disk mode.

This becomes slightly more complicated when we start talking about virtual
machines. A virtual machine, as shown in Figure 2.2, has an additional state:
paused. This is somewhere between running and suspended. The machine is
still resident, but it is never allocated CPU time. When a virtual machine is
suspended, the whole thing is serialized to persistent storage, and it is unloaded
from memory. The only difference between being suspended and turned off, from
the perspective of a virtual machine, is the state that is stored. In both cases, the
state of block devices is preserved, but when suspended the contents of memory
and the CPU are also preserved. It could be argued that this is also true when
the machine is turned off, although the state of the CPU will be the initial boot
state, and the state of memory will be “undefined.”

The other big change is the extra transition from the running state to the
running state. By definition, a real machine is tied to the hardware. A virtual
machine can be migrated from one machine to another. This is stated explicitly
in the transition diagram, but it can also happen implicitly. If the machine is
suspended on one machine, it could be resumed on another.

The manner in which the transitions are accomplished also differs between

Turn on

——

Sleep

Suspended

Figure 2.1: The lifecycle of a real machine



38 Chapter 2. Exploring the Xen Virtual Architecture

Stop
_( Paused >

|

Start (paused) A

Pause Resume

\ 4 Turn on \ 4
Off ) " Running )O Migrate

A N Turn off A

Turn off Wake Sleep

Suspended

Figure 2.2: The lifecycle of a virtual machine

real and virtual machines. A physical machine is powered on by pressing the on
button (or using a mechanism like wake-on-LAN). A Xen guest is started using
the management tools, such as xm or a web interface to xend.

2.8 Exercise: The Simplest Xen Kernel

When you write code for any system, you generally have to write some simple
boiler-plate code. Any C program, for example, tends to include a set of standard
headers, and a main() function.

Xen is no exception to this. Even a kernel that does nothing requires some
extra headers to tell the Xen loader how to launch it. Each Xen guest kernel needs
to begin with a __xen_guest section, which contains a NULL-terminated string of
key-value pairs for the loader to read.

Listing 2.3: Header for a simple kernel (from: examples/chapter2/bootstrap. x86.32.5]

4| .section __xen_guest
5 .ascii  "GUEST_OS=Hacking_Xen_Example”
6 .ascii " ,XEN_-VER=xen—3.0"
7 .ascii " ,VIRT_BASE=0x0"
8 .ascii " ,ELF_.PADDR_OFFSET=0x0"
9 .ascii " ,HYPERCALL_.PAGE=0x2"
10 .ascii " PAE=no"
11 .ascii " ,LOADER=generic”



2.8. Exercise: The Simplest Xen Kernel 39

12| .byte 0

Listing 2.3 shows an example _xen_guest section. Note that this is from an
x86 kernel; x86-64 headers look similar, although PAE is only relevant to 32-bit
x86 systems, so it is not present.

The first key gives the kernel a name. This can be anything you like, and is
simply used to identify running kernels. The second option specifies the version of
Xen for which the guest was written. This allows the Xen loader to tell whether
it can expect to run the kernel.

The next two parameters deal with the guest’s address space. When a guest
is launched, it has a fixed size memory allocation. This mirrors a kernel running
on a physical machine, which has a fixed amount of physical memory.* The value
of VIRT_BASE determines where in the guest’s address space this allocation is
mapped. The ELF_PADDR_OFFSET address is the value subtracted from addresses
in ELF headers to generate a corresponding address in the guest kernel’s address
space. A kernel typically wants to be mapped in to the bottom of its address
space, so it sets both of these to zero.

The HYPERCALL_PAGE value refers to the new method for issuing hypercalls.
The Xen loader maps a page into the guest’s address space containing hypercall
trampolines. The guest may determine where it wants to have this page mapped.
Note that this value is the page number, not the memory address. With 4KB
pages, the page 0x2 corresponds to the address 0x2000.

The LOADER section allows you to specify special boot loaders. Currently,
“generic” is the only option. Options passed to the loader are also listed here.
Some, such as some special page table modes, are used to make porting easier.

Because any data at the location specified for the hypercall page will be over-
written by the hypervisor, it is important that there be nothing important there
in the guest’s address space already. One way of doing this is to specify an address
near the end of your address space, and make sure that you keep track of where
it is.

An easier way is to simply instruct our assembler to leave a blank page in
the middle of our kernel image. We can do this using the .org command, which
advances the location counter to an absolute position in the current segment.
Listing 2.4 shows how to leave two single page gaps, at pages one and two. If we
export these symbol names as globals, we can reference them from our C code
later on. Note that neither of these pages is really needed for our trivial kernel,
but it is worth defining them now so we don’t need to modify our trampoline code
later.

4In some situations it is possible for a guest to request extra memory as it runs. This is
covered in a later chapter.



28
29
30
31
32
33

40 Chapter 2. Exploring the Xen Virtual Architecture

Listing 2.4: Leaving gaps for the shared info and hypercall pages (from: examples/chap-

ter2/bootstrap.x86-32.5]

.org 0x1000
shared_info:

.org 0x2000
hypercall_page:

.org 0x3000

2.8.1 The Guest Entry Point

17
18
19
20
21

After the Xen loader has parsed this header and mapped everything into memory
at the correct locations, it passes control over to the guest kernel. As with a
userspace program, the location in which this happens is determined by a symbol
name. In the case of a Xen guest kernel, the entry point used by the generic loader
is _start.

Listing 2.5 shows a simple trampoline for calling a C function start_kernel . It
is possible to avoid using such a trampoline and simply define a C function called
_start (). This is not advised, however, because you will need some architecture-
specific code in this function, which is better separated out into a trampoline.

Listing 2.5: A simple launch trampoline [rrom: examples/chapter2/bootstrap.x86_32.5]

_start:
cld
Iss stack_start,%esp
push %esi

call start_kernel

This trampoline does very little. It begins by clearing the direction flag, then
sets up the stack, and calls the real start function. The value of ESI is pushed
on to the stack so that the start function receives it as the first argument. The
value in ESI is the address of the start info page, discussed in the next chapter.
On x86-64, this trampoline looks different in a couple of ways; the operations are
all replaced with their quad-word counterparts and the parameter is passed in a
register rather than on the stack. After the trampoline has called the start_kernel
() function, however, the C code describing the kernel can be the same on both
platforms.

Our simple kernel could almost run now. Of course, it would start and then
immediately terminate without telling Xen that it had done so, which could cause
some problems. One thing is still missing, however. There is currently no way
of receiving Xen events. A guest kernel is expected to set up handlers to receive
events at boot time. Without these, there is no real way for this simple kernel to



2.8. Exercise: The Simplest Xen Kernel 41

respond to the outside world. For now, we will ignore them, and revisit them in
a later chapter. All that remains is to define the C entry point.

LiSting 2-6: The Simplest kernel [from: examples/chapter2/kernel.c]

1|#include <stdint.h>

2|#include <xen.h>

3|#include "debug.h”

4

5| /* Some static space for the stack x*/

6[ char stack[8192];

7

8| /* Main kernel entry point, called by trampoline x/
o[ void start_kernel(start_info_t * start_info)

10| {

11 HYPERVISOR_console_io (CONSOLEIO_write ,12,” Hello_-World\n") ;
12 while (1) ;

13| }

Listing 2.6 defines our trivial kernel. We are including the public Xen header,
because we need the definition of the start_info_t structure. We are also including
stdint.h, because this defines a number of fixed-size integer types, which are
required by the Xen header.

The kernel stack is defined here as well, although it was referenced elsewhere.
For now, we are using a simple, static, 8KB stack for the kernel. This is excessive
at the moment, because the trivial kernel only ever uses a single stack frame and
doesn’t do anything with it. It does give us a little room to play with later,
however.

After we are in our kernel, we just infinite loop. This is not particularly
exciting, but it does allow us to check that the kernel is running. We could,
alternatively, simply exit, but this would not allow us to easily determine the
difference between the kernel working and exiting immediately, or crashing and
exiting immediately.

If the hypervisor has been compiled with debugging support, then you have
one extra facility available to you: the debugging console. This is accessed via
the HYPERVISOR _console_io hypercall that we define in debug.h (see Listing 2.7).
This is a simple hypercall, which writes the contents of the given string to the
console.

Listing 2.7: Debugging console support header (from: examples/chapter2/debug.h]

1|#include <stdint.h>
2|#include <xen.h>

3



O © 001 O U i~

12
13
14
15
16
17
18
19
20
21
22
23
24
25

42 Chapter 2. Exploring the Xen Virtual Architecture

#define __STR(x) #x
#define STR(x) __STR(x)
#define _hypercall3(type, name, al, a2, a3) \
({ \
long __res, __ignl, __ign2, __ign3; \
__asm volatile (
"call_hypercall_page_+.("STR(-_HYPERVISOR ##name) "_x*.
32)"\
: "=a” (_-_res), "=b” (__ignl), "=c” (-_ign2), \
"=d” (--ign3) \
. 717 ((long)(a1)), "2" ((long)(a2)). \
"3" ((long)(a3)) \
"memory” ) ; \
(type)--res; \

1)

static inline int
HYPERVISOR_console_io (

int cmd, int count, char xstr)
{

}

return _hypercall3(int, console_io, cmd, count, str);

If the hypervisor was not compiled with debugging support, this hypercall fails.
This does not matter, particularly to our simple kernel. It outputs “Hello World.”
to the emergency console if debugging support is available, and then continues to
infinite loop whether it failed or not. This does, however, give an example of the
use of a hypercall. In this case, the hypercall takes three arguments: the command
(write, in this case), the length of the string, and the string itself. These are stored
in EBX, ECX, and EDX, respectively. In the case of the string, a pointer to the
start is stored in the register. Note that this pointer is relative to the guest’s
address space; the hypervisor’s first task is to translate it into a machine address.
The prototype for the function inside the hypervisor is:

long do_console_io(int cmd, int count, XEN_.GUEST_HANDLE(char)
buffer);

Note the type of the third argument. This will be described in more detail
later, but for now remember that this macro is used to indicate pointers in the
guest’s address space. The definition of this macro is architecture-specific, and
provides a mechanism for accessing data from a pointer supplied by the guest.



2.8. Exercise: The Simplest Xen Kernel 43

2.8.2 Putting It All Together

O © 00~ UL &~ W N~

I S
N

13

=
SIS

Testing our simple kernel requires a few steps. First, we must compile the sources
and produce a kernel binary, then we need to tell Xen how to launch it. For now,
it doesn’t understand any devices, so the last part is pretty easy.

The example code assumes that you have the Xen sources in a xen subdirectory
of wherever you put the examples. The best way of doing this is to download
the latest sources, untar them, and then link them into your examples directory.
Later examples will assume Xen has been installed and that the headers are in
their standard locations.

Listing 2.8 shows how to build the simple kernel. The first line shows the flag
passed to the C preprocessor to tell it where to find the Xen headers. If you didn’t
link Xen as suggested earlier, you can change this to point to your install location.

Listing 2.8: Makefile for the simple kernel (from: examples/chaptera/Makefile]

CPPFLAGS += —I../xen/xen/include/public
LDFLAGS 4= —nostdlib —T example. lds
CFLAGS 4= —std=c99

ASFLAGS = —D__ASSEMBLY__

.PHONY: all

all: testkernel

testkernel: bootstrap.x86_-32.0 kernel.o

$(CC) $(LDFLAGS) $~ —o testkernel

clean:
rm —f *x.0
rm —f testkernel

The last two flags are going to be used for C and assembly code, respectively.
For C code, we need to specify the C99 dialect, because GCC still defaults to
C89. For assembly, we need to define the __ASSEMBLY __ macro. This is used in
a number of Xen headers. Any assembly file ending in .S (as opposed to .s) is
passed to the C preprocessor before being handed to the assembler. This allows
the assembly code to use the macro facilities of the C preprocessor, but doesn’t
allow it to understand C function prototypes, and so on. Many of the Xen headers
are designed to be included in both C and assembly files, and so use the presence
of the __ASSEMBLY __ macro to indicate that anything that is specific to C should
be omitted.

The linker flags are the most interesting. Because you are building a kernel, the
linker is expected to work in a slightly different way than when creating a normal
program. The first flag tells it not to include the standard C library. Although it



O © 00 UL &~ W N~

[ SO
N

-
w

14
15
16
17
18
19
20
21
22
23
24
25
26
27

44 Chapter 2. Exploring the Xen Virtual Architecture

might be useful to have some things defined, a lot of C library functions rely on
system calls, and so won’t work inside the kernel. If you accidentally used one of
these, you would jump into your own interrupt handler® and generate some quite
strange results. It is better to copy the functions you actually do want into the
kernel tree, and make sure that they don’t depend on any external behavior. The
other flag tells the linker to use the specified script.

The linker script is shown in Listing 2.9. A linker script is a basic recipe for
defining how the various parts from the supplied object files are assembled. We
begin with a few simple definitions, setting the output format to ELF and the
architecture to i386. We also define the program entry point as _start. Next,
we define the structure of the rest of the file. This is fairly standard, with text,
read-only data and data sections being placed in order.

Listing 2.9: Linker script for the simple kernel (trom: examples/chapter2/example.1ds]

OUTPUTFORMAT (" elf32—i386", "elf32—i386", "elf32—i386")
OUTPUT_ARCH(i386)
ENTRY( _start)
SECTIONS
{
. = 0x0; /* Start of the output file x/
_text = .; /* Text and read—only data x/
Ctext @ {
*(. text)
} = 0x9090
_etext = .; /+* End of text section x/
.rodata : { /* Read only data section x/
x(.rodata)
x(.rodata.x)
}
.data : { /* Data x/
x(.data)
}
_edata = .; /* End of data section x/

5The trivial kernel doesn’t have an interrupt handler yet, but you will add one in a later
chapter.



O © 00~ DU =~ W N =

e
=W N e

2.8. Exercise: The Simplest Xen Kernel 45

Returning to our Makefile, the rest of the lines simply define how to link the
final product and how to clean up afterward. The rest of the build is performed
by the implicit make rules. We can now build our kernel:

$ make

cc -D__ASSEMBLY__ -I../xen/xen/include/public \
-c -0 bootstrap.x86_32.0 bootstrap.x86_32.8

cc -std=c99 -I../xen/xen/include/public -c \

-0 kernel.o kernel.c

cc -nostdlib -T example.lds bootstrap.x86_32.0\
kernel.o -o testkernel

Note that the implicit rules that we rely on are present in GNU make, but may
not be present in other implementations. Because we are using GNU Compiler
Collection extensions to C (for inline assembly), it doesn’t seem unreasonable to
also use GNU extensions to the UNIX make syntax. If you are using a non-GNU
platform, you can either explicitly add the implicit rules or install GNU make.
You might find it already installed as gmake.

Now that we have built testkernel, the next step is to try launching it.
Creating a new domain is done using the xm command from Domain 0. This takes
a configuration file as an argument. We will create a simple one as shown in Listing
2.10. This specifies the name of the kernel, the amount of RAM to allocate, the
name to give the domain, and the behavior in case the domain crashes. Actually,
32MB is far more than our trivial kernel will use, but that gives us a little room
to expand, and postpones the need to modify the domain configuration file. If the
kernel crashes, we destroy the domain; there’s not much point doing anything else
at this stage.

Listing 2.10: Domain configuration for the simple kernel ifom: exampies/chap-
ter2/domain_config]

# —x— mode: python; —x—

#Python configuration setup for 'xm create '. This
#script sets the parameters used when a domain is
#created using 'xm create '. You use a separate script
#for each domain you want to create, or you can set the
#parameters for the domain on the xm command line.

#Kernel image file.

kernel = "testkernel”

# Initial memory allocation (in megabytes) for the new
# domain .

memory = 32

# A name for your domain. All domains must have



46 Chapter 2. Exploring the Xen Virtual Architecture

15|# different names.

16
17
18

name = "Simplest_Kernel”

on_crash = ’destroy’

With the configuration file finished, you can try starting the domain. This is
done with xm create. After creating the new domain, you can use xm list to
see that it is still running:

# xm create domain_config
Using config file "domain_config".
Started domain Simplest_Kernel

# xm list

Name ID Mem(MiB) VCPUs State  Time(s)
Domain-0 0 64 1 r-———- 37.4
Simplest_Kernel 8 32 1 - 3.5

If you leave the domain running for a while longer, and do xm list again, you
see the following:

# xm list

Name ID Mem(MiB) VCPUs State  Time(s)
Domain-0 0 64 1 r-——-- 37.4
Simplest_Kernel 8 32 1 - 163.7

Note that our new kernel has used a significant amount of CPU time in the
intervening period. This is not entirely ideal, but it does show that the kernel is
working. At the moment, it is consuming as much CPU time as the hypervisor
can give it in order to run its idle loop. In future chapters, we will look at how to
make it do more interesting things.



3.1

Chapter 3

Understanding Shared Info
Pages

When an operating system boots, one of the first things it typically does is query
the firmware to find out a little about its surroundings. This includes things
like the amount of RAM available, what peripherals are connected, and what the
current time is.

A kernel booting in a Xen environment, however, does not have access to the
real firmware. Instead, there must be another mechanism. Much of the required
information is provided by shared memory pages. There are two of these: the
first is mapped into the guest’s address space by the domain builder at guest boot
time; the second must be explicitly mapped by the guest.

The shared info pages do not completely replace a BIOS. One of the main
uses for system firmware at boot time is enumerating hardware devices. Whereas
the start info page provides a means of mapping a console device, other devices
must be found through the XenStore, which provides an interface reminiscent of
the OpenFirmware device tree found in most SPARC and PowerPC systems. The
console device is made available via the start info page for debugging purposes;
debugging output from the kernel should be available as early as possible, and if
the kernel is required to interrogate the XenStore before doing this, any bugs that
appear while trying to do this will be hard to find.

Retrieving Boot Time Info

A kernel starting up in Xen begins with a page mapped into its address space
containing information about the system, known as the start info page. The way

47



48 Chapter 3. Understanding Shared Info Pages

Memory Types

This section will refer to machine and pseudo-physical memory. These terms
will be discussed more fully in Chapter 5. The short definition is that machine
addresses point to real, physical, memory locations. Pseudo-physical mem-
ory addresses point to the guest kernel’s virtual address space, and appear as
physical memory to parts of the kernel that are not virtualization-aware, and
as virtual memory to Xen. The kernel may also implement virtual memory
on top of the pseudo-physical memory for userspace applications, giving three
kinds of memory address.

the address of this page is transferred to the guest is architecture-dependent; on
x86, the address is stored in the ESI register.

The contents of this page is defined by a C structure, which is declared in
xen/include/public/xen.h. Typically, you declare a pointer to a structure of
the correct type, and then set it before your kernel does anything else. Listing 3.1
shows how this can be done for x86.

Listing 3.1: Mapping the boot time info page

1| start_info_t xstart_info_page;

"

asm (
:’=S" (start_info_page));

After you have set the pointer correctly, you can interact with the start info
page in exactly the same way you would with any other structure. The fields in
it provide all of the information required to bootstrap a kernel.

Another option for loading the start info page is to push the value of ESI onto
the stack and then call the “real” kernel entry point, which then has the start info
structure address passed as an argument. This trampoline mechanism is generally
cleaner, because it allows you to separate out the architecture-specific code.

Before proceeding, it is a good idea for a kernel to perform some basic vali-
dation and check that it is booting in a compatible version of Xen. The magic
value in the structure is a string of not more than 32 characters of the form “Xen-
version.sub version” and can be used for this purpose. In addition to checking
that the version of Xen is supported, this ensures that the start info page has been
mapped correctly. If it doesn’t start with “Xen-", something is seriously wrong,
and the best thing to do is abort. Xen guarantees backward compatibility within
major versions, although features may be added between minor versions. You
should check that the major version is equal and the minor version is not lower
than the version on which the kernel was tested.

When you are happy that you are running in a supported Xen environment,
booting can proceed. A kernel typically needs to know early on how much RAM




3.1. Retrieving Boot Time Info 49

it has available to it, and how many CPUs. The number of pages is provided by
the start info structure in the nr_pages element. The number of CPUs, however,
is only provided in the shared info structure, discussed in the next section. Typi-
cally, a guest will boot on a single (virtual) CPU, and then bring others up after
initialization.

Several of the other fields in the structure refer to other pages in memory.
These are given in machine addresses; the guest must issue hypercalls to map them
in to its own address space. Because they are machine addresses, they are subject
to change if the virtual machine is suspended and resumed later, or migrated. For
this reason, they should be remapped every time the virtual machine is resumed.
The use of machine pages here simplifies the work of the hypervisor and domain
builder somewhat, and gives some flexibility to the guest, allowing it to map the
pages at convenient locations as required. This comes at the expense of a small
amount of extra effort for kernel developers.

The shared_info field is the first to specify a machine page. In this case, it is the
one containing the shared info structure discussed in the next section. Mapping
this is typically one of the first things a guest should do, because it contains a
significant amount of information that can be useful near to system start.

The flags value contains any optional settings for this domain. These are
defined in xen.h and have the SIF_ prefix. Currently, SIF_PRIVILEGED is defined
to indicate a privileged domain and SIF_INITDOMAIN to indicate the initial control
domain. The remaining 30 bits of this field are reserved for future use.

The next two fields relate to the XenStore, described in Chapter 8. These form
a pair of a form that is used in many places in Xen. The first, store_mfn, gives
the machine address of the shared memory page used for communication with the
XenStore. The second, store_evtchn, gives an event channel used for notifications.

The console field is a union, and has different values depending on the type
of domain. The union is shown in Listing 3.2. Which half of the union is used
depends on whether the domain is privileged or not. The Domain 0 guest uses
the domQ part, which contains the memory offset and size of the structure used to
define the Xen console. This has one of two modes: text or VGA. For debugging
purposes, it is common to run Xen with the console redirected to a serial line, in
which case the text console is used. In normal use, the VGA! console is available,
and can be used for simple graphics display. For more complex graphics, a privi-
leged guest should be given access to the display hardware; it can then run an X
server, and display graphics for guests as it would any other networked machines.

For guests in unprivileged domains, the domU part of the union is used. The
fields in this represent a shared memory page and event channel used to identify
the console device. This is the only device exposed in this way; network inter-
faces, block devices, and other device types must all be located via the XenStore.

IThe VGA console is actually an SVGA console, allowing a number of VESA 1.2 modes.



508
509
510

511
512
513
514
515

516
517

50 Chapter 3. Understanding Shared Info Pages

Listing 3.2: Union used to convey console information to guests (from: xen/include/pub-

lic/xen.h]
union {
struct {
xen_pfn_t mfn; /* MACHINE page number of
console page. %/
uint32_t evtchn; /x Event channel for console
page. %/
} domU;
struct {
uint32_t info_off; /x Offset of console_info
struct. %/

uint32_t info_size; /x Size of console_info struct
from start.x/
} domO;
} console;

Previous versions of Xen did not use the union, and the fields representing the
console were exposed directly as console_mfn and console_eventchn. Macros exist
for backward compatibility, as long as the guest is compiled with an old interface
version. It is not recommended to use them for new guests, however.

The fields described so far are available at all times, and are updated every
time the virtual machine is resumed. The remaining fields are only filled in at
initial boot time. The values they represent can be affected by the running of the
machine, and so they should not be relied on after boot time.

The next three fields are related to memory management. The pt_base field
contains the pseudo-physical address of the page directory. The mfn_list and
nr_pt_frames fields, respectively, contain the (pseudo-physical) address of a list of
page frames owned by the domains and the number of frames in the list. These
values are all computed by the domain builder, which allocates some memory to
the domain when it is created.

The next two fields, mod_start and mod_len, relate to module loading. The
Xen domain builder can load arbitrary files into the guest kernel’s address space.
This is useful for bootstrapping, because it allows the kernel to get access to a
file before it has loaded block device or filesystem drivers. This can be used for
loadable kernel modules, initial ram disks, and so on.

The rest of the start info page is used to pass command-line arguments to the
kernel. The cmd_line field contains a string of at most MAX_GUEST_CMDLINE
characters, containing any parameters the administrator chose to pass to the ker-
nel.



3.2

3.2. The Shared Info Page 51

The Shared Info Page

The shared info page is used throughout the runtime of a guest kernel to retrieve
information about the global state. Unlike the start info page, the shared info page
contains information that is dynamically updated as the system runs. Another
difference is the way in which the two pages are mapped. The start info page
is mapped into the new domain’s address space by the domain builder, whereas
the shared info page must be explicitly mapped by the guest. The mechanism for
doing this is discussed in Chapter 5.

The shared info page is defined by a number of nested C structures, as shown in
Figure 3.1. The top level is the shared_info_t. This contains information related
to the running virtual CPUs, available event channels, wall clock time, and some
architecture-specific information.

shared_info_t (vepu_info_t Y arch_vcpu_info_t
evtchn_upcall_pending cr2
vepu_info[] — >
evtchn_upcall_mask pad

evtchn_pending

evtchn_pending_sel

vepu_time_info_t
evtchn_mask arch version
WC_version time pad0
e 2 tsc_timestamp
wcC_sec > )
1 system_time
WC_nsec arch_shared_info_t tsc_to_system_mul
l—» max_pfn tsc_shift
arch — N
pfn_to_mfn_frame_list_list pad1

Figure 3.1: The hierarchy of structures used for the shared info page

The first field, vcpu_info, is an array of vcpu_info_t structures. Each of these
structures corresponds to a virtual CPU assigned to the domain. If the guest has
fewer than MAX_VIRT_CPUS virtual CPUs assigned to it, some of the entries will
not be filled in. Trying to bring up nonexistent VCPUs will fail.

Each virtual CPU has three flags relating to virtual interrupts (asynchronously
delivered events). The evtchn_upcall_pending field is used by Xen to notify the
running system that there are upcalls (interrupts) currently waiting for delivery
on this virtual CPU. This is only asserted while events are masked using the



52 Chapter 3. Understanding Shared Info Pages

evtchn_upcall_mask flag. This mask prevents any upcalls being delivered to the
running virtual CPU. To prevent race conditions, the hypervisor only inspects or
modifes these fields from the physical CPU that is running the virtual CPU. The
final field in this category is evtchn_pending_sel, which indicates which event is
waiting. The event bitmap is an array of machine words, and this value indicates
which word in the evtchn_pending field of the parent structure indicates the raised
event. For example, if event 12 has been raised, evtchn_pending_sel will be set to
0, because event 12 will be in the first word of the array.

The other two fields in the vcpu_info_t structure contain other structures, one
relating to time and the other containing architecture-specific information. On
x86, the architecture-specific component contains the virtual CR2 register. This
register contains the linear address of the last page fault, but can only be read from
ring 0. This is automatically copied by the hypervisor’s page fault handler before
raising the event with the guest domain. On PowerPC and Itanium platforms,
this structure is empty.

Finally, each vcpu_info_t structure contains a vcpu_time_t. This, along with a
number of fields sharing the wc_ (wall clock) prefix in the shared info structure,
is used to implement time keeping in paravirtualized Xen guests, and will be
discussed in detail in the next chapter.

As mentioned earlier, the shared info structure contains a evtchn_pending field.
This is eight machine words long, and contains a bit-field indicating which event
channels have events waiting. This restricts guests to 256 or 512 event chan-
nels on 32- and 64-bit systems, respectively. Bits in this field are set by the
hypervisor and cleared by the guest. There is another bit-field in this structure,
evtchn_mask, which determines whether an event on a particular channel should
be delivered asynchronously. Every time an event is generated, the corresponding
bit in evtchn_pending is set to 1. If the corresponding bit in evtchn_mask is set to 0,
the hypervisor issues an upcall and delivers the event asynchronously. This allows
the guest kernel to switch between interrupt-driven and polling mechanisms on a
per-channel basis. In general, polling is likely to be more efficient on very busy
channels.

The final field in the shared info page contains architecture-specific informa-
tion. On x86, this contains two fields, max_pfn and pfn_to_mfn_frame_list_list related
to pseudo-physical to machine memory mapping. The first contains the maximum
physical frame number and the second the machine address of the frame that con-
tains list of frames containing the pseudo-physical to machine mapping table.

On PowerPC, there is no architecture-specific shared info. The Itanium version
of Xen uses this to contain the physical frame number or the start info page and
the interrupt vector for the event channel.



3.3

3.3. Time Keeping in Xen 53

Time Keeping in Xen

Generally speaking, there are two kinds of time that a Xen guest needs to keep
track of. The first of these is wall-clock time—the real time that has elapsed. This
is predominantly useful for userspace applications that run scheduled tasks, dis-
play clocks, and so on. It is also useful for timestamping events, such as filesystem
activities. The second is virtual time—the amount of time the guest has spent
running.

Virtual time is essential for scheduling of tasks running within a domain. Con-
sider the case of two domains running on the same machine, each of which is
scheduled for 10ms at a time. If each domain is running two tasks, and scheduling
them for 10ms each using wall time, then one task in each domain will get half of
the real CPU’s time and the other one will get none.

Within each of these categories, there are two ways in which time can elapse:
while the guest is running, and while it is not. While a guest is scheduled, it
receives a periodic tick event every 10ms. This allows it to keep track of virtual
time easily. Real time is a little more tricky.

Three time values are used to track real time:

Initial system time is time of day when system time is zero. This value is
exported in the we_ prefixed fields in the shared info page.

Current system time is the time that has elapsed since the virtual machine
was resumed, and is updated whenever the guest is scheduled.

TSC time is the number of cycles that have elapsed since an arbitrary point
in the past. This is named after the Time-Stamp Counter (TSC), which
provides high resolution timekeeping on x86 systems.

The TSC register on a modern x86 chip contains a 64-bit timestamp which
is incremented roughly every clock cycle. On very recent chips, it is slightly
less frequent; testing on a 2.16GHz Core 2 Duo indicates that it is incremented
roughly every four cycles. Two things are guaranteed, however. The first is that
it is monotonic—that is, every time you read it, the value will be larger than the
last. The second is that the rate at which it is incremented is constant relative to
the CPU clock.? This allows it to be used for fine-grained correction of timings
provided by the hypervisor.

Xen provides a way of translating a TSC difference into nanoseconds with
a shift and a multiply. =~ The tsc_shiftand tsc_to_system_mul fields in the
vcpu_time_infostructure provide the shift and multiplication factors, respectively.
The function shown in Listing 3.3 translates a TSC change into a number of
elapsed nanoseconds.

2Note, however, that the CPU clock is not necessarily constant. If the clock is scaled back
for power saving, the rate at which the Time Stamp Counter increments may also change.



54 Chapter 3. Understanding Shared Info Pages

Do We Need System Time?

It might seem that you don’t need system time. If you have the wall clock time
at system boot / resume, and the Time Stamp Counter when this happened,
you ought to be able to calculate the current system time. In theory, this is
the case. In practice, the TSC rate accuracy is limited by the accuracy of the
timing circuitry in the system, which is typically prone to a small amount of
variable skew. Although it gives a very fine-grained value, it does not give a
very accurate one. A system clock using just the TSC value will experience
drift. To combat this, the Domain 0 guest is expected to run an NTP client or
update its clock from a high-resolution time source. This value is then used to
update the system time, reducing drift in the guest.

Listing 3.3: Translating a TSC value to a number of nanoseconds

1l uint64_t tscToNanoseconds(uint64_t tsc, struct vcpu_time_info =x

timeinfo)

2| ¢

3 return (tsc << timeinfo—>tsc_shift) * timeinfo—
tsc_to_system_mul;

4 }

3.4

Calling this with the value extracted from the TSC register (using the RDTSC
instruction) only gives you the number of nanoseconds until some arbitrary point
in the past, which is not particularly useful. It can, however, be used to determine
how much time has elapsed since the system time stamp was written. Every
time this is modified by the hypervisor, the TSC value is also written (to the
tsc_timestamp field of the vcpu_time_info_t structure). From this, you can calculate
the current system time.

After you have the current system time, you add this to the real (wall) time
at system time zero, giving you the current time. The wall clock time at system
time zero is stored in the wc_sec and wc_nsec fields of the shared info structure.

Exercise: Implementing gettimeofday()

Implementing the POSIX gettimeofday() function requires the use of the shared
memory page, the Time-Stamp Counter, and some simple calculations. This sec-
tion will describe the implementation of the function.

The gettimeofday () function takes two arguments, the first of which is a pointer
to a timeval structure and the second must be a null pointer. It always returns
Zero.




3.4. Exercise: Implementing gettimeofday/() 55

System Calls

This example will implement a function, not a system call. If you are writing a
simple Xen guest that executes everything in kernel space, this function can be
called directly. If you are writing (or porting) a more traditional kernel, this
function needs to be called by your system call handler. Installing a system
call handler will be discussed in Chapter 7.

For implementing this function, we will assume that the shared info page has
already been mapped, and is stored in a global variable. Using this, we will first
define a macro that will convert a TSC value to a number of nanoseconds. This
is shown in Listing 3.4.

Listing 3.4: A macro for converting a TSC value to a number of nanoseconds
[from: examples/chapter3/gettimeofday.c]
14|#define NANOSECONDS(tsc) (tsc << shared_info—>cpu_-info [0]. time.

tsc_shift)\
15 * shared_info—>cpu_info [0].time.tsc_to_system_mul

This macro uses the TSC scale factors from the first virtual CPU. Because
TSC values are meant to be synchronized across CPUs, this ought to work in all
cases. The next macro we will define stores the current TSC value in a variable.

TSC is a 64-bit integer. The RDTSC instruction reads this and stores the lower
32 bits in EAX and the top 32 bits in EDX. The TSC() macro defined in Listing
3.5 executes the RDTSC instruction and then stores the result in the specified
variable.

Listing 3.5: A macro for reading the TSC register (rom: exampies/chapters/gettimeotday.c]
17|#tdefine RDTSC(x) asm volatile ("RDTSC”:"=A"(tsc))

After we have the TSC value, we need to subtract from it the value of the
TSC register when the times were updated. To read these, we need to examine
the version value of the vcpu_time_info_t structure. If the lowest bit of this is
1, then the timer values are being updated, and so we simply spin until this is
not the case. When it is a 0, we keep a copy of the value, attempt to read the
wall clock values, and then test the version again. If the version number has not
changed, we can proceed; otherwise, we loop.

At first glance, it appears that checking the value of the version is not required.
The reason it exists is that a guest may be preempted by the hypervisor and have
the time values updated while it is reading them.

Listing 3.6 shows an example implementation of the function. This can be
broken down into a few main sections.



19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60

61
62
63

o6

Chapter 3. Understanding Shared Info Pages

Listing 3.6: An example gettimeofday() implementation (tom: examples/chap-

ter3/gettimeofday.c]

int gettimeofday(struct timeval xtp, struct timezone xtzp)

{

uint64_t tsc;
/+ Get the time values from the shared info page %/
uint32_t version, wc_version;
uint32_t seconds, nanoseconds, system_time;
uint64_t old_tsc;
/% Loop until we can read all required values from the same
update x/
do
{
/+* Spin if the time value is being updated x/
do
{
wc_version = shared_info—>wc_version ;
version = shared_info—>cpu_info[0].time.version;
} while(
version & 1 — 1
|
wc_version & 1 = 1);
/+* Read the values x/
seconds = shared_info—>wc_sec;
nanoseconds = shared_info—>wc_nsec;
system_time = shared_info—>cpu_info [0].time.system_time

old_tsc = shared_info—>cpu_info [0].time.tsc_timestamp;
} while(
version != shared_info—>cpu_info [0].time.version
[
wc_version != shared_info—>wc_version
)
/+ Get the current TSC value x/
RDTSC( tsc) ;
/* Get the number of elapsed cycles x/
tsc —= old_tsc;
/+ Update the system time x/
system_time += NANOSECONDS( tsc);
/+* Update the nanosecond time x/
nanoseconds += system_time;
/* Move complete seconds to the second counter x/
seconds += nanoseconds / 1000000000;
nanoseconds = nanoseconds % 1000000000;
/* Return second and millisecond values x/

tp—>tv_sec = seconds;
tp—>tv_usec = nanoseconds x 1000;
return O;



3.4. Exercise: Implementing gettimeofday/() 57

Lines 30-37 keep checking the version counters until they show that neither
time is currently being updated. These values are cached.

Lines 38-42 cache copies of the system and wall clock times where Xen will
not touch them.

Lines 43-47 check that neither value was updated while we were caching
them.

Lines 48-55 update the system time.
Lines 54-58 update the wall clock time.

Lines 59-62 return the final value.

It is worth noting that the TSC value should only be used in this context. Some
Xen events, particularly live migration, can cause the T'SC value to run backward
briefly. If a new computer is booted, and a long-running domain is migrated to
it, the domain will see the TSC value drop after the migration. The hypervisor
always updates the wall clock and system time values after a migration, but any
other uses of the Time Stamp Counter will likely cause some unpredictable results.



This page intentionally left blank



4.1

Chapter 4

Using Grant Tables

Virtual machines do not exist in isolation. They must interact with others on the
system for a number of reasons, not least of which is access to hardware. This
chapter will examine the grant table mechanism, which allows memory pages to
be transferred or shared between virtual machines.

This chapter will examine how to offer a page to another domain, and how to
map an offered page. It will discuss briefly how split device drivers, discussed in
more detail in Part II, use shared pages to communicate.

Sharing Memory

Shared memory is the easiest mechanism for interprocess communication (IPC)
to implement on a single machine. Because each process’s address space is simply
a subset of a common memory pool, memory can be shared simply by creating
overlapping address spaces.

Due to this simplicity, it is a good choice for Xen. The hypervisor provides a
mechanism for sharing memory pages, and cooperating domains can implement
a policy built on top of this. This mechanism can be used to provide interdo-
main communication, a way for guests to communicate analogous to IPC between
userspace processes.

Xen has a lot in common with several microkernel operating systems. Most
microkernels, however, implement message passing rather than shared memory as
their basic IPC mechanism. This is because message passing is a slightly higher-
level abstraction, and can easily be made network-transparent for systems that do
not have a common physical memory architecture. Xen, however, is only inter-
ested in providing local interdomain communication. If network communication
is required, guest kernels can use their existing networking code.

99



O © 00~ UL =~ W N~

N T s s T
O~y O b W N -

60 Chapter 4. Using Grant Tables

Most UNIX-like systems implement shared memory between processes using
the shm_x family of functions. Creating and sharing a segment of memory in a
UNIX-like system might be done as shown in Listing 4.1.

Listing 4.1: Creating a POSIX shared memory region

/+* The POSIX way x/
int fd = open("/tmp/shmfile”,
O_CREAT | O_TRUNC | ORDWR,
0666) ;
ftruncate (fd, 4096);
void * posix_shm = mmap(
NULL,
4096,
PROT_READ | PROT_WRITE,
MAP_SHARED,
fd,
0);
/+* The System V way =/
key_t key = ftok(”/tmp/shmfile”, 0);
int sysv_id = shmget(key,
4096,
IPC_CREAT) ;
void * sysv_shm = shmat(sysv-id, 0, 0);

This listing shows two ways of mapping a shared memory region. The older
mechanism, introduced with System V, associates each shared memory region
with a key (some kind of integer type). Regions of memory can be associated
with these keys, then mapped by other processes.

The POSIX mechanism adopts the UNIX philosophy that everything is a file.
Shared memory regions are backed by files. The pseudo-file /dev/null can be used
if no file is available, to explicitly create an anonymous shared memory region.

The biggest thing to note about these is what is hidden from the user. The
first is the granularity. Shared memory can typically only be implemented at
page granularity. If you try to map something that is not a multiple of a machine
page, the kernel will silently extend the region for you (although space off the end
of the explicitly requested region may not work consistently). The second thing
abstracted from the user is the placing of memory in the process’s address space.
Although it is possible to explicitly state the location at which the memory will
be mapped, it is not required. Finally, there is the backing store. Shared memory
on a UNIX-like system is backed by either a real filesystem object or some swap
space.

The Xen mechanism is much lower level. Memory can only be shared at a



4.1. Sharing Memory 61

page granularity. As with System V shared memory, shared pages are identified
by an integer, known as a grant reference.

The interface to Xen’s shared memory mechanisms is via the grant_table_op
hypercall. This takes three arguments: the type of operation to perform, an
array of structures containing the operations, and the number of operations in
the array. The structures used vary depending on the operation performed. They
are all defined in xen/include/public/grant_table.h. The prototype of the
function that wraps this hypercall is shown below:

HYPERVISOR_grant_table_op(unsigned int cmd, void xuop, unsigned
int count);

Note that the operation array, passed as the second argument, is a void*. This
is because the hypercall is polymorphic; the type of this argument depends on the
value of the first argument.

All operations relating to modifying grant table permissions are performed by
directly modifying the grant table. The structure of the table is described later
in this chapter.

4.1.1 Mapping a Page Frame

Two operations can be performed via the grant table: mapping or transferring
pages. These two operations are conceptually similar; they both involve inserting
the physical page(s) to or from the caller’s address space. The difference is that
mapping leaves the page in the original domain’s address space as well, whereas
transferring removes the original reference. Mapping is used to create shared
memory, whereas transferring is used to move data from one domain to another.
Transfers are also used by the balloon driver, to allow the guest in domain 0 to
give pages to other domains. Mapping is a “pull” operation: pages are offered
and then mapped by the receiving domain. Transferring is a “push” operation:
the calling domain sends the page to another.

The GNTTABOP_map_grant_ref command is used to map page frames associ-
ated with a given {grant reference, domain} pair. The structure used to encode
the operation is shown in Listing 4.2.

The first field in this structure, host_addr, defines the address in the calling
domain’s address space (that is, the pseudo-physical address) into which the page
should be mapped. In this instance, “host” refers to the host CPU. If the page is
going to be used for device I/0, it is possible that two addresses are required. Any
platform on which Xen runs will have a memory management unit (MMU). This
translates addresses referenced in the CPU into a physical address. A device driver
typically needs to know the address of the physical address of pages the device
might write to. This is further complicated by the fact that modern machines
may come with an IOMMU, so the CPU and device both have different addresses



O W W0 U &~ W N~

[ SO
N

62 Chapter 4. Using Grant Tables

Listing 4.2: Grant table mapping operation control structure (trom: xen/include/pub-
lic/grant_table.h]
struct gnttab_map_grant_ref {
/x IN parameters. x/
uint64_t host_addr;
uint32_t flags; /* GNTMAPx x/
grant_ref_t ref;
domid_t dom;
/* OUT parameters. x*/
intl6_t status; /x GNTST_x x/
grant_handle_t handle;
uint64_t dev_bus_addr;
T

typedef struct gnttab_map_grant_ref gnttab_map_grant_ref_t;

for a memory page, and neither corresponds to the physical address. If a memory
page is being used for device I/0, the dev_bus_addr field will contain the address
that can be used by the device to reference this page.

The flags field represents a number of symbolically defined flags that control
how the region is mapped. The following flags can be or’d together to provide a
final value:

GNTMAP _device_map indicates that the page should be accessible to I/O de-
vices. On systems with an IOMMU, this adds the page into the I/O address
space. The dev_bus_addr value in the structure will be filled in on return, if
this flag is set.

GNTMAP_host_map maps the page into the caller domain’s address space.

GNTMAP_application_map is only valid if GNTMAP_host_map is set. If this
flag is also set, the page is mapped with permissions allowing userspace
applications to access it; otherwise, it is only accessible to the calling guest’s
kernel.

GNTMAP _readonly should be set if the page is mapped as read-only. This could
be used for unidirectional communication; the originating domain can write
to the page, whereas the mapping domain cannot.

GNTMAP _contains_pte is used to indicate the format of the host_addr field. By
default, this is as described earlier in this section. Asserting this flag indi-
cates that it is the machine address of the page table entry to update.



4.1. Sharing Memory 63

Table 4.1: Grant table status codes

Error Code Meaning

GNTST _okay Normal return.

GNTST _general _error General undefined error.

GNTST _bad_domain Unrecognized domain id.

GNTST _bad_gntref Unrecognized or inappropriate gntref.
GNTST_bad_handle Unrecognized or inappropriate handle.
GNTST _bad_virt_addr Inappropriate virtual address to map.
GNTST_bad_dev_addr Inappropriate device address to unmap.
GNTST _no_device_space Out of space in I/O MMU.

GNTST _permission_denied | Not enough privilege for operation.
GNTST _bad_page Specified page was invalid for op.
GNTST _bad_copy_arg copy arguments cross page boundary

The last two input fields, ref and dom, identify the correct grant reference and
the domain offering it. This pair uniquely identifies an offered page on a single
machine.

The remainder of fields in this structure are for output. The status field is
the equivalent of a C library function’s return value, or a COM HRESULT, used
to identify error conditions. Hopefully, this value will be GNST _okay, indicating
success. Other possible results are shown in Table 4.1. All error results are
guaranteed to be negative, so testing whether an error has occurred can be done
simply by checking the sign of the status.

The handle field gives a unique reference for this grant. The hypervisor keeps
track of all granted pages. Unmapping the grant must be done explicitly, using
this handle.

4.1.2 Transferring Data between Domains

Transferring a frame is done in a similar way to mapping. In this case, the
GNTTABOP _transfer command is used. This uses the control structure described
in Listing 4.3.

Before a page can be transferred, the receiver must advertise its interest in
receiving a transfer. This is done by creating a grant table entry, set up to allow a
transfer. One common use for the transfer mechanism is the balloon driver, which
permits a domain to expand its memory usage. A guest creates a transfer request
in its grant table, then signals the Domain 0 guest. The Domain 0 guest then
transfers new pages to the running guest, if there are some available.

The three input parameters of this operation are the domain and grant refer-



© 03 OO =~ W N

O © 0~ UL &~ W N K

R e
N =

=
w

64 Chapter 4. Using Grant Tables

Listing 4.3: Grant table transfer operation control structure rrom: xen/include/public/-
grant_table.h]
struct gnttab_transfer {
/x IN parameters. x/
xen_pfn_t mfn ;
domid_t domid ;
grant_ref_t ref;
/* OUT parameters. */
intl6_t status;
+

typedef struct gnttab_transfer gnttab_transfer_t;

ence of the receiving domain, and the machine frame of the page to be transferred.
Transferring is a good way of moving large amounts of data from one guest to an-
other. The cost is fairly close to constant, because it only updates the page tables.
This constant cost, however, is relatively high. For small transfers, copying can
be much more efficient.

Copying is a much lower constant-cost operation, but the cost scales linearly
in terms of data size. Copying between domains requires one domain to be able
to access both the source and destination pages at once. This is not a problem
if the pages are pre-shared; but if they are not, it removes the advantage over
performing a transfer, because you get the cost of the TLB update as well as the
cost of copying.

There is one exception to this: The hypervisor already has all of the pages in
physical memory mapped into its address space, so it can perform the transfer at

a relatively low cost. The control structure for this operation is shown in Listing
4.4.

Listing 4.4: Control structure for a copy operation (trom: xen/include/public/grant_table.h]

typedef struct gnttab_copy {
/* IN parameters. x/
struct {
union {
grant_ref_t ref;
xen_pfn_t gmfn;
boug
domid_t domid;
uintl6_t offset;
} source, dest;
uintl6_t len ;
uintl6_t flags; /* GNTCOPY_x x/
/* OUT parameters. x*/



14

4.2. Device I/O Rings 65

intl6_t status;

15/ } gnttab_copy-t;

4.2

A copy operation is semantically very simple. You have an origin, a destination,
and an amount to copy. The C function memcpy performs the same operation for
a single process. The hypervisor equivalent has a few more things to configure,
because the source and destination can be in different domains. The source and
dest parameters of this are used to specify the domain, memory page, and offset
within this page of both the source and destination.

The source and destination pages are specified by a union. They can be grant
references or machine frame numbers. The only limitation is that both must
be accessible by the calling domain. In theory, you could use this mechanism
to copy data within the calling domain, although it wouldn’t be very efficient.
By default, the hypervisor assumes that they are machine page frames (from the
calling domain’s perspective). To indicate they are not, the GNTCOPY _source_gref
or GNTCOPY _dest_gref flag must be specified.

Note that it is also possible to use this mechanism to copy data between two
domains when neither is the caller. For example, a domain responsible for a net-
work card could be run in a driver domain to prevent bugs in the network driver
affecting the stability of Domain 0. The domO guest could then initiate copy
operations between the driver domain and another domU guest. The unprivi-
leged guest would be completely unaware that a domain other than dom0 was
responsible for the network card.

Device 1/0 Rings

One of the main uses for shared memory pages is to implement I/0O rings for
communicating between parts of paravirtualized device drivers. These provide a
simple message-passing abstraction built on top of the shared memory mechanism
provided by Xen.

The I/0 rings provide a method for asynchronous communication between
domains. One domain places a request in the ring, whereas the other removes it
and inserts a response. Because requests and responses are produced at (roughly)
the same rate, a single ring can accommodate them both.

The macros for defining rings are in xen/public/io/ring.h. These relate to
the creation and use of ring buffers. To define a new ring buffer, you need the
structures used for requests and responses, as well as a name for the new ring
structure.

Each I/0O ring has five main components: start and end pointers for the pro-
ducer and consumer, and the buffer itself. All ring buffers are power-of-two sized.
This is an efficiency optimization; it means that the pointers can simply be in-



4.3

66 Chapter 4. Using Grant Tables

cremented, and then masked to give locations within the ring. As long as the
producer and consumer segments of the ring don’t overlap, it will be fine.

Testing for overlap relies on two features of the ring system. The first is the
fact that the response part of the ring always starts at the end of the request
part. This means that the only possible overlap is caused by the request segment
catching up with the response section. This can be tested by simply checking the
distance between the request producer and response consumer indexes. If they are
the size of the ring apart, the ring is full. Testing for space in the response part of
the ring is easier, because a request taken out of the ring can have a corresponding
request inserted into it.

Figure 4.1 shows the structure of an I/O ring, where the buffers advance clock-
wise. When a request is made, the response end pointer is checked to see if there
is enough space ahead of the request start. If there is, the request is written
into the ring and the request start pointer incremented. The other end reads the
requests from the tail, incrementing the pointer at the end. After processing the
request, it writes the result to the front of the response section and increments
the response start pointer. The caller then removes the response from the buffer
and increments the response end pointer. Note that entries in the ring are of a
fixed size, defined by the maximum of the largest request or response that can go
in the structure. In implementation, this is handled by making the ring an array
of unions of the structures used for requests and responses.

I/0O rings that are used to transfer a lot of data might be polled on both ends.
Those that are used more infrequently use the event mechanism to signal that
data is available.

This structure is used often in systems running on top of Xen. Although the
hypervisor only provides the mechanism of shared memory, the message passing
system is defined in a general way as part of the Xen interface, allowing the same
structure to be recycled in many places.

Granting and Revoking Permissions

Granting and revoking permissions is done via direct manipulation of the grant
table. The grant table itself is an array of structures as shown in Listing 4.5.

The last two fields in this are quite simple; they identify the domain to which
the rights are granted, and the page frame the entry refers to. The domain (domid)
is always filled in by the domain creating the entry. If the domain is granting access
to one of its own frames, the relevant frame must be identified by the guest. If
the entry relates to a transfer, the hypervisor will fill in the frame number after
the transfer.

The flags field indicates which rights are granted. This is split into two parts.



4.3. Granting and Revoking Permissions 67

Response Start Request End

Response End Request Start

Figure 4.1: The structure of an I/O ring

The first defines the type of the permission granted, whereas the second defines
some additional properties of the permission.

Two types of permission are currently supported. These are roughly analogous
to read and write permissions on a filesystem. The GTF_permit_access (“read”)
flag grants the right to the specified domain to map the relevant page into its
address space, whereas the GTF_accept_transfer (“write”) flag allows the specified
domain to transfer a page to this domain.

The type flag can be extracted from the flags field by anding it with the
GTF_type_mask constant. Applying this mask to the field returns one of the values
discussed previously, or GTF_invalid for an invalid reference.

After the type of a grant has been determined, the remaining bits (the “sub-
flag”) of the flags field can be interpreted. For grants permitting access, only one
subflag should be set (or cleared) by the guest. The GTF_readonly value indicates
whether the receiving guest should be allowed to create read-write mappings.
If this bit is set, only read-only maps are permitted. After the page has been
mapped, the hypervisor fills in the mode used. The GTF_reading and GTF_writing
flags are set if the receiving domain has reading and writing modes, respectively.

For transfer mappings, there are two subflags, both of which are written by
the hypervisor. The first, GTF _transfer_committed, indicates that a transfer has



N =

~N OOt B~ W

10
11
12

68 Chapter 4. Using Grant Tables

Listing 4.5: Grant table entry structure (from: xen/include/public/grant_table.h]

struct grant_entry {
/¥ GTF_xxx: various type and flag information. [XEN,GST]
*/
uintle_t flags;
/* The domain being granted foreign privileges. [GST] x/
domid_t domid;

/[

x* GTF_permit_access: Frame that ©@domid is allowed to map
and access. [GST]

x* GTF_accept_transfer: Frame whose ownership transferred
by ©@domid. [XEN]

*/

uint32_t frame;

+

typedef struct grant_entry grant_entry_t;

begun. After setting this flag, the hypervisor is required to complete the operation.
While this subflag is set, the guest may not modify the grant table entry. After
the operation has finished, and the page has been transferred, Xen asserts the
GTF_transfer_completed subflag. After this, the page will have been transferred to
the guest’s address space, and can be used as any other memory page. The frame
field will have been have been updated to reference the transferred frame.

Before the guest can modify its grant table, however, it needs to acquire access
to it. This is done using the GNTTABOP _setup_table command in conjunction with
an operation of form shown in Listing 4.6.

Listing 4.6: Grant table setup operation control structure (rrom: xen/include/public/-

grant_table.h]

struct gnttab_setup_table {
/* IN parameters. x/
domid_t dom;
uint32_t nr_frames;
/* OUT parameters. %/
intl6_t status; /% GNTST_x x/
XEN_GUEST_HANDLE(ulong) frame_list;
[

typedef struct gnttab_setup_table gnttab_setup_table_t;

The dom field in this indicates which domain the created grant table permis-



4.4

4.4. Exercise: Mapping a Granted Page 69

sions relate to. Most domains can only modify their own permissions, and so
must use DOMID_SELF for this. Domain 0, however, has some extra privileges,
and may set up grants for other domains. In general, this should only be used to
map pages as readable—transferring a page to an unsuspecting domain or writ-
ing data into its address space is likely to cause problems. Marking a page as
readable, however, can be used for debugging purposes. A developer can mark a
guest kernel’s address space as readable, and inspect it while the guest is running,
without requiring any modification of the debugged guest.

The size of the created table is set by the nr_frames field. This specifies the
minimum size of the newly created grant table. The hypervisor may create a bigger
table; however, this will not be visible to the guest. The table is returned in the
space allocated by the caller. The XEN_GUEST_HANDLE macro is used in a few
places in the Xen API, and is the companion of DEFINE_XEN_GUEST_HANDLE.
On x86, the second macro defines a type as a pointer to the argument, with the
name __guest_handle_name, where name is the argument. In this structure, the
type of frame_list is ulong*. The macro exists to provide some abstraction for
references. On x86, it is relatively easy for the hypervisor to access guest memory
given a pointer. On other platforms, a little translation is required. These macros
provide the abstraction required for this. The set_xen_guest_handle macro should
be used to set these. If it is, it should be relatively easy to port guest code between
different Xen platforms.

Exercise: Mapping a Granted Page

The most common use for the grant table is to move blocks of data between
the front and back ends of a device driver. The back end receives requests for
block I/O operations and processes them. Each operation contains a reference to
grant table entry containing the data to be read or written. For a more detailed
understanding of how device drivers work, see Chapter 6. For an example of grant
table operations, we will take a look at the NetBSD implementation.

Because the grant table operations are performed so often, NetBSD includes
a set of wrappers around them in xen_shm machdep.c. The function of relevance
in this file is xen_shm_map, which maps a number of grant table entries from a
specific domain to a set of virtual addresses in the kernel’s address space. The
prototype for this function is:

xen_shm_map(int nentries, int domid, grant_ref_t xgrefp,
vaddr_t xvap,
grant_handle_t xhandlep, int flags)

The arguments are fairly self-explanatory: the number of entries to map, the
domain from which to map them, the grant references and destination addresses,



O 00~ DU &~ W N

70 Chapter 4. Using Grant Tables

the grant references created by the map, and some flags. The destination ad-
dresses and grant references are output parameters; their values are filled in by
the mapping function.

The first step in this function is to allocate the address space to store the
granted pages. This is done as follows:

new_va_pg = vmem_alloc(xen_shm_arena, nentries ,
VM_INSTANTFIT | VM_NOSLEEP);

This allocates space for all of the granted pages in an area reserved for the
Xen shared memory. A corresponding call to vmem_free() exists in the unmapping
function. If there is no space in this region, the function returns ENOMEM. This
allows the caller to try unmapping some of its granted pages to try to free more
space. The NetBSD implementation attempts to map all of the granted pages
specified by a single call to a contiguous region of memory. If the shared memory
area has become fragmented, it is possible for larger allocations to fail.

The final step is to actually perform the mapping. This is a two stage oper-
ation, as shown in Listing 4.7. Before this can be done, it is necessary to get a
pointer to the allocated address space. The vmem_alloc function returns a page
number, and so this must be multiplied by the page size to give a pointer. This
is optimized into a shift here.

The first stage is setting up a number of gnttab_map_grant_ref_t structures,
one per reference. The domain ID and grant reference are filled in as would be
expected. The host_addr field in the grant table operation is set to an offset within
the allocated block of memory. Finally, the read only flag is translated from the
form used in other parts of the NetBSD kernel to the Xen-native version.

Listing 4.7: Mapping a series of granted pages in NetBSD

new_va = new_va_pg << PAGE_SHIFT;
for (i = 0; i < nentries; i++) {
op[i].host_-addr = new_va + i * PAGE_SIZE;
op[i].dom = domid;
op[i].ref = grefp[i];
op[i].flags = GNTMAP_host_map |
((flags & XSHM_RO) ? GNTMAP_readonly : 0);

}
err = HYPERVISOR_grant_table_.op(GNTTABOP_map_grant_ref, op,

nentries);

After the control structures have been set up, the mapping hypercall is issued.
After this, only error checking is required. The new_va value is returned via the
vap pointer argument, and the calling function can access the granted pages by
looking at offsets within this memory block.



4.5

O © 003 UL =~ W N ~

e
DU = W N

17

19
20
21
22

23

4.5. Exercise: Sharing Memory between VMs 71

Exercise: Sharing Memory between VMs

This section will describe a way of sharing a memory page between two co-
operating domains. For now, it will be assumed that the domain number and
grant table entry have already been communicated via some out-of-band mech-
anism. Typically, this will be via the XenStore, which is explained in detail in
Chapter 8.

The system for sharing a page is split into two components: one must offer the
page, whereas the other maps it. We will first look at the guest offering the page,
and then the guest mapping it.

The first requirement for presenting a page for sharing is to create a grant.
Listing 4.8 shows how this is done.

Listing 4.8: Offering a page for sharing (from: exampies/chaptera/offering.c]

#include <public/xen.h>
extern void * shared_page;
extern grant_entry_t *x grant_table;
void offer_page ()
{
uintl6_t flags;
/+x Create the grant table x/
gnttab_setup_table_t setup-op;
setup_op .dom = DOMID_SELF;
setup_op.nr_frames = 1;
setup_op.frame_list = grant_table;
HYPERVISOR _grant_table_op (GNTTABOP _setup_table, &setup_op,
1);
/+ Offer the grant x/
grant_table [0].domid = DOMID_FRIEND;
grant_table [0].frame = shared_page >> 12;
flags = GTF_permit_access & GTF_reading & GTF_writing;
grant_table [0]. flags = flags;
}

The first step is to create a grant table. This requires some space to be allocated
first to store it. Because we are not assuming any malloc() analog in the kernel,
we will allocate the space statically. More complicated kernels might incorporate
internal heaps, or slab allocators, for this kind of thing.

This example creates a gnttab_setup_table_t , which requests a grant table with



72 Chapter 4. Using Grant Tables

a single element, stored in the grant_table variable. The hypercall is then issued
to request, the hypervisor fill in the grant table.

Next, the grant table entry is filled in. Note that the flags field is filled in
last. Until the flags field is filled in, the grant table entry is invalid. If we filled
in this field before the others, we would have a grant table entry that would
appear to be valid, but with a not-fully-defined value. On some architectures, you
require a write barrier before filling in the flags value. On x86, however, writes
are guaranteed to complete in the order they are issued, so this is not required.
One final thing to note is that the address of the shared page is right-shifted by
12. This is to give the page number to which the pointer corresponds. If the
least significant 12 bits are not zero, the pointer is not page-aligned, and so this
will give some undefined results. The easiest way of ensuring this is to define our
shared page statically in our bootstrap as we did with other fixed-size pages.

The second guest needs to take the grant reference and map it to its own
address space. For now, we will assume that the grant reference and remote
domain have been obtained out of band. A function to perform the mapping is
shown in Listing 4.9.

This function takes three arguments. The first is the domain offering the page,
and the second is the grant table entry. The third is the location in the caller’s
address space into which the page should be mapped. This must be page-aligned.
The final argument is used to return the handle to the granted page.

The function sets up a single grant table mapping operation.  The
GNTMAP_host_map variable is set to indicate that we are only mapping this page
for interdomain communication, not for talking to a device driver.

Finally, we check the status to see if the mapping works. Using the standard
C semantic of a zero return meaning success, and nonzero indicating error, we
return —1 if there is an error. In this case, we don’t bother to return a grant
handle, because it would be invalid.

If everything worked correctly, the caller receives a zero return value, and can
then begin using the shared memory page. After it is finished with, the grant
handle can be used to unmap the page.

This mechanism can be useful in a few cases. Domains connected to the same
NFS server, for example, could use the mechanism to keep a common cache.
Similarly, this could be used to implement a virtual network interface similar to
the loopback interface, allowing two domains to communicate without having to
go via Domain 0. For desktop guests, this could be used to implement something
like the MIT shared memory extension to X11, allowing programs on the guest to
transfer large amounts of data to the display very quickly.



O © 001 U = W N =

N NN NNNNNRRRRBRRRKFBER R B 2
N OOt W N H OO 0 ULk W N =

4.5. Exercise: Sharing Memory between VMs

73

Listing 4.9: Sharing an offered page ifrom: examples/chaptera/mapping.c]

#include <public/xen.h>

grant_handle_t map(domid_t friend ,
unsigned int entry,
void x shared_page,
grant_handle_t % handle)

/+x Set up the mapping operation x*/
gnttab_map_grant_ref_t map_op;

map-op. host_addr = shared_page;

map-op. flags = GNTMAP_host_map;

map_op.ref = entry;

map_op.dom = friend;

/* Perform the map x/

HYPERVISOR _grant_table_op(GNTTABOP _map_grant_ref, &op,1);
/* Check if it worked */

if (map_op.status != GNTST_okay)

{
}

else

{

return —1;

/+* Return the handle x/
*handle = map_op. handle;
return 0;



This page intentionally left blank



5.1

Chapter 5

Understanding Xen Memory
Management

This chapter will explore how memory is handled by Xen. Memory management
is generally very CPU architecture dependent. On x86, the operating system
sets up page tables that the CPU’s Memory Management Unit (MMU) walks to
handle address translation, whereas something like SPARC handles page tables in
software and just expects the operating system to fill and empty the translation
lookaside buffer (TLB) in response to page faults. Although Xen runs on several
non-x86 platforms, this chapter will focus on x86, beginning with an overview of
how x86 manages memory in the absence of virtualization.

Much of this chapter is specific to paravirtualized guests. Those running in
HVM mode appear to be running in a normal x86 system, and so can perform
memory management exactly as if they were not virtualized. For performance
reasons, a guest that detects that it is running in a Xen HVM domain may wish
to detect this and switch to using paravirtualized memory management. This is
discussed in Chapter 13.

Managing Memory with x86

Xen, being a paravirtualization solution, closely models the platform on which
it runs. Therefore, to understand Xen memory management, it is worth taking
a close look at the underlying platform’s memory model. For most users, this
platform will be x86. If you are already fully conversant with the x86 memory
model, please skip ahead to the next section.

Starting with the 80286, the x86 family developed the concept of a protected
mode, giving a segmented virtual address space. The 80386 built on this to add

75



76 Chapter 5. Understanding Xen Memory Management

Table 5.1: Segment descriptors on x86

Register | Name Used for...

CS Code Segment | Instruction fetches

SS Stack Segment | Push and pop instructions
DS Data Segment | Most data addresses

ES Data Segment | String instruction addresses
FS Data Segment | Other data addresses

GS Data Segment | Other data addresses

paging and a 32-bit address space. This situation of paged segments persisted
until the Opteron, which discarded the segmented model and moved to a pure
paging approach.

The layout of the segments is defined by descriptor tables, stored in memory
and referenced by some special-purpose registers. At any given time, there are
two descriptor tables, the local and global descriptor tables (LDT and GDT).
The LDT defines a set of segments accessible for the current (userspace) process,
whereas the GDT defines segments visible to all processes.

Linear memory addresses for use by instructions are generated from two com-
ponents. The first is a 16-bit segment selector, which identifies the entry in the
descriptor table. This then gives a segment start and limit (which are cached in
hidden registers). The start is added to the offset specified by the operand to give
a virtual memory address. This is known as the linear address, because it corre-
sponds to an address in the process’s flat memory space, and is later translated
into a physical address by the page table mechanism.

The segment selector is stored in one of the segment registers. These, and
their meanings, are listed in Table 5.1. The first three registers all have specific
purposes. The CS register points to the segment used to contain executable code.
Any program counter address is taken to be in this segment. The SS register
indicates the segment containing the stack. The ESP register holds the stack
pointer, and any PUSH or POP instruction uses this address relative to the stack
segment. The DS register contains the “data” segment; basically, any other data
will be stored in this segment.

The ES register is used for translating memory addresses to be used by string
manipulation instructions. These use the address specified by the ESI register, in
the segment specified by the ES register as a destination. Because string instruc-
tions are very rare, it is common to use ESI as a general purpose register, and
ES along with FS and GS as general purpose segment registers. Most instructions
can have memory operands prefixed with the segment register to use, allowing
the last four registers to be used to partition a program’s memory neatly. In



5.1. Managing Memory with x86 7

practice, however, many operating systems simply create a descriptor table with
a single segment starting at address 0 and ending at the 4GB boundary, giving a
flat address space. Some use a slightly modified version of this, where the code
segment is separate, and marked read-only. Another efficiency optimization used
by some platforms is to map the entire kernel address space into all processes’
address spaces, in a segment with no permissions. This eliminates the need for a
context switch when moving between user and kernel space. Operating systems
that use this might use 1GB for the kernel and 3GB for userspace processes. This
is called a 1GB/3GB memory split. Kernels that perform a context switch for
every system call, and thus have completely separate address spaces, are referred
to as using a 4GB/4GB memory split. A pure object-oriented system might define
independent data and code segments for each object.

The segment selector is a 16-bit value. The first two bits of this indicate the
privilege level of the segment. Code running in a lower-privileged ring might be
unable to access a given segment. The next bit indicates whether the entry is in
the LDT or GDT. The final 13 bits indicate the offset in the table.

Segment Protections

Each segment has a set of access rights associated with it. These allow segments
to have some combination of read, write, and execute permissions associated
with them. A code segment is typically marked as read and executable, whereas
a data segment might be read and writable. For efficiency, some operating
systems map a part of the kernel’s address space into all processes as a read-
only segment, allowing things like coarse-grained time values to be accessed
directly, without the overhead of a system call.

Because segments are quite coarse-grained, so are their permissions. Most
of the segment-level permissions are mirrored at the page level, allowing finer-
grained control. One thing that was missing until recently was the capability
to map a page readable, but not executable. Recent chips, however, support
the no-execute (NX) bit on page permissions, making this a non-issue.

Because AMD removed the segmenting mechanism with x86-64, it is unlikely
that many future systems will make use of segmentation.

After an address has been resolved using a segment and offset, it maps to a
linear address. This can either be a physical address (if paging is disabled) or a
virtual address (if paging is enabled). Virtual addresses are then passed through
the paging mechanism to give a physical address. Typically, pages are 4KB in size
(although 2MB or larger pages are allowed by more recent x86 chips).




5.2

78 Chapter 5. Understanding Xen Memory Management

The paging system introduces two extra layers of indirection when mapping a
linear address to a physical one.! The linear address is split into three components:

e The page directory entry
e The page table entry

e The offset within the page

The page directory contains a list of page table addresses. Each page directory
is one page, as is each page table, meaning that their addresses only need to be
20 bits long (the lower 12 bits will all be zero). The page directory is stored in
the page identified by CR3, the page directory base register. The first 10 bits of
the linear address then give an entry in this table.

The page directory entry gives, among other things, the address of a page
containing the relevant page table. The next 10 bits of the linear address indicate
the page table entry. This, in turn, gives the physical offset of the page. The
remaining 12 bits of the linear address then give the address within the page.

The double indirection in the paging system makes it relatively easy to imple-
ment aliasing. A single page table can be pointed to by multiple page directory
entries, making multiple linear addresses point to the same physical pages.

Pseudo-Physical Memory Model

Users of modern operating systems are already familiar with virtualization in the
context of memory, because the concept of virtual memory has been around for
quite a while. Typically, the term virtual memory is used to describe memory that
can be paged to disk, whereas protected memory is used to describe virtualized
memory.

In an operating system with protected memory, each application has its own
address space. From the application’s perspective, it has access to the entire
memory space. A hypervisor needs to do something similar for guest operating
systems. This means that applications have two layers of indirection to go through.
Figure 5.1 shows these three layers.

The triple indirection model is not necessarily required. It would be possible
to have all guest kernels exist in the physical address space and simply prevent
them from reading from or writing to those owned by other domains. This was
not done for two reasons. The first is that many existing operating systems work
on the assumption that they have a continuous, flat, address space. Support for
gaps in physical memory is typically implemented to enable faulty modules to be

IThis is slightly different with Page Address Extensions or Page Size Extensions enabled. For
details on these modes, consult the IA32 Architecture Manual, Volume 3A.



5.2. Pseudo-Physical Memory Model 79

Frame Number Types

At various places in the Xen hypercall API, variables are identified as an MFN,
PFN, GMFN, and GPFN. The most general of these is a PFN, or page frame
number, which just means “some kind of page frame number” and can vary in
exact meaning depending on the context.

An MFN is a machine frame number, which is the number of a page in
the (real) machine’s address space. This is used when doing pseudo-physical
to machine translation, for example. On some architectures—those with hard-
ware virtualization, or software TLBs—the guest is never aware of the machine
addresses of any of its memory pages, and so these are not used.

Linear addresses are accessed via a guest page frame number (GPFN). These
are page frames in the guest’s address space. These page addresses are relative
to the local page tables, and so change quite quickly.

The hardest to define is the guest machine frame number (GMFN). This
refers to either an MFN or a GPFN, depending on the architecture. These
addresses are what the guest perceives to be MFNs. On x86 (without HVM),
these are real MFNs. On most other platforms, they are GPFNs in a specific
context. Any parts of the API that are architecture-neutral tend to use these
instead of real MFNs.

ignored. Because it is an exceptional state, it may well be a less optimized code
path. Forcing guests to use sparse address spaces would likely either be slow or
require invasive modifications to the kernel, neither of which is ideal.

The second reason for adopting this model relates to the virtual machine’s life
cycle. Even discounting live migration, it is likely that a virtual machine will not
spend all of its lifetime in the same place; it will be suspended and later resumed.
After resumption, it is not guaranteed that the same physical memory pages will
be available—especially if the guest is resumed on a machine other than the one on
which it was suspended—and so physical memory addresses stored by the kernel
would need to all be remapped.

Most of the time, the guest kernel does not need to know anything about
the machine pages. When it does, it must use the translation table provided by
the shared info page. On x86, this is part of the architecture-specific shared info
structure. Pseudo-physical to machine mappings are highly architecture-specific,
and sometimes not required at all. On PowerPC, for example, the native hardware
virtualization support is used throughout, and so the guest kernel is never exposed
to the machine address space.




80 Chapter 5. Understanding Xen Memory Management

Application \_ Virtual
Kernel -+ | Pseudo-physical
Hypervisor | - Machine

Figure 5.1: The three layers of Xen memory

5.3 Segmenting on 32-bit x86

As described earlier, x86 has a segmented memory model. Although this is not
heavily used by most operating systems, it provides some use to Xen. Segments
are defined by 64-bit segment descriptors. These have a 32-bit offset, and a 20-bit
limit. This leaves 12 bits for flags. One of these defines the granularity of the
limit, either page or byte, allowing 0-1MB segments to be defined with a one-byte
granularity, or 4KB-4GB segments with a page granularity. The remainder define
the type and permissions.

Segments are defined in two tables, the GDT and LDT. Xen guests can update
the LDT in the same way they update the page tables, but they can only modify
the GDT via an explicit hypercall.

Every time a hypercall is issued, Xen needs to be able to access the hypervisor’s
memory. Because most hypercalls performed take a pointer as an argument, it
also needs to access (some subset of) the guest’s address space as well. One way
of doing this is to perform a full context switch on every hypercall, and map the
required pages from the guest into the hypervisor’s address space as required.
Although this is conceptually simple, it is fairly slow (around 500 cycles on a
Pentium 4), and not the sort of thing you want to be doing very often.

One way around this is to use a memory split, as described earlier. Xen reserves
the top 64MB of address space for itself on a 32-bit x86 system. Figure 5.2 shows
an example memory layout for a UNIX-like system running under Xen.



5.3. Segmenting on 32-bit x86 81

x86-32 x86-64
OxffEEEEEE _ OxEEEEEELEEEEEEEEE
0x£c000000
Ring 1
0xc0000000 OxELEETEELELELEEEEE
Stack

0x0000800000000000
Stack
Ring 3 i V
? Ring 3
Heap | Heap
Text | Text
0x00000000 0x0000000000000000

D Kernel D Application . Xen

Figure 5.2: Memory layout on x86 systems

The top 64MB are in a segment reserved for Xen. The protection flags for
this segment? are set to 0, indicating that only ring 0 may access this segment.
The remainder of the top 1GB in this example is reserved by the kernel, which is
performing the same trick for system calls. Finally, the remainder is used by an
application, with the top used for the stack, and the bottom for the heap, growing
down and up, respectively. The kernel’s segment is marked as only readable by
ring 1 or above, preventing the application from touching it, but allowing the
kernel and hypervisor access.

When a hypercall is issued, there is a transition to ring 0, and the Xen segment
becomes accessible. From there, it is only a matter of referencing the correct
segment to be able to switch between Xen, the kernel, and the application’s address
space.

Although this mechanism is nice and simple, it does have some problems when
it comes to portability. Most other modern CPU families don’t provide segmenta-
tion. In fact, neither does x86-64, meaning this mechanism cannot be used when
running Xen in 64-bit mode.

?Bits 13 and 14, the descriptor privilege level



5.4

82 Chapter 5. Understanding Xen Memory Management

The solution is to rely on page-level protections. On x86-64, Xen reserves a
large space in the middle of the address space. There is a natural break between
247 and 264 — 247 in the current implementation of x86-64. Although the system
allows 64-bit pointers, it only actually implements a 48-bit address space® with
247 bytes available at the top and the bottom of the address range. Because the
x86-64 architecture doesn’t support segmentation, the permissions for this must
all be done at a page level.

On systems that support the Page Address Extensions (PAE) mode introduced
with the Pentium Pro, Xen reserves the top 168MB of a 36-bit address space. In
other respects, the memory model used on PAE systems is the same as that on
other x86-32 machines.

Using Xen Memory Assists

The handling of virtual memory is a significant issue for most virtualization sys-
tems. In a pure virtualization environment, the hypervisor must trap all page
table updates and translate them in such a way that the principle of isolation is
not violated. In a paravirtualized environment, hypercalls corresponding to MMU
updates are available as a substitute for direct MMU interaction.

This is much faster; however, it is also a lot of work to translate all existing
page table updates into hypercalls. For HVM domains, Xen also provides shadow
page tables. The guest has a copy of the page table, in a set of pages marked
by the hypervisor as read-only. When the guest updates these, it causes a fault,
and control is transferred to the hypervisor. The hypervisor then translates the
updates into the real page table (validating and performing pseudo-physical to
machine translation) and continues.

HVM guests require full virtualization of their page tables, so they require
shadow page tables, which are quite expensive to maintain and use. Fortunately,
some of this extra cost is ameliorated by the fact that VT-x and AMD-V both
include hardware support for shadow page tables. The other major use is in
migration. When a guest is live-migrated, it is necessary for the hypervisor to
track which pages have been modified. The shadow page table mechanism is used
in the background during migration to allow this.

Xen also provides an assist somewhere between full paravirtualized page tables
and shadow page tables, known as writable page tables. In this mode, page tables
are not really writable, but the guest is presented with the illusion that they are.
The page tables are marked as read-only by the hypervisor, and an attempt to
write to them triggers the following sequence of actions:

3This is relatively common on 64-bit architectures. A 48-bit address space gives 256TB,
which is likely to be enough for the next few years.



5.5. Controlling Memory Usage with the Balloon Driver 83

1. The page directory entry pointing to the page is invalidated, removing it
from the page table.

2. The page is marked as read/write.

3. The guest modifies the page and continues.

4. When an address referenced by the newly invalidated page directory entry
is referenced (read or write), a page fault occurs.

5. The hypervisor traps the page fault, validates the contents of the new page
table, and reattaches the page.

This is relatively simple to work with, because much existing MMU code can
be recycled without major modifications. The major change comes from the fact
that the page tables must point to machine addresses, not pseudo-physical ones.
This means that the guest kernel’s memory management code must deal with
machine pages, whereas much of the rest of the kernel will use pseudo-physical
addresses. The other modification required comes from the way in which this is
implemented. Because the page directory entry is used to cause page faults when
referenced pages are touched, the page directory itself can’t be modified using this
mechanism.

Two other, closely related, assists are available. As mentioned earlier, the
segmentation mechanism is used to reserve 64MB at the top of the address space
for Xen. This can cause problems for some virtual memory systems that rely on
the 4GB segment size.

The two assists related to 4GB segments emulate their existence, and provide
a trap when they are used. Interrupt 15, marked as “reserved for future use” in
current x86 documentation, is used to deliver the notification. Guests using this
assist should install a handler for this interrupt as described in Chapter 7.

All of the assists in this section are enabled or disabled by the hypercall shown
here:

vm_assist (unsigned int cmd, unsigned int type);

The command is either VMASST_CMD _enable or VMASST_CMD _disable, and
the type is one of those listed in Table 5.2. The final type has not been discussed
here, as it is only applicable in PAE mode.



5.5

~N DU W N R

84 Chapter 5. Understanding Xen Memory Management

Table 5.2: Available VM assists
Name Summary
VMASST_TYPE _4gb_segments Emulate 4GB segments
VMASST _TYPE 4gb_segments_notify | Raise interrupt (trap) 15 in the guest
when the previous assist is used
VMASST_TYPE_writable_pagetables | Make page tables (but not directories)
writable directly, not using a hypercall
VMASST_TYPE_pae_extended_cr3 Permit CR3 to contain a page-directory-
pointer-table in PAE mode

Controlling Memory Usage with the Balloon Driver

Currently, Xen does not do swapping.* This means that any memory allocated
to a domain is unavailable for other purposes, even if it is not being used. The
balloon driver provides a way around this.

By using the balloon driver, a guest can either give up or request more memory
from the hypervisor’s pool. A well-behaved guest implementing this will return
large unused blocks of memory to the hypervisor. A full implementation of the
balloon driver will watch a value in the XenStore, which indicates the “target”
memory usage. This can be set by a system administrator with access to Domain
0. If the guest is using more memory than requested, it should try freeing some
buffers or swapping data out to the block device, and then release some. If it is
allowed more, then it may wish to increase the size of its block device cache.

The hypercall used for these operations is HYPERVISOR_memory_op. This
takes two arguments: a command and a pointer to a structure containing an op-
eration. A large variety of commands is currently available. Those most relevant
to the balloon driver are XENMEM _increase_reservation and
XENMEM _decrease_reservation. These both use the control structure shown in
Listing 5.1 as the second argument.

Listing 5.1: Memory reservation modification control structure

struct xen_memory_reservation {
XEN_GUEST_HANDLE( xen_pfn_t) extent_start;

xen_ulong_t nr_extents;
unsigned int extent_order;
unsigned int address_bits;
domid_t domid ;

+

4This is a design decision. Supporting swapping would mean that guests would not know
whether their memory was in-core or not, and could seriously degrade performance.




8|

5.6. Other Memory Operations 85

typedef struct xen_memory_reservation Xxen_memory_reservation_t;

The first element of this has a variety of different uses. When increasing the
reservation, this is filled in by the hypervisor with the machine address of the
pages that were allocated to the domain. When decreasing, this is used to pass
in the guest machine frame at the base of the range to free.

A third command makes use of this structure, XENMEM_populate_physmap,
which is used by the domain builder in Domain 0 to create the initial memory
allocation for a new domain. This is generally passed a relatively large allocation
of pages in one call.

The next two attributes define the size of the region. The nr_extents gives the
number of regions pointed to, and the extent_order gives their size. The order is
not an absolute size, but rather the alignment. The actual size is 26%tent-order gq
quad-word extents would be specified by setting extent_order to 3.

The address_bits field defines the size of the address space of the target. This
is used for 32-bit guests on 64-bit systems, for example, and for I/O devices with
similar limitations (for example, 32-bit PCI devices). Finally, the domid specifies
the domain being referred to, and must be DOMID_SELF for anything other than
Domain 0.

Three other commands are relevant to the balloon driver. Both are passed with
the second argument set to zero, and return information about the current memory
allocation. XENMEM_maximum_ram_page gives the machine frame number of the
highest numbered page allocated to the calling guest. On some architectures, the
hypervisor does not maintain a machine to pseudo-physical mapping table, and
so the guest must do so itself. In this case, the return value from this hypercall
can be used to determine how much space the guest needs for this mapping.

The other two relate to the amount of memory allocated to the machine.
XENMEM _current_reservation gives the size, in pages, of the current allocation and
XENMEM _maximum_reservation gives the maximum. The guest should typically
keep track of its own current allocation, rather than frequently query the hypervi-
sor, although this can be useful for validation. The balloon driver, monitoring the
target size in the XenStore, should attempt to increase or decrease the reservation
until this value corresponds to the target. Any attempts to increase the memory
reservation beyond the maximum will fail. Keeping track of the maximum inside
the guest can be used to avoid issuing comparatively expensive hypercalls that
are known to fail in advance. The maximum RAM page can always be returned;
however; the current and maximum reservation size will sometimes fail. When
this happens, the hypercalls return negative values.

These commands have quite a bit of flexibility, and are used beyond the balloon
driver. In the context of ballooning memory, they are typically used to increase
or decrease a guest’s memory allocation by one or two pages at a time. They are
also quite commonly used to acquire regions of contiguous memory for device use.



DU W N =

DU R W N =

86 Chapter 5. Understanding Xen Memory Management

Other Memory Operations

The HYPERVISOR_memory_op hypercall has a large number of commands associ-
ated with it beyond those discussed in the last section. Each small group of these
has an associated command structure.

The XENMEM _exchange command is used to atomically exchange two page
frames in the guest machine page frame space. This could be used, for example, to
defragment memory if large contiguous regions are required by the guest. This uses
the control structure shown in Listing 5.2. The three elements in this correspond
to the input and output addresses, in the form used for the set of commands
described in the last section.

Listing 5.2: Page exchange control structure

struct xen_memory_exchange {
struct xen_memory_reservation in;
struct xen_memory_reservation out;
xen_ulong_t nr_exchanged;

T

typedef struct xen_memory_exchange xen_memory_exchange_t;

The in and out fields of this are filled in with the ranges of page frames to be
exchanged, although the address_bits field in in is ignored. When the hypercall is
issued, the pages have their location in the guest’s machine address space moved
from the location specified by in to the location specified by out atomically.

The next command is only relevant on some platforms. If the guest is aware
of the pseudo-physical to machine mapping then there needs to be some way of
keeping track of this mapping. HVM guests on x86 are generally not aware of this
mapping, and neither are guests on most other platform, which use hypervisor-
support extensions in the underlying architecture to perform this translation. The
XENMEM _machphys_mfn_list command is used to acquire this mapping, using the
operation structure shown in Listing 5.3.

Listing 5.3: Control structure for acquiring the machine to pseudo-physical map-
ping table
struct xen_machphys_mfn_list {
unsigned int max_extents;
XEN_GUEST_HANDLE( xen_pfn_t) extent_start;
unsigned int nr_extents;
i

typedef struct xen_machphys_mfn_list xen_machphys_mfn_list_t;

This structure is basically a wrapper around an array. The extent_start mem-
ber is a pointer® to a block of memory into which the hypervisor should write

50r other handle, depending on the platform.



172
173
174

175

176
177

5.6. Other Memory Operations 87

the machine to physical table. Generally, this mapping is fairly static, because
the hypervisor does not support swapping, although it can be modified by the
guest. After migration, this table will be invalid and so should be rerequested if
it is required. The max_extents field indicates the amount of space in this array,
whereas nr_extents is filled in by the hypervisor to convey the number actually
used. This table is an array of pseudo-physical frame numbers of the start of 2MB
extents, corresponding to 2MB ranges in the pseudo-physical address space. Some
gaps may be present in this, represented by null values in the array.

On some architectures, this table is mapped into the guest’s address space at
system start. The address can be retrieved using the XENMEM _machphys_mapping
command. This takes a control structure with three fields as shown in Listing 5.4.
The fields in this are quite simple; they store the range of virtual addresses of the
machine to pseudo-physical address table, and the largest page it contains. All of
these fields are filled in by the hypervisor when the call returns.

Listing 5.4: Operation for retrieving the virtual address of the M2P table (trom:

xen/include/public/memory.h]

#define XENMEM _machphys_mapping 12

struct xen_machphys_mapping {
xen_ulong_t v_start, v_end; /x Start and end virtual
addresses. */
xen_ulong_t max_mfn; /* Maximum MFN that can be

looked up. x/
b

typedef struct xen_machphys_mapping xen_machphys_mapping_t;

Guests on some platforms (including HVM x86), as mentioned earlier, are
not directly aware of their machine frame addresses. They simply act as if their
pseudo-physical addresses are real addresses. This is not always acceptable, how-
ever. If one of these guests passes an address to a piece of hardware in order for
it to perform a DMA transfer, the device ends up writing over some random part
of the machine address space. In an ideal world, the IOMMU would be set up
so that the device’s address space directly corresponds with its owners. This is
not always possible, however, because not all platforms come with an IOMMU as
standard.

If a guest needs to perform this translation (that is, it is a pure paravirtualized
guest), it can use the XENMEM _translate_gpfn_list command with the operation
structure from Listing 5.5. Another use for this hypercall is for Domain 0 to
determine the machine address pointed to by a pointer extracted from the guest
domain. The domid, as always, tells the hypervisor which domain the operation
applies to. Next comes an array of guest page frame numbers and the number
of elements in the array. When this hypercall is executed, each one of these has
a corresponding value filled in in the final array, indicating the corresponding



N U W N -

88 Chapter 5. Understanding Xen Memory Management

machine frame. As usual, the guest is responsible for allocating the space into
which the hypervisor will store this data.

If this hypercall is valid, and no error occurs, this gives a non-negative return
value.

Listing 5.5: Control structure for translating a list of GPFNs into MFNs

struct xen_translate_gpfn_list {
domid_t domid;
xen_ulong_t nr_gpfns;
XEN_GUEST_HANDLE( xen_pfn_t) gpfn_list;
XEN_GUEST_HANDLE( xen_pfn_t) mfn_list;
&
typedef struct xen_translate_gpfn_list
xen_translate_gpfn_list_t;

As discussed previously, the hypervisor has to provide replacement function-
ality for the BIOS to guests, because they are not able to make BIOS calls di-
rectly. One such call, interrupt 15h with AX set to E820h, is used to get the
initial memory layout at boot time. This call supersedes earlier BIOS memory
querying operations designed for real mode operation. The hypervisor replaces
this with XENMEM _memory_map. This takes an operation field with only two
elements: nr_entries and buffer. The first is filled in with the number of entries
for which space has been allocated in the buffer, and the second points to the
buffer. After being invoked, the first parameter is set to the number of entries in
the buffer.

The buffer itself is filled with entries in the same form as that provided by
the corresponding BIOS call. These are composed of a 64-bit base address, a 64-
bit length, and a 32-bit type. The type is either 1 for memory that the operating
system can use or some other value for other kinds of memory. A guest that makes
use of this BIOS call should already have code for handling these structures, and
should simply replace the BIOS call with this hypercall. New guests are unlikely
to need it while in domain U, although moving to Domain 0 will give them an
address layout more similar to native x86, and so they may find it useful. A
variant of this, XENMEM _machine_memory_map, uses the same control structure
but returns the layout of machine memory, rather than pseudo-physical.

These two have a companion command, XENMEM _set_memory_map, which is
used by Domain 0 to initialize the memory map of a newly created domain. This
is used in conjunction with an operation structure containing two elements. The
first is the ubiquitous domid and the second, map, is a structure of the sort used
with the previous two commands. When the guest calls XENMEM_memory_map,
the value passed in with map by Domain 0 will be returned.



5.7

329
330
331
332

5.7. Updating the Page Tables 89

Updating the Page Tables

Memory pages in Xen have a type corresponding to their use. Descriptor tables
(GDT or LDT), page directories, and tables each have their own types. Any page
that has one of these types may be mapped as readable by the domain, but not
writable. This ensures that the domain can’t ever update its own page tables,
which in turn ensures that no unprivileged domain can access another’s address
space without going via the grant table mechanism.

Because a guest is not permitted to modify its page tables directly, a hypercall
mechanism needs to be in place that allows it. This hypercall performs the update,
after checking that it should be permitted. Any attempt to modify the page tables
to point to a machine page not owned by the guest will fail.

Because hypercalls are significantly more expensive than simple memory ac-
cesses, a single hypercall can perform multiple page table updates. The prototype
for this hypercall is shown here:

HYPERVISOR_mmu_update(mmu_update_t % req, int count, int =x
success_count);

As usual, the hypercall takes an array of structures, and a count indicating the
number of these structures. The third argument is used to return the number of
operations that succeeded. If success_count is less than count, at least one of the
operations failed. The hypercall does not indicate directly which updates failed.
It is up to the caller to walk the page tables to discover this.

The mmu_update_t structure is a simple pair, as shown in Listing 5.6. The ptr
field is used to contain the address of the page table entry to be updated, and the
val field is used to specify the new value. Because page table entries are 32 bits®
(and are page aligned), the least significant two bits of the ptr value is always zero.
The hypercall interface specifies that these two bits are ignored when calculating
the address. Instead, they are used to encode the type of the update.

Listing 5.6: MMU update control structure erom: xen/include/public/xen.h]

struct mmu_update {
uint6b4_t ptr; /* Machine address of PTE. x/
uint64_t val; /* New contents of PTE. */

+

Two update types are permitted, and a single hypercall may use a mixture
of them. FEither one of the following values can be XOR’d into the ptr value.
Because the lowest two bits of this field should be 0, for alignment reasons, they
are reserved for flags.

60n 32-bit x86. On 64-bit platforms, they are 64 bits and the least significant four bits of
the pointer are unused.



90 Chapter 5. Understanding Xen Memory Management

MMU_NORMAL_PT_UPDATE performs a standard page table update. ptr
points to an entry in a page table or page directory.

MMU_MACHPHYS_UPDATE performs an update to the machine to physical
mapping table. When invoked from a domU guest, val must point to a
machine page owned by the domain.

While it is more efficient to update a number of page table entries at once,
this is not always required. A userspace program in the guest calling malloc(), for
example, may only require a single change to the page table to map a new page
into its address space. In this case, having to create the control structure provides
some overhead for the guest, whereas having to reference guest’s memory provides
a small amount of overhead for Xen. A variant of this hypercall, shown below,
allows a single entry to be updated.

HYPERVISOR_update_va_mapping(unsigned long va, uint64_t val,
unsigned long flags)

On x86, the three arguments to this hypercall are passed in EBX, ECX, and
EDX, removing a layer of indirection from the system. The first two arguments
do not correspond directly to the ptr and val fields in the previous hypercall.
This call updates the current page table so that the page pointed to by va will
reference the machine page val. The flags argument indicates which, if any, TLBs
are flushed as a result of this update.

The flags variable is split into two parts. The lowest two bits indicate the
type of the flush; the remaining bits define the scope. Three types of TLB flush
are possible:

e No flush at all, indicated by UVMF_NONE.
e A single entry can be flushed, if the UVMF_INVLPG flag is specified.
e Finally, the entire TLB contents can be flushed if UVMF_TLB_FLUSH is

given.

The mask used to extract the type is UYMF_FLUSHTYPE_MASK. The remain-
ing bits are used to indicate which TLBs should be flushed. In a uniprocessor sys-
tem, there is only a single TLB, so this is not particularly important. On others,
it may be that a number of threads belonging to a single process are scheduled
to run concurrently on different processors. In this case, they will be sharing the
same page tables, so an update needs to be propagated. Two flags can simply be
OR’d with the value; UVMF_LOCAL or UVMF_ALL indicate either the local TLB
or all, respectively. The final option UVMF_MULTI means some TLBs should be
flushed—exactly which must be specified with a CPU bitmap. The pointer to this
bitmap must be OR’d with the flags argument.



236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

5.7. Updating the Page Tables 91

A guest running in Domain 0 has access to a four-argument version of this hy-
percall: HYPERVISOR_update_va_mapping_otherdomain. This allows a privileged
domain to perform updates to another domain’s page tables. In most settings, the
only privileged domain is dom0, however in more recent versions of the hypervisor
it is possible to delegate some of Domain 0’s power to other domains using the
Xen Security Modules framework.

These hypercalls allow most common MMU operations; however, they don’t
allow everything a guest might need. An extended interface is provided via the
hypercall shown here:

HYPERVISOR_mmuext_op(struct mmuext_op %op, int count, int x
success_count , domid_t domid);

The structure of this hypercall is very similar to the nonextended version. An
array of operations is passed, and the number that succeeded is returned in the
success_count argument. The domid parameter allows operation on other domains
page and segment descriptor tables to be performed, as long as the calling domain
is sufficiently privileged (typically, it is set to DOMID_SELF). This allows Domain
0 to implement the same functionality as the grant tables provide, although this
is not recommended.

The control structure for this operation, shown in Listing 5.7, is compara-
tively complicated. The first argument is the command to be performed. There
are currently 15 of these supported by Xen. The first five relate to the pinning
mechanism. If a page used by a table is no longer referenced by any others in the
page table hierarchy, the hypervisor no longer gives it special attention. If it is
then re-added, the hypervisor needs to revalidate its contents. To prevent this,
the page can be “pinned,” forcing Xen to treat it as a page table entry, even if it
is not referenced.

Listing 5.7: Extended MMU operation control structure (mrom: xen/include/public/xen.h]

struct mmuext_op {
unsigned int cmd;

union {
/* [UN]PIN-TABLE, NEW_BASEPTR, NEW.USER-BASEPTR x/
xen_pfn_t mfn;

/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT x/
unsigned long linear_addr;

} argl;

union {
/* SET_LDT x/
unsigned int nr_ents;
/* TLB_.FLUSH_-MULTI, INVLPG_-MULTI x/
XEN_GUEST_-HANDLE_00030205( void) vcpumask;

} arg2;



92 Chapter 5. Understanding Xen Memory Management

The four commands to pin a page are of the form MMUEXT_PIN_L1_TABLE,
where L1 indicates the leaf layer of the page tables, and can be any value between
L1 and L4. For a 32-bit x86 system, L1 will be the page table, and L2 will be
the page directory. A single command, MMUEXT_UNPIN_TABLE, is used for the
inverse operation. For both of these operations, the mfn part of the argl union is
used to specify the machine frame containing the page table (or directory). Not
all of these are valid on all host architectures. On 32-bit x86, for example, the
page tables are only two layers by default (although a third layer is possible with
some PAE modes), whereas on x86-64, all four layers are used.

The next commands relate to installing new page tables. The
MMUEXT_NEW_BASEPTR and MMUEXT_NEW_USER_BASEPTR commands in-
stall a new page table base (CR3 value) in the global and userspace contexts,
respectively. The latter command is only valid on x86-64 platforms. In both of
these cases, the mfn part of the argl union is used to specify the machine page of
the new page table base.

The next group of six commands relates to the translation lookaside buffers.
These roughly correspond to the operations allowed by the nonextended version
of this hypercall. The six commands perform two operations in three scopes; they
flush either the entire TLB or a single entry in either the local, a specified set of,
or all TLBs. Table 5.3 lists them all.

Table 5.3: Extended MMU operation commands

Command Operation Scope

MMUEXT _TLB_FLUSH_LOCAL | Flush TLB Local TLB
MMUEXT_INVLPG_LOCAL Invalidate entry | Local TLB
MMUEXT _TLB_FLUSH_MULTI | Flush TLB Specified TLBs
MMUEXT _INVLPG_MULTI Invalidate entry | Specified TLBs
MMUEXT _TLB_FLUSH_ALL Flush TLB All TLBs
MMUEXT _INVLPG_ALL Invalidate entry | All TLBs

If a single TLB line is being invalidated, the address must be specified in the
linear_addr component of the argl union. For the *MULTI variants, the vcpumask
attribute of the arg2 union is used to specify a pointer to a bitmap specifying
which TLBs (identified by virtual CPU number) should be flushed.

The next command is somewhat related; it flushes the contents of the cache. If
MMUEXT _FLUSH_CACHE is specified, the contents cache is written back to main
memory and all cache lines invalidated. This takes no arguments.

The final command, MMUEXT_SET_LDT, is used to specify a custom LDT.
The linear_addr component of argl specifies the (page aligned) address of the
LDT, and the nr_ents element of arg?2 specifies the number of entries it contains.



5.7. Updating the Page Tables 93

There is one more function related to memory management that can be per-
formed by a guest; updating the segment descriptor tables. Updates to the LDT
can be handled via the HYPERVISOR_mmu_update call described earlier, however
the GDT requires special handling.

By default, Xen installs a flat GDT, with a single segment mapping the entire
linear address space. Some guests may want to install their own GDT, however.
This is typically done simply by issuing the LGDT instruction, which loads the
operand value into the GDTR. As with other MMU updates, it is necessary for
the hypervisor to validate the contents of the new GDT to ensure that it doesn’t
touch any memory not owned by the domain.

HYPERVISOR_set_gdt(unsigned long x frame_list, int entries);

The prototype for this hypercall is shown above. The arguments give an array
of up to 16 machine frames, and the number of segment descriptors they contain.
The maximum number of segments allowed in the GDT by x86 is 8192; however,
these are not all available to Xen guests. As discussed earlier, the hypervisor itself
uses the segmentation system to isolate the guest. The segments defined by Xen
begin on page 14 of the GDT, giving 7168 free entries for use by the guest ker-
nel. Of these, four are initially configured as flat code segments and data/stack
segments for ring 1 (the paravirtualized kernel) and ring 3 (userspace applica-
tions). A guest using a flat address space can use these values directly, without
installing its own GDT. They are symbolically defined as macros of the form
FLAT_RING1_CS, where RINGL1 is replaced by RING3 for the userspace version,
and CS can be DS or SS for the data and stack segments, respectively.

5.7.1 Creating a New VM Instance

Creating a new virtual machine instance requires two phases: the creation of the
domain and the booting of the guest kernel. These two are in some ways related.
When preparing the domain, the start info page must be mapped into its address
space at the location specified by the guest kernel, for example.

The initial memory configuration of a new domain contains the guest kernel,
any specified modules, and the start info page. It must also contain access rights
to the shared info page and grant references relating to device drivers. Each driver
must also be properly instantiated and have relevant XenStore information filled
in.

The HYPERVISOR_memory_op hypercall can, when used from Domain 0, be
used to configure the initial allocation of space to a domain, and the hypercalls
described in the previous section can be used to configure the initial page tables.
Typically, the domain builder in dom0O creates the domain with the correct amount
of memory, maps the required pages, and initializes the required structure. Control
is then passed to the new domain via Xen.



94 Chapter 5. Understanding Xen Memory Management

5.7.2 Handling a Page Fault

When a page fault occurs, the hypervisor generates a trap, and asynchronously
invokes the corresponding trap handler (number 14, in the case of x86). This
handler must then either fix the problem or deal with the failure in some other
way (for example, terminate the running process).

Interrupts

Xen allows a virtual interrupt descriptor tableIDT to be installed by guests.
In Xen terminology, this is known as a trap table. The trap table structure,
discussed in more detail in Chapter 7, is structurally similar to the host plat-
form. If porting an operating system to Xen, the existing interrupt handlers
can typically be used directly.

The first thing to do is detect which address caused the fault. On native x86,
this address is stored in the CR2 register. Under Xen, the CR2 register is copied
into the cr2 element of the arch_vcpu_info structure. As with a native page fault
handler, the first thing that must be done is to copy this value somewhere safe.
This is because the page fault handler itself accesses memory, and so can cause
additional faults. If this occurs (typically indicating damaged page tables or an
invalid memory reference), the contents of the CR2 register” are overwritten.

After the page fault address has been identified, the page tables must be up-
dated so that it is valid. Typically, this is done in one of two ways. If the page
fault is caused by lazy allocation, an unused physical page must be recycled into
use. If the fault was caused by swapping, the contents must be loaded from disk
to either an unused page or to a page that is then evicted. After the new page
has been identified, the guest kernel issues the HYPERVISOR_update_va_mapping
hypercall to point the virtual address to the new physical page.

5.7.3 Suspend, Resume, and Migration

Most guests will want to support suspending and resuming. These operations
allow the domain to be serialized to disk and then restored later. The machine
on which the domain is restored might not even be the same one on which it was
suspended. It must meet the following requirements to be restored:

e The CPU type must be the same.
e The new host must have enough free RAM.

e The block device (if one is in use) must be available.

"Real or virtualized.



5.8. Exercise: Mapping the Shared Info Page 95

It is possible, for example, to have a block device backed by a partition on
a USB Flash drive, and suspend the VM to another partition. The drive could
then be carried to a new machine and resumed. It is possible that this kind of
migration might cause some problems for a guest, because it will need to reini-
tialize any network interfaces, and will be likely to suddenly change IP addresses.
This shouldn’t be a problem for operating systems that already work in laptop
environments, however.

The first step in a suspend operation is for the guest to receive a suspend
request via the XenStore. It must then put itself into a state ready for suspension
and then issue a hypercall to actually begin the suspend operation.

CPU Suspension

Although not related to memory, and thus not entirely relevant here, it is worth
remembering that Xen only suspends the state of the first virtual CPU. If you
are running on multiple CPUs, it is your responsibility to stop the others before
suspending. When you resume, you must then reinitialize the virtual CPUs
before continuing.

It is likely that any running guest will have references to machine pages stored
at various places. After it is suspended and resumed, these will all point to
random locations, many of which might not even be owned by the guest and thus
will cause faults if they are used. The guest must turn all of these into pseudo-
physical addresses if it owns the pages, or some more abstract representation if
not.

An example of the pages requiring more abstract storage is the set used for
communication with virtual devices. After migration, the pages need to be recon-
nected by the new back end. Some part of the guest must maintain the information
required to locate the new provider for the device in the XenStore and reconnect
the page. Other parts of the guest may use a pseudo-physical page reference, as
long as they do not attempt to use it until it has been remapped.

When the guest resumes, it must do the inverse operation. First, shared pages
must be remapped via the grant tables. Often these are indirect references, so
the XenStore page must be reconnected and then this is used to discover the
new pages. Finally, any other virtual CPUs must be restarted and execution can
continue.

Exercise: Mapping the Shared Info Page

One of the first things a guest needs to do is map the shared info page into its
own address space. The machine address was passed into the domain via the start




=W N

96 Chapter 5. Understanding Xen Memory Management

info page, in the start_info field. In the kernel bootstrap we wrote previously, we
had reserved space for it, so all we need to do now is update our page tables to
incorporate it.

To make the preallocated space accessible from C, we need to tell the compiler
about it. We do this by declaring the symbol as extern. The compiler then treats
it as valid and, if all goes well, the linker replaces it with the address in the
assembly file. The full definition looks like this:

extern shared_info_t shared_info;

This is comparatively simple to do. Because we are only updating a single
page table entry, we can simply issue the hypercall as shown in Listing 5.8. The
only flag required is to invalidate the TLB line referring to the update.

Listing 5.8: Mapping the shared info page into the pre-prepared space

HYPERVISOR _update_va_mapping (
(unsigned long) &shared_info ,
(unsigned long long) start_info—>shared_info ,
UVMF_INVLPG) ;

After this has completed, the guest should be able to use the shared_info pointer
as it would any other C data structure. Several other pages need to be mapped in
this way at start-of-day. These include the XenStore and console driver, provided
by the start info structure, and any device-related pages found in the XenStore.

This process must be repeated when the domain is resumed, and so it is typi-
cally worth creating a function that maps them all in one go, which can be called
when the kernel is booted, and again whenever it is resumed.



Part Il

Device 1/0



This page intentionally left blank



Chapter 6

Understanding Device
Drivers

Device drivers are an important part of any operating system—without them,
the kernel (and thus the applications) can’t communicate with physical hardware
attached to the system.

Most full virtualization solutions provide emulated forms of simple devices.
The emulated devices are typically chosen to be common hardware, so it is likely
that drivers exist already for any given guest. Examples of hardware emulated
include simple IDE hard disks and NE2000 network interfaces. This is a reasonable
solution in cases where the guest cannot be modified, and is used by Xen in HVM
domains where unmodified guests are run.

Paravirtualized guests, however, need to be modified in order to run anyway.
As such, the requirement for the virtual environment to use existing drivers dis-
appears. Making guest kernel authors write a lot of code, however, would not be
a very good design decision, and so Xen devices must be simple to implement.
They should also be fast; if they are not, they have no advantage over emulated
devices.

The Xen approach is to provide abstract devices that implement a high-level
interface that corresponds to a particular device category. Rather than providing
a SCSI device and an IDE device, Xen provides an abstract block device. This
supports only two operations: read and write a block. This is implemented in
a way that closely corresponds to the POSIX readv and writev calls, allowing
operations to be grouped in a single request (which allows I/O reordering in the
Domain 0 kernel or the controller to be used effectively). The network interface
is slightly more complicated, but still relatively easy for a guest to implement.

99



6.1

100 Chapter 6. Understanding Device Drivers

The Split Driver Model

Supporting the range of hardware available for a commodity PC would be a daunt-
ing task for Xen. Fortunately, most of the required hardware is already supported
by the guest in Domain 0. If Xen can reuse this support, it gets a large amount
of hardware compatibility for free.

In addition, it is fairly common for an operating system to already provide
some multiplexing services. The purpose of an operating system (as opposed to
running applications directly on the hardware) is to provide an abstraction of
the real hardware. One of the features of this abstraction in a modern OS is that
applications are, in general, not aware of each other. Two applications can use the
same physical disk, network interface, or sound device, without worrying about
others. By piggy-backing on this capability, Xen can avoid writing a lot of new
and untested code.

This multiplexing capability is quite important. Some devices on high-end
systems, particularly mainframes, are virtualization-aware. They can be par-
titioned in the firmware, and each running operating system can interact with
them directly. For consumer-grade hardware, however, this is not common. Most
consumer-level devices assume a single user, and require the running operating
system to perform any required multiplexing. In a virtualized environment, de-
vice access must be multiplexed before it is handed over to the operating system.

As discussed earlier, the hypervisor provides a simple mechanism for commu-
nicating between domains: shared memory. This is used by device drivers to
establish a connection between the two components. The I/O ring mechanism,
described later in this chapter, is typically used for this.

One important thing to note about Xen devices is that they are not really
part of Xen. The hypervisor provides the mechanisms for device discovery and
moving data between domains; the drives are split across a pair of guest domains.
Typically, this pair is Domain 0 and another guest, although it is also possible to
use a dedicated driver domain instead of Domain 0. The interface is specified by
Xen; however, the actual implementation is left up to the domains.

Figure 6.1 shows the structure of a typical split device driver. The front and
back ends are isolated from each other in separate domains, and communicate
solely by mechanisms provided by Xen. The most common of these is the I/O
ring, built on top of the shared memory mechanism provided by Xen.

Shared memory rings alone would require a lot of polling, which is not always
particularly efficient, although it can be fast where there is pending data in a
large percentage of the polled cases. This need is eliminated by the Xen event
mechanism, which allows asynchronous notifications. This is used to tell the back
end that a request is waiting to be processed, or to tell a front end that there is a
response waiting. Handling and delivering events is discussed in the next chapter.

The final part of the jigsaw puzzle is the XenStore. This is a simple hierarchical



6.1. The Split Driver Model 101

Domain 0 Back End Domain U Front End

Request Notification Events

Read Request Write Request

Write Response Read Response

Response Notification Events

Figure 6.1: The composition of a split device driver

structure that is shared between domains. Unlike the grant tables, the interface
is fairly high-level. One of the main uses for it is device discovery. In this role,
it is analogous to the device tree provided by OpenFirmware, although it has
additional uses. The guest in Domain 0 exports a tree containing the devices
available to each unprivileged domain. This is used for the initial device discovery
phase. The tree is traversed by the guest that wants to run front-end drivers, and
any interesting devices are configured. The one exception to this is the console
driver. It is anticipated that the console device is needed (or, at the very least,
wanted) early on during the boot process, so it is advertised via the start info
page.

The XenStore itself is implemented as a split device. The location of the page
used to communicate is given as a machine frame number in the start info page.
This is slightly different to other devices, in that the page is made available to
the guest before the system starts, rather than being exported via the grant table
mechanism and advertised in the XenStore.



6.2

102 Chapter 6. Understanding Device Drivers

Moving Drivers out of Domain 0

Xen provides a mechanism for delegating access to physical devices to domains
other than Domain 0, known as driver domains. On platforms that don’t contain
an IOMMU or similar hardware that implements the protection elements of an
IOMMU, it is not possible to do this securely.

The hypervisor can use the MMU to isolate the memory regions used by mem-
ory mapped I/O and grant pages within these regions to a driver domain. It can
also prevent ring 1 processes from using I/O port instructions, and require them
to be trapped and emulated by the hypervisor, adding significant overhead. It
cannot, however, prevent the driver domain from issuing unsafe DMA requests
without additional hardware support. This makes driver domains only semi-safe
on most legacy hardware.

The use of driver domains provides two key advantages. The first is that it gives
some extra isolation for components of the system. In the standard configuration,
Domain 0 has two distinct responsibilities:

e Supporting hardware and running back-end devices

e Providing the administrative interface to Xen

One of the key features of Xen is that only a small amount of code runs in
ring 0, which helps provide some security and stability. Code running in ring 1 in
Domain 0, however, can still perform a lot of operations via the hypervisor that
would usually be restricted to ring 0. By reducing the amount of code running in
Domain 0, the security of a system is improved. Device drivers tend to make up the
majority of the codebase of a modern operating system and, unfortunately, tend
to be the most buggy parts of the kernel. This is understandable, because they
are the least tested as not everyone is using the same drivers. Drivers also have
to deal with (potentially undocumented) flaws in the physical hardware, as well
as the wide range of potential interactions the device can have when functioning
correctly. A device domain on a system with an IOMMU can only damage itself
with erroneous DMA requests, because the IOMMU prevents accesses to other
domains’ address spaces.

The other advantage is that it allows support for more devices. If you choose to
run Solaris in Domain 0, for example, you are not limited to the devices supported
by Solaris. You could run Linux or NetBSD in a driver domain and gain access to
other pieces of hardware. This could even be extended by hardware manufacturers
to provide a “Xen native” device driver—a minimal kernel with the device driver
embedded in it that could be run in a driver domain and reduce the need to
provide OS-specific drivers.



6.3

6.3. Understanding Shared Memory Ring Buffers 103

Understanding Shared Memory Ring Buffers

The ring buffer is a fairly standard lockless data structure for producer-consumer
communications. The variant used by Xen is somewhat unusual in that it uses free-
running counters. A typical ring buffer has a producer and a consumer pointer.
Each of these is tested by one and incremented by the other. When one pointer
goes past the end of the buffer, it must be wrapped. This is relatively expensive,
and because it involves programming for a number of corner cases, it is relatively
easy to get wrong.

The Xen version avoids this by ensuring that the buffer size is a power of two.
This means that the lowest n bits of the counter can be used to give an index
within the buffer, and these bits can be obtained with a simple mask. Because
the counters can run to more than the buffer size, you do not need to manually
account for overflow; subtracting one from the other always gives you the amount
of data in the buffer. The one special case comes from the fact that the counters
themselves can overflow. Let’s take a simple example—an 8-bit counter on a 32-
element buffer—and see what happens when it overflows. The producer value is
incremented to 258, which causes an overflow, wrapping the value around to two.
The consumer value has not yet overflowed, so it is now bigger than the producer.
What happens when we try a subtraction?

Producer value of 2)
Consumer value of 252)
Subtraction gives —250)
Truncation gives 6)

=== O
e e =

0 (
0 (
0 (
0

—_
oo = O
oo = O
oo O
oo = O
OO O

The leading 1 in the subtraction result comes from the use of 1’s complement
arithmetic. If the result of a calculation is negative, the leading bit will be 1, and
the remaining bits will be the inverse of their positive values. This representation
is used in all modern CPUs, because it simplifies a number of cases (adding signed
values can be implemented using the same logic, irrespective of their signs). One
nice side effect of this is that subtraction still works if one of the values has
overflowed. Note that the leading bit is truncated, because it doesn’t fit in the
8-bit value. Most CPUs will store this in a condition register somewhere; however,
it can simply be discarded for our purposes.

One thing to note is that this value will be wrong if the producer value overflows
twice before the consumer value overflows. Fortunately, this can never happen,
because that would require the buffer to be larger than the counter, meaning that
no mask exists that would convert the counter value to a buffer index.

The other interesting thing about the Xen ring mechanism is that each ring
contains two kinds of data, a request and a response, updated by the two halves
of the driver. In principle, this could cause some problems. If the responses are



104 Chapter 6. Understanding Device Drivers

DomU Writes Request 2 DomO Writes Response 1

Dom0 Reads Response 1 Dom0 Writes Response 2 Dom0 Reads Response 2

Figure 6.2: A sequence of actions on a ring buffer

larger than the requests, the response pointer catches up with the request pointer,
preventing the back end from writing any more responses.

Xen solves this by only permitting responses to be written in a way that
overwrites requests. Figure 6.2 shows a typical sequence of actions in an I/O ring.
In this sequence, the front half of the driver issues two requests, and the back half
fills them in.

The first two operations in this sequence show the front half of the driver writ-
ing a pair of requests into the ring. After writing each request, it increments a
counter indicating the used part of the ring. The back half then writes a response
over the first request. After doing this, it increments the response counter, in-
dicating that the response has been filled in. The front half can then read this
response and increment a counter indicating where the back end is. This is then
repeated for the second response.

There are three counters of relevance here. The first indicates the start of the
requests. This is only ever incremented by the front end, and never decremented.
If the back end reads this value, it can guarantee that the value will never be lower
than this value.! It can then use any space from the back of the request segment
to the front in order to store responses.

After storing a response, the back end increments a counter indicating that
the response has been stored. The front end can read this counter, and know that
anything between it and the back of the tail counter contains responses. It can
then read them, and update the tail counter to any value that doesn’t cause it to

IThe only requirement for this to work is that memory writes are atomic. This is true on
most modern CPUs. Note that a memory barrier is not required; the old value for the counter
is always safe to use, because it is monotonic.



6.3. Understanding Shared Memory Ring Buffers 105

pass the response counter. The tail counter is then used again by the front end,
to ensure that it does not overwrite existing requests with new ones.

The ring can only run out of space for responses if there are no outstanding
requests, but if this is the case, it will not need to generate any. If it runs out of
space for requests, this implies one of two things. Either the ring is full of requests,
in which case the front end should back off for a bit and allow the back end to
process them, or it contains some responses, in which case, it should consider
processing some of them before adding more requests.

6.3.1 Examining the Xen Implementation

Most of the definitions relating to Xen’s I/O rings can be found in xen/interface/
public/io/ring.h. This file contains a number of macros for creation, initializa-
tion, and use of I/O rings. This generalized interface is not used by all drivers.
Some use a simpler mechanism where there are two unidirectional rings. Others
use more complex interfaces. The macros described here are used by both the net-
work and block interfaces, and are suited to any interface that has a one-to-one
mapping between requests and responses. This is obviously not the case for the
console, where reading from the keyboard and writing to the screen are unrelated
operations.
The first macro is used for creating ring structures, in the following way:

DEFINE_RING_TYPES (name, request_t, response_t);

This creates the structures for a ring where requests were specified by a
request_t and responses by a response_t. This defines three structures represent-
ing the ring—one is the shared data structure, which goes in a shared memory
page. The other two contain private variables, one for the front end and one for
the back. These used by the other macros. Also defined is a union of the request
and response types. This is used to divide the rings into segments that can store
either a request or a response.

Before a ring can be used, it must be initialized. This sets the producer
and consumer indexes to their correct initial values. The macro for initializing
the shared ring depends on the existence of memset, so ensure that you have a
working implementation of this in your kernel, even if it’s not properly optimized.

To give some idea of how these are used, we will look briefly at how the virtual
block device uses them. The interface to this device is defined in the io/blkif.h
public header file.

The block interface defines the blkif_request and blkif_response structures
for requests and responses, respectively. It then defines the shared memory ring
structures in the following way:

DEFINE_RING_TYPES( blkif , struct blkif_request , struct
blkif_response);



106 Chapter 6. Understanding Device Drivers

Grant Table Use

To use the ring mechanism, both sides of the driver must be able to access
it. This means that the underlying memory must be shared, and the standard
mechanism for doing this is via the grant table.

The convention for the Xen split driver model is that the front-end driver
should offer the grant reference, while the back end maps it. This means
that the front end does not need to issue any hypercalls to set up the driver
rings. Aside from consistency, this has the advantage that HVM guests can
implement paravirtualized device drivers without the need to use any grant
table hypercalls. It also aids migration. The shared rings belong to the front
end, and are shared with the back end, so when the front end is moved to a
different machine they stay in the same place (in the pseudo-physical address
space) and can be remapped easily.

This convention applies to all Xen drivers that use the split model, not only
those that use the generic ring macros. This means that the only hypercalls
that a front-end driver needs to use are the ones that relate to the event channel.

This defines the blkif_sring_t type, representing the shared ring and two other
structures representing the private variables used by the front and back halves of
the ring. The front end must allocate the space for the shared structure, and then
initialize the ring. The Linux implementation of this driver then initializes the
ring as follows:

SHARED_RING_INIT (sring);
FRONT_RING_INIT(&info—>ring , sring , PAGE_SIZE);

Here, the sring variable is a pointer to the shared ring structure. The info
variable is a pointer to a structure that contains some kernel-specific bookkeeping
information about the virtual block device. The ring field is a blkif_front_ring_t,
which is a structure defined by the ring macros to store the private variables
relating to the front half of the ring. These are required due to the way in which
data is put on the ring.

The first step is to write the request to the ring. Then, the (shared) ring’s
request producer count is incremented. For efficiency, it is fairly common to write
multiple requests into the ring, and then perform the update. For this reason,
it is necessary to keep a private copy of the request producer counter, which
is incremented to let the front end know where it should put new requests. This
is then pushed to the shared ring later. The next available request in the ring is
requested by the front end like this:




6.3. Understanding Shared Memory Ring Buffers 107

ring_req = RING.GET_REQUEST(&info—>ring , info—>ring.
req-prod_pvt);

The request is then filled in with the correct information, and is ready to be
pushed to the front end. This is done using the following macro:

RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&info—>ring , notify);

Here, notify is a return parameter, which is used to indicate whether the front
end needs to deliver an event to the back end. This macro sets the shared ring’s
request producer counter to be equal to the private copy. After doing this, it
tests the request consumer counter. If this is still lower than the request producer
counter value from before the update, it means that the back end is still processing
requests that were enqueued before this update was pushed. If this is the case,
there is no need to send an event to the back end, and so notify is set to false.

After a request has been sent, the back end processes it and inserts a response
into the ring. The next response from the ring is fetched like this:

blkif_response_t xbret = RING_.GET_RESPONSE(&info—>ring, i);

This sets bret to the response at index i in the ring. The value of i needs
to be somewhere between the shared ring’s rsp_prod and the front half’s rsp_cons
values. These two fields represent the response producer and consumer indexes.
After processing response i, the front half’s rsp_cons value should be updated to
reflect this. This value is used when inserting new requests into the ring, because
it indicates where the back of the used segment of the ring is. No new requests
may be inserted past this value. After fetching all waiting requests, the block
driver performs the following check:

RING_FINAL_.CHECK_FOR_RESPONSES(&info—>ring , more_to_do);

The more_to_do value is set to true if the ring still has some requests waiting
to process. After checking this, the event channel should be unmasked, the ring
checked one final time, and then control returned.

The back end has a similar interface, but uses the other private structure, and
uses the queues the other way around.

6.3.2 Ordering Operations with Memory Barriers

Some operations on rings require memory barriers on some systems. On a purely
in-order architecture, memory operations are guaranteed to be completed in the
order in which they are issued. This means that, as long as the data is written
into the ring before the counters are incremented, things will work correctly.

x86 began life as an in-order architecture. As it has grown, it has had to
maintain compatibility with legacy code. For this reason, modern x86 CPUs
are still strongly ordered. Memory operations on a strongly ordered CPU are



108 Chapter 6. Understanding Device Drivers

guaranteed to complete in the order in which they are issued. On x86, this is only
true for stores; loads may be reordered.

This is not true of all architectures supported by Xen. TA64, for example, is
a weakly ordered architecture, and so no such guarantees exist. This is somewhat
complicated by the fact that early versions of the Itanium were strongly ordered.
This means that code written and tested on an early Itanium might suddenly fail
on a newer version.

To prevent re-ordering, most architectures provide memory barrier instruc-
tions. These force all loads, stores, or loads and stores to be completed before
continuing. The Xen code uses macros to implement these, and expands them
based on a per-processor definition. When developing on x86, it is tempting to
leave some of these out, because the write barrier expands to a no-op on x86. If
you do this, be aware that your code will break on other platforms.

The Xen ring macros include the correct barriers, and work on all supported
architectures. For other devices that don’t use these macros, it is important to
remember to add the barriers yourself. The most commonly used barrier macros
are wmb() and mb(), which provide a write memory barrier and a full (read and
write) barrier, respectively. Here is an example of a barrier being used in one of
the standard ring macros:

#define RING_PUSH_REQUESTS(_r) do {

\
wmb(); /* back sees requests /before/ updated producer
index x/ \
(-r)—>sring—>req_prod = (_.r)—>req_prod_pvt;
\
} while (0)

The wmb() macro is used here to ensure that the requests that have been
written to the ring are actually in memory before the private copy of the request
producer counter is copied into the shared ring. A full memory barrier is used on
the macros that check whether they need to notify the other end of new data, to
ensure that any reads of the data in the ring by the remote end have completed
before checking the consumer counter.

Note that x86 has no explicit barrier instructions. Write barriers are not
needed, but read barriers are on some occasions. Instructions with the LOCK
prefix are implicit read barriers, and so an atomic add instruction is used in place
of an explicit barrier. This means that barriers can be omitted on x86 when they
immediately follow an atomic operation.



6.4

71
72
73
74
75
76
77
78
79

6.4. Connecting Devices with XenBus 109

Connecting Devices with XenBus

The XenBus, in the context of device drivers, is an informal protocol built on
top of the XenStore, which provides a way of enumerating the (virtual) devices
available to a given domain, and connecting to them. Implementing the XenBus
interface is not required when porting a kernel to Xen. It is predominantly used
in Linux to isolate the Xen-specific code behind a relatively abstract interface.

The XenBus interface is intended to roughly mirror that of a device bus such
as PCL It is defined in 1inux-2.6-xen-sparse/include/xen/xenbus.h.? Each
virtual device has three major components:

e A shared memory page containing the ring buffers
e An event channel signaling activity in the ring
e A XenStore entry containing configuration information

These components are tied together in the bus interface by the structure shown
in Listing 6.1. This device structure is passed as an argument to a number of other
functions, which (between them) implement the driver for the device.

Listing 6.1: The structure defining a XenBus device (trom: linux-2.6-xen-
sparse/include/xen/xenbus.h]
struct xenbus_device {
const char xdevicetype;
const char xnodename;
const char xotherend;
int otherend_id;
struct xenbus_watch otherend_watch;
struct device dev;
enum xenbus_state state;
struct completion down;

The exact definition of this structure is tied quite closely to Linux; the device
struct, for example, represents a Linux device. It can, however, be used as a good
starting point for building a similar abstraction layer for other systems.

The core component of the XenBus interface, indeed the only part that needs to
be implemented by all systems wanting to use the paravirtualized devices available
to Xen guests, is the xenbus_state enumerated type. Each device has such a type
associated with it.

2Although the header is part of the sparse Linux tree, it is available under a more permissive
license when not distributed as part of Linux.



110 Chapter 6. Understanding Device Drivers

The XenBus state, unlike the rest of the XenBus interface, is defined by Xen,
in the io/xenbus.h public header. This is used while negotiating a connection
between the two halves of the device driver. There are seven states defined.
In normal operation, the state should be gradually incremented as the device is
initialized, connected, and then disconnected. The possible states are:

e XenbusStateUnknown represents the initial state of the device on the bus,
before either end has been connected.

e XenbusStatelnitialising is the state while the back end is in process of initial-
izing itself.

e XenbusStatelnitWait should be entered by the back end while it is waiting
for information before completing initialization. The source of the informa-
tion can be hot-plug notifications within the Domain 0 kernel, or further
information from the connecting guest. The meaning of this state is that
the driver itself is initialized, but needs more information before it can be
connected to.

e XenbusStatelnitialised should be set to indicate that the back end is now
ready for connection. After the bus is in this state, the front end may
proceed to connect.

e XenbusStateConnected is the normal state of the bus. For most of the dura-
tion of a guest’s run, the bus will be in this state indicating that the front
and back ends are communicating normally.

e XenbusStateClosing is set to indicate that the device has become unavailable.
The front and back halves of the driver are still connected at this point,
but the back end is no longer doing anything sensible with the commands
received from the front. When this state is entered, the front end should
begin a graceful shutdown.

e XenbusStateClosed is the final state, once the two halves of the driver have
disconnected from each other.

Not all drivers make use of the XenBus mechanism. The two notable exceptions
are the console and XenStore. Both of these are mapped directly from the start
info page, and have no information in the XenStore. In the case of the console,
this is so that a guest kernel can start outputting debugging information to the
console as soon as possible. In the case of the XenStore, it is obvious that the
device can’t use XenBus, because XenBus is built on top of the XenStore, and
the XenStore cannot be used to get information required to map itself.



6.5. Handling Notifications from Events 111

Handling Notifications from Events

Real hardware uses interrupt channels to notify the CPU of asynchronous events.
These then cause the CPU to enter privileged mode and jump to a handler that
has been configured for the event.

Xen provides an analog of this in the form of event channels. These are de-
livered asynchronously to guests and, unlike interrupts, are enqueued when the
guest is not running. Interrupts, conventionally, are not aware of the existence of
virtual machines and so are delivered immediately.

When a driver needs to notify a device of some waiting data, it typically
writes to a control register. Within Xen, the event mechanism also replaces this
for notifying the back end of a split device driver, because both directions are an
example of interdomain communication.

Events have a couple of major differences from interrupts. They are bidirec-
tional and connection-oriented. An IRQ is delivered to a specified handler, but
the concept of a connection does not arise. What can raise an interrupt is defined
at the hardware level; the interrupt descriptor table indicates how privileged a
program needs to be to trigger a given interrupt in software, and the hardware
defines which devices can trigger them externally.

An event needs much better access control. A malicious guest could cause
some serious problems by triggering large numbers of spurious events. For this
reason, events may only be delivered on a given channel by one of the two domains
to which it is connected. When an event channel is allocated by one domain, it
explicitly states the number of the domain that is allowed to bind to the other end.
The other domain must then explicitly request binding to that event channel. It
is not until this point that either end may trigger the event delivery.

The event channel number for the device must be passed to the front end
somehow, before it can connect.

In addition to providing asynchronous notifications sent from one domain to
another, events can be used by a guest to receive real IRQs. These cannot be
delivered using the normal mechanism because, as mentioned earlier, they might
well end up being delivered to the wrong VM. The hypervisor must catch inter-
rupts raised by devices and enqueue them so that the domain hosting the back
end of the driver can receive them irrespective of which domain was running when
the interrupt was generated.

Event channels are also used to deliver notifications from a (small) number of
devices that run inside the hypervisor. The most common of these is the domain
virtual time clock device. This is typically used for scheduling; it provides a
notification when a certain amount of virtual time has elapsed, that is, when the
domain has received nms of CPU time.

3Modern, virtualization-aware hardware provides a mechanism for enqueuing interrupts.



6.7

112 Chapter 6. Understanding Device Drivers

Configuring via the XenStore

Among other things, the XenStore is the Xen equivalent of an OpenFirmware
device tree, or the results of querying an external bus. It provides a central
location for retrieving information about devices that are available to the domain.
The XenStore is, itself, a device, and so must be bootstrapped using information
from the start info page. Chapter 8 will discuss this process in more detail, and
give a more comprehensive overview of the XenStore.

Each virtual machine has an entry in the XenStore in which all information
about that VM is stored. This is true for both the front and back ends of the
device. As mentioned earlier, the back ends are not always in Domain 0, so the
front end needs to be able to know three things when connecting to a typical Xen
device:

e The domain hosting the back end
e The grant reference of the shared memory page

e The event channel used for notifications

It may also need to know some other device-specific information. This could
be passed in the shared memory page, but passing it in the store allows it to be
inspected before the device is initialized, and allows extra information to be added
without breaking the device’s ABI. It also allows tools to access the information
about the device, for various reasons.

The XenStore provides an abstract way of discovering information about de-
vices, and about other aspects of the system. It is one of the first devices that
must be supported, because it allows the information required for other devices
to be found.

The XenStore is a simple hierarchical namespace containing strings. This
eliminates a number of potential problems. When running x86 and x86-64 guests
on the same machine, word size becomes an issue for binary interfaces. An even
worse situation can occur on some architectures, such as PowerPC, ARM, or
SPARC, which are bi-endian. Big-endian and little-endian guests could be running
on the same system; passing anything other than a string of characters (bytes)
would require careful use of things like the htonl macros to ensure consistent
storage. Another advantage of the text-based nature of the XenStore is that it
makes it much easier for tools written in scripting languages to parse the data.

Exercise: The Console Device

The console device is simpler than many of the others. Instead of using the generic
ring mechanism, where a single ring contains requests and responses, it provides



34
35
36
37
38
39

10
11
12
13
14

15
16
17
18
19
20

6.7. Exercise: The Console Device 113

two rings containing input and output characters, respectively. This is because
console interaction on the dumb terminal model is intrinsically composed of two
unidirectional systems. The keyboard writes data into the system in response to
the user, whereas the screen displays text without providing any information.

The console interface itself is very simple. Listing 6.2 describes the structure
found on the shared memory page used by the console. The machine address of
this page is passed to the guest in the start info structure.

Listing 6.2: Xen Console interface structure (frrom: xen/include/public/io/console.h]

struct xencons_interface {

char in[1024];

char out[2048];

XENCONS_RING_IDX in_cons, in_prod;

XENCONS_RING_IDX out_cons, out_prod;
i

Before the console can be used, the guest needs to map it into its address space.
This is done as per the example in Chapter 5. After this has been accomplished,
the event channel for console events must be bound. This will be covered in more
detail in the next chapter; for now, we will treat the console as a write-only device,
and try to display a boot message.

Listing 6.3 shows how to map the console. We will leave some space here for
setting up the event handler, and come back to that in the next chapter, after
detailed discussion of the events system. We will keep a record of the event channel
that is being used for the console in the console_evtchn variable.

Listing 6.3: Mapping the console (from: examples/chapters/console.c]

/* Initialise the console x/
int console_init(start_info_t % start)

{

console = (struct xencons_interfacex)
(( machine_to_phys_mapping[start—>console .domU.mfn] <<
12)
+
((unsigned long)&_text));
console_evt = start—>console.domU.evtchn;
/*x TODO: Set up the event channel %/
return 0;

When we want to write something to the screen, we have to copy it into
the buffer, assuming that there is space. If there is insufficient space, we have
to wait until there is. Typically, copying a load of data would be done using
memcpy. Because we are not linking against the C standard library, however,



114 Chapter 6. Understanding Device Drivers

this is not an option for us. Instead, we have to implement the copy operation
ourselves. The version shown here is not at all optimized; it is possible to make it
significantly faster. This is not particularly important for a console driver, because
the console is typically a fairly low data rate device; however, for other drivers,
it is probably worth copying a well-optimized memcpy implementation, assuming
you don’t already have one in your kernel.

Listing 6.4 contains a simple function for writing a string to the console. The
function loops for each character on an input string until it encounters a NULL,
copying the character from the input string to the buffer.

Listing 6.4: Writing data to the console [from: examples/chapters/console.c]

22| /+ Write a NULL—terminated string x/

23| int console_write(char * message)

24({

25 struct evtchn_send event;

26 event.port = console_evt;

27 int length = 0;

28 while (¥ message = '\0')

29 {

30 /+* Wait for the back end to clear enough space in the
buffer x/

31 XENCONS_RING_IDX data;

32 do

33 {

34 data = console—>out_prod — console—>out_cons;

35 HYPERVISOR_event_channel_op (EVTCHNOP_send, &event);

36 mb () ;

37 } while (data >= sizeof(console—>out));

38 /+x Copy the byte x/

39 int ring_index = MASK_XENCONS_IDX(console —>out_prod ,
console—>out);

40 console—>out[ring_index] = xmessage;

41 /+* Ensure that the data really is in the ring before
continuing */

42 wmb () ;

43 /* Increment input and output pointers x/

44 console —>out_prod++;

45 length—++;

46 message+-+;

47

48 HYPERVISOR_event_channel_op (EVTCHNOP_send, &event);

49 return length;

50| }



6.7. Exercise: The Console Device 115

Note the use of the MASK_XENCNOS_IDX macro. This is used because the
console rings, like other I/O rings in Xen, use free-running counters. The least-
significant n bits of these are used to indicate the position within the ring. The
advantage of this approach is that there is no need to test whether the counters
have overflowed the buffer. In addition, comparisons of the form producer —
consumer will always give the correct result, as long as the size of the maximum
value of the index variable is greater than twice the size of the buffer, and the
producer counter doesn’t overflow twice before the consumer counter overflows
once.

This means that we only need to test for one condition before adding something
to a ring—that producer — consumer < ring size. Because producer — consumer
always gives you the amount of data in the ring, this does not allow you to proceed
if the ring is full. In a full implementation of the console, we would wait until an
event is received before proceeding here.

After putting data in the buffer, we need to signal the back end to remove
it and display it. This is done via the event channel mechanism. Events will be
discussed in detail in the next chapter, including how to handle incoming ones. For
now, we will just signal the event channel, and look at what is actually happening
in the next chapter.

Signaling the event channel is fairly simple, and can be thought of in the same
way as sending a UNIX signal. The console_evtchn variable holds the number of
the event channel being used for the console. This is similar to the signal number
in UNIX, but is decided at runtime, rather than compile time. Note that sending
an event after each character has been placed into the ring is highly inefficient. It
is more efficient to only send an event at the end of sending, or when the buffer
is full. This is left as an exercise for the reader.

To issue the signal, we use the HYPERVISOR _event_channel_op hypercall. The
command we give to this tells it to send the event, and the control structure takes
a single argument, indicating the event channel to be signaled.

We will add one more function for our simple half-console driver. This flushs
the output buffer by blocking until the buffer is empty (that is, the consumer
counter has caught up with the producer in the output ring). Because the function
is just spinning while waiting for the back end to catch up, we issue a hypercall
to notify the hypervisor that it should schedule other virtual machines while we
are waiting. The memory barrier here is almost certainly not needed, because a
hypercall (and the resulting ring transition) is a memory barrier, but is left in for
clarity. Listing 6.5 shows the flush function.

Now that we have something that is hopefully a working implementation of
a write-only console driver (we are not reading text input by the user yet), we
should try using it. Let’s create a console.h file that contains prototypes to our
two functions, and then try calling them. Listing 6.6 gives the body of a kernel
that writes “Hello world” to the console. “Hello world” is the obligatory first



52
53
54
55

57
58

59

61
62

116 Chapter 6. Understanding Device Drivers

Listing 6.5: Flushing the console output buffer (rom: examples/chapters/console.c]

/* Block while data is in the out buffer x/
void console_flush (void)

{
/+x While there is data in the out channel x/
while (console—>out_cons < console—>out_prod)
{
/+x Let other processes run x*/
HYPERVISOR _sched_op (SCHEDOP _yield, 0);
mb () ;
}

output message from any system, but it’s a bit boring. Let’s print the Xen magic
string, containing the running Xen version, as well.

Note that we call the console_flush () function before exiting. This is because
the console ring buffer ceases to exist when the domain is destroyed, and if we are
not very lucky, this will happen before the back end has read the contents of the
buffer.

All that remains now is to add console.o to the Makefile, build, and test
our kernel. When we launched our last simple kernel, we used xm create. This
creates the new domain in the background. When we start this one, we want to
see the output from the console. We do this by adding the -c flag, which tells xm
to automatically attach to the console:

# xm create -c domain_config

Using config file "./domain_config".
Started domain Simplest_Kernel
Hello world!

Xen magic string: xen-3.0-x86_32p

#

The new domain is then destroyed, because we told the kernel to exit after
writing the message. If this happens, everything is working as expected. We can
now use the console for output during the rest of our boot procedure. When we
have mapped the event channel, we can use it for input as well.

Currently, the console output is a little bit raw. It would be nice to add
something like the C standard printf () function. This is left as an exercise to
the reader. A good approach is to take a look at the vfprintf () function in an
existing C library (the OpenBSD implementation is a good bet here) and replace
the function or macro used for actually outputting characters with a call to our
console_write () function.



12
13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

6.7. Exercise: The Console Device 117

Listing 6.6: The body of the “hello world” kernel (srom: examples/chapters /kernel.c]

/* Main kernel entry point, called by trampoline %/
void start_kernel(start_info_t x start_info)

{

/* Map the shared info page */

HYPERVISOR_update_va_mapping ((unsigned long) &shared_info ,
__pte(start_info—>shared_info | 7),
UVMF_INVLPG) ;

/+* Set the pointer used in the bootstrap for reenabling

x event delivery after an upcall */

HYPERVISOR_shared_info = &shared_info;

/+* Set up and unmask events x/

init_events ();

/+* Initialise the console x/

console_init(start_info);

/+x Write a message to check that it worked x/

console_write (" Hello_.world!\ r\n");

/* Loop, handling events x/

while (1)

HYPERVISOR_sched_op (SCHEDOP_block ,0) ;



This page intentionally left blank



71

Chapter 7

Using Event Channels

Event channels are the primitive mechanism for asynchronous notifications within
Xen. They are used in conjunction with ring buffers in shared memory pages to
provide an efficient message passing mechanism for communicating between the
front and back ends of a split device driver.

This chapter will explore the similarities and differences between Xen events
and software and hardware interrupts. We will look at how event channels are
bound and how the end points are used, learning both how to signal an event
channel, and handle the event that is raised.

Events and Interrupts

Events are the standard mechanism for delivering notifications from the hypervisor
to guests, or between guests. Conceptually, they are similar to (traditional) UNIX
signals. Each event delivers one bit of information: that the event has occurred.

The standard way in which a signal is delivered is via an upcall from the
hypervisor. As with signals, an event can be delivered while another one is being
handled. It is therefore common to disable event delivery during a handler.

Unlike UNIX signals, events that occur while delivery is disabled are not lost.
They are not delivered after the handler is reenabled; however, it is possible to
check for existing events by polling the relevant Virtual CPU (VCPU) structure
in the shared info page.

In many ways, Xen events replace hardware interrupts. An interrupt is an
asynchronously delivered trigger that something has happened related to the ma-
chine hardware. An event is an asynchronously delivered trigger that something
has happened related to the virtual machine. Although a real network card might

119



7.2

120 Chapter 7. Using Event Channels

send a signal every time a packet is received, a virtual interface might send an
event.

Handling Traps

In addition to events, Xen provides a lower-level form of asynchronous notification
in the form of traps. Unlike events, which can be dynamically created and bound,
traps have static meanings, corresponding directly to hardware interrupts.

The TA32 specification breaks interrupts down into three broad categories:
used, unused, and reserved. The first 20 are all used except for 1, 9, and 15,
which are reserved.! The next 11 are reserved, and the remainder are all unused.
Of the unused ones, 80h is typically used for system calls, and 82h was used for
hypercalls in earlier versions of Xen.

The code path for delivering a trap is significantly simpler than that for events.
When the guest is run on a particular (physical) CPU, the hypervisor installs an
Interrupt Descriptor Table (IDT) on behalf of the guest domain. This means
that the interrupt handling path does not involve the hypervisor at all, for all
interrupts are handled by the guest.

Because Xen traps correspond directly to hardware interrupts, the same code
can typically be reused to handle them. For example, a floating point error should
either cause a signal to be raised in the running process, the process to be ter-
minated, or the signal simply to be ignored, depending on the operating system
or user’s standard behavior. This is no different under Xen. The one change is
the way of accessing certain control registers. While an interrupt handler is run-
ning, with interrupts disabled, it is completely guaranteed that nothing else will
touch the CPU state. This is not true on Xen, where a virtual machine might
be preempted to allow another to run.? Because certain registers on x86 can’t
be written to directly, they will not have their contents refilled when the guest
next runs. To prevent information being lost, the hypervisor stores the values of
fragile control registers in the virtual CPU structure in the shared info page. On
x86, the CR2 register, containing the address of the last page fault, is handled in
this way.

The most obvious reason a guest might want to do this is to handle interrupt
80h directly. A Xen guest can’t use SYSCALL or SYSENTER for (fast) system
calls, because these jump directly to ring 0, where the hypervisor is resident, and
must be reflected back to the guest kernel. Instead, the more traditional interrupt

IMore accurately, 9 is no longer used. It is a historical artifact and is no longer generated by
modern x86 chips.

2In theory, it is possible to prevent this by disabling preemption in the hypervisor while an
interrupt handler was running. In practice, however, this would leave other guests open to a
denial of service attack by a malicious guest that ran the entire kernel from an interrupt handler.



101
102

103

104

105

106

7.2. Handling Traps 121

80h method is commonly used. By installing a trap vector for interrupt 80h, the
guest can handle system calls without the hypervisor having any involvement.

Fast System Calls and HVM

Unlike paravirtualized guests, those running in a hardware virtual machine
domain do not experience ring compression. The kernel of an HVM guest runs
in ring 0, with the hypervisor in a new mode, hidden from ring 0. This means
that SYSENTER and SYSCALL, which provide a fast transition to ring 0, can
be used for system calls.

At the time of writing, paravirtualized guests do not run in HVM mode, and
so are unable to take advantage of this. In future releases, it is likely that more
HVM features will be added to PV domains, making this possible for both
kinds of guests when the underlying hardware supports HVM.

The IDT installed by this hypercall is removed when the guest is not running.
For this reason, it should only be used to receive interrupts that will be caused
by things running in the domain. These include things like processor exceptions,
where the kernel only cares if they are caused by processes for which it is respon-
sible. They should not be used for things like receiving interrupts from devices,
because this will cause interrupts to be lost when the VM is not scheduled.

The structure of the trap table is not the same as the IDT. Early versions
of Xen did not attempt to mimic the structure of the host platform; they aimed
to provide a fairly generic abstraction layer. For this reason, the trap table is a
simple structure that can be easily manipulated by the guest, as shown in Listing
7.1.

Listing 7.1: Trap table entry for X86 (from: xen/include/public/arch-x86/xen.h]

struct trap_info {

uint8_t vector; /x exception vector
*/
uint8_t flags; /* 0—3: privilege level; 4: clear
event enable? x/
uintl6_t cs; /* code selector
*/

unsigned long address; /% code offset

*

/

I

Each entry contains the number of the trap, the highest number privilege ring
that can raise the interrupt in software, and the address of the trap handler.
The trap number is the same as the interrupt number on the host platform.
The privilege level defines a ring number. This has no real meaning on x86-64,




122 Chapter 7. Using Event Channels

because both the kernel and userspace applications live in ring 3. On 32-bit x86,
however, rings 1-3 are available for the guest domain to use. The kernel typically
lives in ring 1, and userspace applications in ring 3. Some kernel designs demote
certain privileged components to ring 2. It might be necessary for these to raise
interrupts that are handled by the ring 1 kernel component. In this case, you set
the second parameter to 2, which allows the privileged components to execute an
INT instruction and pass control to the ring 1 component, but prevents the same
from happening from a userspace application.

Listing 7.2 shows the trap table initialization code from the Mini-OS example
distributed with Xen. The last two fields in each entry identify the handler as a
segment number and the offset within that segment. The __KERNEL_CS symbol
is set to FLAT_KERNEL_CS, which is defined by Xen. This represents the code
segment created by Xen mirroring a flat address space, where the entire address
space is mapped into a single segment.

Listing 7.2: Trap table initialization code from the Xen Mini-OS

202| static trap_info_t trap_table[] =

203] { 0, 0, __KERNEL_CS, (unsigned long)divide_error 1,

204 { 1, 0, __.KERNEL_CS, (unsigned long)debug },

205 { 3, 3, -_KERNEL_CS, (unsigned long)int3 T,

206 { 4, 3, __KERNEL_CS, (unsigned long)overflow 1,

207 { 5, 3, --KERNEL_CS, (unsigned long)bounds },

208 { 6, 0, __KERNEL_CS, (unsigned long)invalid_op T

209] { 7, 0, __KERNEL_CS, (unsigned long)device_not_available},

210 { 9, 0, __KERNEL_CS, (unsigned long)
coprocessor_segment_overrun },

211 {10, 0, __KERNEL_CS, (unsigned long)invalid_TSS },

212 {11, 0, __KERNEL_CS, (unsigned long)segment_not_present },

213 {12, 0, __KERNEL_CS, (unsigned long)stack_segment },

214| {13, 0, __KERNEL_CS, (unsigned long)general_protection },

215/ {14, 0, __KERNEL_CS, (unsigned long)page_fault 1,

216 {15, 0, __KERNEL_CS, (unsigned long)spurious_interrupt_bug},

217/ {16, 0, __KERNEL_CS, (unsigned long)coprocessor_error },

218 {17, 0, __KERNEL_CS, (unsigned long)alignment_check +,

219 {19, 0, __KERNEL_CS, (unsigned long)simd_coprocessor_error },

220l { 0, O, 0, 0 }

221] };

222

223| void trap_init(void)

224| {

225 HYPERVISOR_set_trap_table(trap_table);

226| }

Each address in this table is an entry point written in assembly that saves
the registers in a pt_regs structure on the stack and then calls a C function that



7.3. Event Types 123

performs the actual handling. This is similar in structure to the event handler
entry point, described in detail later in this chapter.

Non-x86 Traps

On most non-x86 platforms, the Xen port uses the native support for virtualiza-
tion. In these cases, the guest can simply install an IDT as it would normally.
This is true on PowerPC and TA64. Other architectures, such as ARM, might
retain the trap table mechanism, but provide a different trap structure. At
the time of writing, the only platform for which the trap mechanism has any
meaning is x86. Because the trap_info_t structure is defined on a per-platform
basis, it is likely that future ports wanting to use it would use the structure of
the underlying platform’s IDT, rather than create a new structure.

7.3 Event Types

Events fall into three broad categories; interdomain events, physical IR(Q, and
virtual IRQs (VIRQ). Physical IRQs are, perhaps, the easiest to understand.
They are mappings of real IRQs to event channels. Unlike traps, events will be
enqueued even when the domain is not scheduled, and then delivered when it is.
For this reason, they should be used for communicating with hardware devices.

A guest in Domain 0, or in a driver domain, will want to set up physical IRQ
to event channel mappings for the various devices under its control. Before doing
this, of course, it will want to discover which devices are already bound to which
IRQs. Typically, this is done via BIOS or APIC calls. This is not permitted in
Xen, however, so they are forced to use the HYPERVISOR_physdev_op hypercall.

The second kind of events are virtual TRQs. These are similar to physical
IRQs, but related to virtual devices. The most primitive example of this is the
timer. The timer virtual device is similar to its physical counterpart, but exists
in domain virtual time. The guest can request a timer event at a specified virtual
time, at which point it receives an event on the channel bound to the VIRQ_TIMER
virtual IRQ.

There are some other virtual IRQs associated with hypervisor-provided de-
vices, but most of these are only usable from within Domain 0. Mostly, these
relate to debugging guest domains. One example of these is VIRQ_CONSOLE,
which notifies the Domain 0 guest that a guest has written some data to the
debug console.?

3The debug console is only available to other domains if the hypervisor is compiled with
debugging support.



7.4

124 Chapter 7. Using Event Channels

The final category, interdomain events, are more fuzzily defined. These are
created as a two-stage process. One domain allocates a new event channel as an
unbound channel, and grants permission for the other domain to bind to it. The
second domain then allocates a new channel and binds it to the remote domain’s
port. When the connection is complete, either domain may signal the other by
sending an event to the local port. The main use of interdomain events is for
what could be thought of as “paravirtual IRQs.” These are interrupts caused by
paravirtualized devices. Most devices use these to notify the guest domain that
there is data waiting. Unlike TRQs, they are bidirectional. The guest domain
sends an event to notify the guest that there is data waiting to be transported in
the opposite direction.

Although it is unusual, there is a fourth category: intradomain events. These
are really a special case of interdomain events where both the sending and re-
ceiving domain are the same, the equivalent to interprocessor interrupts (IPIs) in
a physical system. It is possible to use event channels to communicate between
VCPUs in the same guest. There are often better ways of doing this, but like
UNIX domain socket programming in userspace, it has the advantage that it can
later be extended to external domains. If you have a feature in your operating
system that might be better isolated in another domain in the future for extra
security, event channels might be a good choice.

Be aware when communicating between VCPUs that there is no guarantee that
they will be running concurrently. One physical CPU might be used to schedule
all of your configured VCPUs. If you have two VCPUs in a producer / consumer
relationship, make sure you issue a “yield” scheduling operation to the hypervisor
when one is waiting to allow the other to run.

Requesting Events

Requesting events is a fairly simple procedure. All that is required is to bind
an event channel to an event source—either a real or virtual IRQ, or a remote
domain’s event channel. The process can be broken down into two stages:

1. Binding the channel to an event source
2. Configuring a handler for the event

The first step is the process of actually binding the channel to an event source.
One of the first event channels that a kernel needs to bind is the timer virtual
interrupt. This is identified by VIRQ_TIMER, which provides a periodic timer
event that can be used for scheduling.

Listing 7.3 shows how the timer interrupt can be bound. The hypervisor selects
an unbound event channel in the caller, and sets the value of op.port to this value.
This should then be used in the second step, where the handler is configured.



DU W N =

0 ~

7.4. Requesting Events 125

Channels and Ports

The terms “channel” and “port” are used almost interchangeably. Technically,
a channel is the abstract connection between two endpoints, whereas the port
is an identifier used to indicate which endpoint the channel is connected to.

When an interdomain event channel is allocated, it is connected to a port in
the domain that creates it. When a remote domain binds it, both ends have a
port and the channel can be used. From the perspective of either domain, the
local port is the channel; it has no other means of identifying it. It is important
to be aware of the distinction between channels and ports, although in practice
it is safe to ignore it most of the time.

Listing 7.3: Binding the timer virtual interrupt
evtchn_bind_virq_-t op;

op.virq = VIRQ_TIMER;
op.vcpu = 0;

if ( HYPERVISOR_event_channel_op(EVTCHNOP _bind_virq, &op) != 0

)
{

/* Handle the error x/
}

The other kind of event that is commonly requested is the interdomain event.
This is used for delivery of events between the two halves of split drivers, and
can be used for signalling other asynchronous interdomain communication events.
The process for binding these events is similar to that of binding VIRQs. Note
that not all events of this nature need to be bound; the event channels used for
console and the XenStore are bound by the domain builder. The console event
channel is bound so that it can be used early on for outputting kernel debugging
information. The XenStore event channel is bound so that the XenStore can be
used for bootstrapping other interdomain communication.

Virtual IRQs originate inside the hypervisor, and so the only information re-
quired to bind one is the VIRQ number. Interdomain events must be bound to a
remote domain and an allocated (but unbound) channel within that domain.

Listing 7.4 shows how a new event channel can be allocated. As before, op.port
is set to the allocated port. This operation allocates a channel that remote_domain
may bind for interdomain communication. The value of op.port usually is placed in




B W N =

3 O Ut

LR VI

D Ut

126 Chapter 7. Using Event Channels

Listing 7.4: Allocating an unbound event channel

evtchn_alloc_unbound_t op;
op.dom = DOMID_SELF;

op.remote_.dom = remote_domain;
if( HYPERVISOR_event_channel_op (EVTCHNOP_alloc_unbound, &op) !=
0)

/% Handle the error x/

the XenStore, where the remote domain can access it. Only the domain specified
when the channel is allocated is allowed to bind to it.

Assuming that the other domain has now managed to retrieve the event chan-
nel port number via some means (typically the XenStore), it can now bind it for
interdomain access, as shown in Listing 7.5.

Listing 7.5: Binding an event channel for interdomain communication

evtchn_bind_interdomain_t op;

op.remote_.dom = remote_domain;

op.remote_port = remote_port;

if( HYPERVISOR_event_channel_op(EVTCHNOP _bind_interdomain, &op)
1= 0)

/+* Handle the error x/

There are a few caveats to add to this related to masking events, which are dis-
cussed in the next section. It is common at boot time to mask all event channels,
and then unmask them as they are bound, to remove the possibility of receiving
spurious events. When binding a new event, you should also clear the pending
bit relating to that event. Without doing this, it is possible for the handler to
be triggered when it shouldn’t be. The final thing to note is that event deliv-
ery is disabled at boot time, and needs to be enabled by clearing the VCPU’s
evtchn_upcall_mask flag. After doing this, you must check whether the VCPU’s
evtchn_upcall_pending flag is set, and handle waiting events if it is. Failing to do
so can result in events being lost or delayed.

Intradomain events, the virtualized form of interprocessor interrupts, are a
third kind of event channel. These are slightly different from other event channels.
Because both endpoints are in the same domain, the port number is the same for
both ends. Very little information needs to be passed to create such an event
channel. The domain is implicit—it must be the local domain—and the port for
both ends is allocated by the hypercall. The virtual CPU at one end is implicitly



DU W N =

7.5

7.5. Binding an Event Channel to a VCPU 127

set to the caller’s VCPU. All that is required is the VCPU at the other end of the
channel, as shown in Listing 7.6.

Listing 7.6: Binding an event channel for intradomain communication

evtchn_bind_ipi op;

op.vcpu = other_vcpu;

if( HYPERVISOR_event_channel_op (EVTCHNOP_bind_ipi, &op) != 0)
{

}

The final kind of event that can be handled is a physical IRQ. As discussed
earlier, these cannot be delivered directly to running guests*, and so must be
routed through the hypervisor.

Unlike the other event types, most domains are not permitted to request phys-
ical TRQs. Domain 0 is typically allowed to, as is any driver domain that is
explicitly configured to have access to a given IRQ.

The second step in the binding process does not involve any hypervisor inter-
action, and occurs entirely within the guest. All events are delivered to a single
event handler in the guest kernel, which is responsible for dispatching them to the
correct location. Before an event channel is set up for handling incoming events,
it is necessary to set something in this handler so it knows how to handle the new
event. One way of doing this will be discussed in more detail in the example at
the end of the chapter.

/+* Handle the error x/

Binding an Event Channel to a VCPU

For uniprocessor guests, events are passed to the only VCPU. For SMP guests, it
is likely that the handler for a given event may want to be bound to a particular
VCPU. This is more useful on nonvirtualized guests, because it enables better use
of the processor’s instruction cache, but it can be useful on virtualized systems to
allow cheaper locking and more sensible scheduling decisions.

Only interdomain events can be bound to a VCPU. Virtual IPIs are bound to
a pair of virtual CPUs when the channel has been bound, and per-VCPU VIRQs
are similarly bound to a given VCPU. Interdomain events are bound to VCPU 0
when they are created, but can later be rebound to another VCPU.

Listing 7.7 shows how the event channel identified by event_channel_number
would be assigned to the VCPU identified by vcpu_number. Note the somewhat
confusing terminology in the hypercall name. In various places throughout the
Xen code and documentation, the verb “to bind” has three distinct meanings
when related to event channels:

4Except on some platforms with a virtualization-aware interrupt controller.



7.6

128 Chapter 7. Using Event Channels

Listing 7.7: Assigning a bound event channel to a VCPU

1| evtchn_bind_vcpu op;

2[op.port = event_channel_number;

3|l op.vcpu = vcpu_number;

4/ if( HYPERVISOR_event_channel_op (EVTCHNOP_bind_vcpu, &op) !'= 0)
5{

6 /+* Handle the error x/

7|}

e Connecting the endpoints of a channel to a port
e Assigning a VCPU for receiving events on a given channel

e Setting the handler for a specified event

The third use is not found in the hypervisor itself (because it occurs inside a
guest kernel), but is found in the example Mini-OS kernel included with the Xen
distribution.

In an SMP guest, each event channel has to be “bound” in all of the preceding
three ways. First, the channel must be allocated and bound at both ends. Then,
the correct VCPU for handling the events should be bound to the event channel.
Finally, the handler function should be bound to the channel, and then the channel
unmasked so that event delivery can proceed.

Operations on Bound Channels

The most obvious thing that can be done to a bound channel is signaling the
occurrence of the event along it. This was shown briefly in the example in the last
chapter. Signaling an event is very simple. Because event channels are connection-
oriented, all that is required is the port number of this end of the channel.

The use of this we saw earlier—to signal the console event channel—and looks
something like Listing 7.8. The control structure for the operation only has a
single parameter: the port to be signaled.

Listing 7.8: Signaling the console’s event channel

1| struct evtchn_send event;

event.port = start—>domU. console.evtchn;
HYPERVISOR_event_channel_op (EVTCHNOP_send, &event);

Apart from sending a notification along a channel, the only remaining opera-
tion that is meaningful to a bound port is closing it. This invalidates the channel,
and prevents future events being sent along it. It also recycles the port. The
last part is important because you only have eight times the machine word length



7.7

O © 00 UL & W N~

N B B R H R R R R R R
O © 01 UL &~ W N K

7.7. Getting a Channel’s Status 129

event ports, giving a maximum of 256 or 512 channels that can be bound at any
one time.

The operation for closing a port ( evtchn_close_t ) is exactly the same as that
for sending a notification to it. It has a single field containing the port number.
The command given to the hypercall is EVTCHNOP close. Any attempt to use
the channel from either end will fail after this has been called.

Getting a Channel’s Status

It is sometimes useful to retrieve the status of a channel. This is done by using
the EVTCHNOP status command with the event channel hypercall. This takes a
fairly complicated structure as the operation, with two input parameters and a
number of output parameters. This structure is shown in Listing 7.9.

Listing 7.9: Event channel status operation

struct evtchn_status {
/x IN parameters x/
domid_t dom;
evtchn_port_t port;
/* OUT parameters x/
uint32_t status;
uint32_t vcpu;
union {
struct {
domid_-t dom;
} unbound;
struct {
domid_t dom;
evtchn_port_t port;
} interdomain;
uint32_t pirq;
uint32_t virq;
bous
i

typedef struct evtchn_status evtchn_status_t;

The two “in” parameters uniquely identify an endpoint for an event channel
as a (domain, port) pair. This pair must indicate a port that has been bound to
a channel. If it does not, the hypercall returns an error. The remainder of the
structure is filled in by the hypervisor. As usual, unprivileged domains may only
set the domain to DOMID_SELF.



7.8

130 Chapter 7. Using Event Channels

Table 7.1: Event channel status values
Constant Channel Status
EVTCHNSTAT _closed Not currently in use
EVTCHNSTAT _unbound Waiting interdomain connection
EVTCHNSTAT _interdomain | Connected to remote domain

EVTCHNSTAT _pirq Bound to a physical IRQ
EVTCHNSTAT _virq Bound to a virtual IRQ
EVTCHNSTAT _ipi Bound for intradomain use

There are two fields that are always filled in for any channel. The first is the
status, which must be a value from Table 7.1, indicating the current status of the
connection. The other is the VCPU, which is designated to receive events sent
along this channel.

The final field is a union, with different values set depending on the value of
the status. For an unbound channel, the domain, which is allowed to bind to the
remote end, is returned. A channel bound for interdomain communication gives
the (domain, port) pair that uniquely identifies the remote end of the connection.

Event channels bound to IRQs, real or virtual have the IRQ number returned.
The final category, intradomain event channels (virtual IPIs), return no additional
information. The VCPU returned by this hypercall is the one that was specified
when the channel was configured.

Masking Events

When an event handler is called, event delivery to the handling virtual CPU is
automatically disabled. Sometimes, it is necessary (or, at least, useful) for events
to be masked while performing other operations. Masking events can be performed
in either the global scope at a per-event granularity, or on a per-VCPU basis, for
all events.

When delivering an event, the hypervisor goes through the steps shown in
Figure 7.1. There are three places where it can give up on delivery:

1. If the pending bit is set for the channel. This means that an event is already
waiting, so this one can’t be handled yet.

2. The event channel is masked. There are a number of reasons why this could
happen, but it is typically used to protect the non-reentrant parts of a kernel.

3. The VCPU that would handle the event has elected not to receive events.
This is often caused by an event handler in process of running.



7.8. Masking Events

Event

Generated

\

Is the Yes

pending bit
set?

Set the pending
bit for the channel

Is the
channel
masked?

Yes

Yes Are events

VCPU?

Figure 7.1: The process of delivering an event, from the Hypervisor’s perspective

masked on the

Is the
channel
bound to a
VCPU?

that doesn't have
events masked?,

Set the VCPU's
pending flag

S —

Set the VCPU's
event selector

Deliver event
via upcall

Stop

No




7.9

132 Chapter 7. Using Event Channels

After an event is masked, it is still possible to poll for events by checking the
corresponding “pending” bit. This is typically done before exiting the event han-
dler, because other events may have been enqueued while delivery was masked by
the handler. It is also very useful for busy event channels. The upcall mechanism
is not particularly cheap, in terms of entry and exit costs. If a given event chan-
nel is being particularly busy, better performance can be achieved by masking it
and polling for events on the channel periodically. This can either be detected
at runtime, or implemented at design time for a channel that is expected to be
particularly busy.

Both the masking and pending bit fields are found in the shared info page. The
hypervisor only ever performs a 0 — 1 transition on the bits in the pending field
and does not touch the masking field. The guest may toggle bits in the masked
bit field as it wants, and should clear the pending flag when an event has been
processed. Note that the hypervisor only tells the guest that “one or more” events
have been signaled on a given channel by setting the pending bit. It is up to the
guest to do as much processing as is required. For this reason, it is a good idea
to clear the pending bit early on in the event handler. This allows events that
are delivered while the handler is running to be enqueued. The kernel can then
check for pending events on that channel that were raised while the handler was
running before unmasking the channel.

Events and Scheduling

Delivery of events is closely tied to virtual machine scheduling. There are currently
four scheduling operations available, two of which are directly connected to event
delivery. All are used via the same hypercall. As is conventional, the hypercall
takes two arguments: a command and an operation.

The simplest scheduling operation is yield, the equivalent of sleep(0) for a
UNIX process (or sched._yield () for a POSIX thread). It tells the hypervisor that
the domain doesn’t want to use the rest of its quantum. This operation is issued
as follows:

HYPERVISOR_sched_op (SCHEDOP _yield ,NULL) ;

The operation here is ignored, and so NULL is usually passed. When this
operation is used, the hypervisor reschedules the domain later. A slightly stronger
version of this is the block operation:

HYPERVISOR_sched_op (SCHEDOP_block ,NULL) ;

This has the same immediate effect as the yield operation: The domain is
de-scheduled. It will not be rescheduled, however, until an event is delivered. If
all processes in a guest are in blocking states, this allows the guest to wait until



7.10. Exercise: A Full Console Driver 133

it has something to do before running. The timer VIRQ is delivered via an event
channel, so a domain calling this is awakened for its next timer event.

The remaining two scheduling operations are a little more complicated; they
both take an argument. The shutdown operation takes an operation with a single
field, indicating the reason for the shutdown. Listing 7.10 shows how a guest
would perform a clean shutdown.

Listing 7.10: Cleanly shutting down a guest

1| sched_shutdown_t op;

79
8o

81
82
33
84

op.reason = SHUTDOWN poweroff;
HYPERVISOR_sched_op (SCHEDOP _shutdown, &op);

Other valid reasons are SHUTDOWN _reboot, if the domain is expecting to be
rebooted after shutting down; SHUTDOWN _suspend, if it has disconnected devices
and prepared the kernel for suspension; or SHUTDOWN _crash, if the guest has
crashed.

This leaves one scheduling operation. Polling is similar to blocking, but is much
finergrained. This operation can only be executed when the guest has delivery of
all events disabled. The operation used with this command is shown in Listing
7.11.

Listing 7.11: Event polling control structure (from: xen/include/public/sched.h]

struct sched_poll {
XEN_GUEST_HANDLE( evtchn_port_t) ports;
unsigned int nr_ports;
uint64_t timeout;

IiE

typedef struct sched_poll sched_poll_t;

The first two fields of this define an array of ports that are being monitored.
The timeout field specifies a wall clock time, in nanoseconds since the UNIX epoch.
If this time is reached the hypercall returns a nonzero value. Otherwise, it blocks
until one of the event channels in the array is signaled. Because event delivery is
masked, the event does not produce an upcall, so the caller must determine which
event has been delivered and handle it.

7.10 Exercise: A Full Console Driver

In the last chapter, we created a basic console driver. This mapped the memory
page used by the console, and allowed some simple output. This example extends
the basic driver to trigger events when there is available data and handles it.



119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

134 Chapter 7. Using Event Channels

All Xen events are received by a single handler. We need to set up a way
of dispatching events to a given handler when they are received. We do this by
creating a simple handler that dispatches events to their correct handlers. This
will store a vector of possible events, and trigger the correct one when required.

The problem comes from the fact that Xen events are delivered completely
asynchronously; they can occur at any point in execution, including in the middle
of execution of a userspace process. It is therefore necessary to save the current
state before proceeding. When entering the event handler callback, the hypervisor
masks all events. It is then up to the event handler to reenable them.

When exiting an interrupt handler on x86, it is common to use the IRET in-
struction. This restores control to the process that was interrupted, and re-enables
interrupts atomically. This is fine for returning from an interrupt handler; but
when returning from an event handler, it is not completely useful, because events
are different. Events are an entirely software construct, so the IRET instruction
has no way of knowing how to enable them. There are two possible solutions to
this:

e Provide an IRET hypercall

e Don’t do it atomically, and pick up the pieces if it all goes wrong

Both of these are used by Xen. The IRET hypercall is simple to use, but is
quite expensive, because it involves context switching to the hypervisor and back.
Most of the time, it turns out that atomicity is not required, because no new
events interrupt the old ones. When it is, it’s still less expensive to detect and fix
than issuing a hypercall every time. Listing 7.12 shows a safe entry point.

Listing 7.12: Event entry point (rom: extras/mini-os/arch/x86/x86.32.5]

ENTRY( hypervisor_callback)
pushl %eax
SAVE_ALL
movl EIP(%esp),%eax
cmpl $scrit ,%eax

jb 11f

cmpl S$ecrit ,%eax

jb critical_region_fixup
11: push %esp

call do_hypervisor_callback

add $4,%esp

movl HYPERVISOR_shared_info,%esi

xorl %eax,%eax

movb CS(%esp),%cl

test $2,%cl # slow return to ring 2 or 3
jne safesti



135
136
137
138

139
140
141
142

150
151
152
153

7.10. Exercise: A Full Console Driver 135

safesti :movb $0,1(%esi) # reenable event callbacks
scrit: /xxxx START OF CRITICAL REGION s/
testb $0xFF,(%esi)
jnz 14f # process more events if
necessary...
RESTORE_ALL
14: movb $1,1(% esi)
jmp 11b
ecrit: /xxxx END OF CRITICAL REGION sxxx/

The real event handler is in the do_hypervisor_callback function, defined else-
where. The first part of this reads the origin address, and checks whether it falls
between the scrit : and ecrit : labels. If it is, this means the current event is in-
terrupting the event handler, rather than real code. This is a problem because
we have restored the values of some registers from where we stored them (on the
stack), but not all of them. If this happens, we have a problem; there will be one
complete copy of registers on the stack, and some rubbish. We need to merge the
two stack-based copies together.

Listing 7.13 shows how this is done, if detected. The critical fix-up table
referenced here is a simple table structure that allows determination of how many
have been successfully restored. This then copies the values lower down the stack
and sets the stack pointer to the correct value. When the two parts of the stack-
copy of the register file are in the same place, the RESTORE_ALL macro (which
just pops them all off the stack) can restore them as if the interruption had not
happened. After this happens, it jumps back into the event handler, which then
keeps trying to process events until there are none left.

The overall flow of this bit of code is to enter the event handler and push
the contents of all registers onto the stack. Next, it checks if you came from the
critical section, which is the part between reenabling event delivery and returning.
If this is the case, the stack frame is remangled so that it contains the same thing
it would have contained if the interruption had not occurred. After this, it loops,
repeatedly processing pending events, until it runs out, at which point it reenables
event delivery, restores the register file, and returns.

The contents of the stack pointer is pushed just prior to calling the real handler.
This points to the previous stack frame, which contains the contents of all of the
registers from prior to the event. This allows the event handler to have access to
the processor state, and optionally tweak things if required.

Listing 7.13: Critical region interruption fix rrom: extras/mini-os/arch/x86/x86.32.5]

critical_region_fixup:
addl $critical_fixup_table—scrit ,%eax
movzbl (%eax),%eax # %eax contains num bytes popped
mov  %esp,%esi



154

155
156

157
158
159
160
161
162
163
164
165

166

67
68
69
70
71
72
73
74

76
77
78
79
8o
81
82
33
84

85
36

136 Chapter 7. Using Event Channels

add %eax,%esi # %esi points at end of src
region

mov  %esp,%edi

add $0x34 %edi # %edi points at end of dst
region

mov  %eax,%ecx

shr  $2,%ecx # convert words to bytes

je 16 f # skip loop if nothing to copy

15: subl $4,%esi # pre—decrementing copy loop

subl $4,%edi
movl (%esi),%eax
movl %eax,(%edi)

loop 15b
16: movl %edi,%esp # final %edi is top of merged
stack
jmp 11b

This bit of event handler code is highly platform-specific, and needs to be
rewritten for other architectures. It gives some abstraction, however, and our
“real” event handler can now be in do_hypervisor_callback , which can be defined
as some C code. This, quite messy, function is shown in Listing 7.14, and is from
the event.c file in this chapter’s sample code.

Listing 7.14: Event callback function ifrom: examples/chapter7/event.c]

/+* Dispatch events to the correct handlers x/
void do_hypervisor_callback (struct pt_regs *regs)
{
unsigned int pending_selector;
unsigned int next_event_offset;
vcpu_info_t xvcpu = &shared_info.vcpu_info[0];
/* Make sure we don’'t lose the edge on new events... x/
vcpu—>evtchn_upcall_pending = 0;
/+x Set the pending selector to 0 and get the old value
atomically x/
pending_selector = xchg(&vcpu—>evtchn_pending_sel, 0);
while(pending_selector != 0)
{
/+* Get the first bit of the selector and clear it */
next_event_offset = first_bit(pending_selector);
pending _selector &= "(1 << next_event_offset);
unsigned int event;

/¥ While there are events pending on unmasked channels
*/

while (( event =

(shared_info.evtchn_pending[pending_selector]



87
88
39
90
91
92
93
94
95

96
97
98
99

100
101
102

7.10. Exercise: A Full Console Driver 137

&
“shared_info.evtchn_mask[pending_selector]))
I= 0)
{
/+* Find the first waiting event x/
unsigned int event_offset = first_bit(event);
/+* Combine the two offsets to get the port %/
evtchn_port_t port = (pending_selector << 5) +
event_offset ;
/* Handle the event x/
handlers[port]( port, regs);
/+x Clear the pending flag */
CLEARBIT(shared_info.evtchn_pending [0],
event_offset);
}
}
}

The first thing this does is clear the pending upcall flag. If another event
arrives, this flag is set again and the hypervisor delivers another upcall later.
Clearing this later could, potentially, result in some events being deferred until a
subsequent event is delivered.

The pending event selector is then cleared, and a copy of it retained. This has
one bit for each word in the event bitfields. The outer loop scans over this selector,
once for each set bit, and looks in the corresponding word in the event bitmap.
Note that this is a fairly x86-specific optimization; on platforms that don’t have
bitfield-manipulation instructions, the extra shifts and tests are likely to be much
slower than simply testing each word against zero.

The inner loop runs while there are events that are pending and not masked.
For each one, it calls the corresponding handler, and then clears the pending bit.
When there are no pending, unmasked, events left, the function returns, dropping
back to the assembly code, which then reenables interrupts.

Of course, before this can happen, the event handlers need to be set up. Listing
7.15 shows the two other functions required for this. The first begins by register-
ing the two hypervisor upcall entry points. The first is used for event delivery,
and the second is used when something goes horribly wrong. It then sets up a
default handler (which does nothing) for all events and masks the relevant chan-
nel. Finally, it enables upcalls. In most cases, you then check for missed events
after doing this. We don’t have to, because we know that we have just masked
all event channels, so an upcall would not call any handlers. The second function
assigns a handler function for the port and unmasks it.

We use the second function in our new console initializer, in Listing 7.16. This
is remarkably similar to the last one, but registers a handler for an event when



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

138 Chapter 7. Using Event Channels

Listing 7.15: Setting up event handlers (from: examples/chapter7/event.c]
static evtchn_handler_t handlers [NUM_CHANNELS];

void EVT_IGN(evtchn_port_t port, struct pt_regs * regs) {};

/% Initialise the event handlers x/
void init_events(void)

{
/+ Set the event delivery callbacks x/
HYPERVISOR_set_callbacks (
FLAT_KERNEL_CS, (unsigned long)hypervisor_callback ,
FLAT_KERNEL_CS, (unsigned long)failsafe_callback);
/+* Set all handlers to ignore, and mask them x/
for (unsigned int i=0 ; i<NUM_CHANNELS ; i++)
handlers[i] = EVT.IGN;
SET_BIT(i,shared_info.evtchn_mask[0]) ;
}
/* Allow upcalls. %/
shared_info.vcpu_info [0]. evtchn_upcall_mask = 0;
}

input data is ready. The handler for this event is shown in Listing 7.17. It’s very
simple, and just checks if there is actually any data waiting and copies it to the
output if there is.

Setting up event handling is almost completed. All we need to do now is
configure our kernel to call the relevant initialization functions. The body of the
kernel is shown in Listing 7.18. The first thing this does is map the shared info
page over the space left for it in the kernel image. It also sets a pointer to this,
which is used by the assembly bootstrap to locate the upcall masking flag and
clear it.

Next, it calls the event and console initialization routines that we have just
described, and performs the obligatory output of “Hello world!” to prove that it
all worked. Finally, it loops. This infinite loop is slightly different from previous
ones, in that it tells the hypervisor not to schedule the guest at all until an event
is received. The event is then processed via the upcall, and control is returned
to the loop, which immediately sleeps again. This model can be used to create
purely event-driven kernels.

If all of this works, our kernel should run, accepting input and echoing it to
the screen:



24
25
26
27
28

29
30
31
32
33
34
35

10
11
12
13
14
15
16
17
18
19
20
21
22

7.10. Exercise: A Full Console Driver 139

/%

Listing 7.16: The new console initializer (from: examples/chapter?/console.c]

Initialise the console x/

int console_init(start_info_t * start)

{

console = (struct xencons_interface )

((machine_to_phys_mapping[start —>console .domU.mfn] <<
12)

+
((unsigned long)&_text));

console_evt = start—>console.domU. evtchn;

/+ Set up the event channel */

register_event (console_evt, handle_input);

return 0;

Listing 7.17: The console event handler (from: examples/chapter?/console.c]

/* Event received on console event channel x/
void handle_input(evtchn_port_t port, struct pt_regs x regs)

{

XENCONS_RING_IDX cons = console—>in_cons;
XENCONS_RING_IDX prod = console—>in_prod;
int length = prod — cons;

if(length > 0)

char buffer[10];
console_read (buffer, ++length);
console_write(buffer);



10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

140 Chapter 7. Using Event Channels

Listing 7.18: The event-handling kernel body (trom: examples/chapter?/kernel.c]
shared_info_t *HYPERVISOR_shared_info;

/* Main kernel entry point, called by trampoline x/

void start_kernel(start_info_t x start_info)

{
/* Map the shared info page x/
HYPERVISOR_update_va_mapping ((unsigned long) &shared_info ,

__pte(start_info—>shared_info | 7),
UVMF_INVLPG) ;
/+x Set the pointer used in the bootstrap for reenabling
x event delivery after an upcall x/
HYPERVISOR_shared_info = &shared_info;
/x Set up and unmask events x/
init_events ();
/+ Initialise the console x/
console_init(start_info);
/% Write a message to check that it worked x/
console_write (" Hello_world!\ r\n");
/x Loop, handling events x/
while (1)
{

}

HYPERVISOR_sched_op (SCHEDOP_block,0) ;

# xm create -c domain_config

Using config file "./domain_config".
Started domain Simplest_Kernel
Hello world!

Does this work? Yes, seems to... "]

# xm list

Name ID Mem VCPUs State Time(s)
Domain-0 0 250 1 r-——-—-- 1376.4
Simplest_Kernel 181 32 1 -b--—-- 0.0

Note the output from xm list, specifically the time column. Because we are
blocking, this only increments (by a few milliseconds) when a key is pressed,
generating an event. This is a contrast with our earlier attempts, which spent a
lot of time spinning needlessly.



8.1

Chapter 8

Looking through the
XenStore

The XenStore is a storage system shared between Xen guests. It is a simple hierar-
chical storage system, maintained by Domain 0 and accessed via a shared memory
page and an event channel. Although the XenStore is fairly central to the oper-
ation of a Xen system, there are no hypercalls associated with it. The start info
page contains the address of the shared memory page used to communicate with
the store. A guest maps this page and then all further communication happens
via the ring buffers in this page.

This chapter will explore the contents of the XenStore and the ways of inter-
acting with it from userspace in existing systems and from a newly ported kernel.
Unlike many other parts of Xen, the XenStore has a well-defined interface for
userspace programs to use, intended to reduce the dependency of the tools on
features of the host operating system.

The XenStore Interface

The hypervisor itself is not aware of the existence of the store. It is maintained by
a deemon running in Domain 0, and accessed much like any other device driver.
The interfaces to device drivers will be covered in more detail in the next section.
The basic interface to the store consists of two ring buffers, one for each direc-
tion. Requests to update the store or for information about the current contents
are placed into one ring. Responses and asynchronous notifications of changes are
inserted into the other ring. The first ring is written to by domU guests and read
from by dom0; the other ring is written to by dom0 and read from by domU.
The XenStore is composed of directories, which can contain other directories

141



8.2

142 Chapter 8. Looking through the XenStore

or keys. Each key has an associated value. The store could also be thought of
as a nested associative array, or dictionary. The structure is very similar to a
filesystem. The use is somewhat different, however. It is not intended that the
store should be used for storing or transferring large amounts of data; indeed,
the interface makes it quite difficult to use it in this way. It is mainly used as an
extensible method of transmitting small amounts of information between domains.
For example, the location of virtual devices is exposed via the XenStore.

The store is also used to provide information about running domains in a fairly
easily readable format. This can then be accessed by the administrative tools to
provide information to an administrator, and to give a persistent place for them
to store their own information.

Unlike most filesystems, the XenStore supports a transactional model for I/O.
Groups of requests can be bundled into a transaction, assuring that they will
complete atomically. This allows consistent views of the store (or some subtree)
to be easily created.

XenBus

You may hear the term XenBus thrown around in various contexts. There is
some confusion about exactly what this means, caused by the fact that the
same term is used to describe two things. In the Xen port of Linux, the term
is used to describe the interface to the XenStore. In a more general case, it is
used to describe a protocol for connecting to device drivers that is built on top
of the XenStore.

Navigating the XenStore

The Xen distribution includes a number of command-line tools for inspecting and
manipulating the store. These are the xenstore-* family, and can be used from
Domain 0. To get a full list of the contents of the XenStore, use the xenstore-1s
command.

# xenstore-ls
tool = ""

yvm = ""
00000000-0000-0000-0000-000000000000 = ""

local = ""




8.2. Navigating the XenStore 143

The three top-level entities in the store are tool, vm, and local. The tool
hierarchy is used for tools to store information. This part of the hierarchy exists
to allow tools to have a uniform storage and communication mechanism, isolated
from the underlying filesystem of Domain 0.

The /vin tree contains an entry for each virtual machine running. Each is
identified by a globally unique ID. The information in this tree is fairly static, and
should not change much over the lifetime of the guest. The indexing by means
of a UUID allows this tree to be duplicated after migration. Domain 5 on one
machine may be migrated to domain 12 on another, but their UUID will remain
constant. By specifying an exact path to xenstore-1s, you can look at a single
VM’s entry. This shows the output for an instance of the Xen Mini OS:

# xenstore-ls /vm/1d6af2c8-edf6-fc8c-c659-222ebbf3feea

image = "(linux (kernel /root/xen-src/extras/mini-os/mini-os.elf))"
ostype = "linux"
kernel = "/root/xen-src/extras/mini-os/mini-os.elf"
cmdline = ""
ramdisk = ""
shadow_memory = "O"
uuid = "1d6af2c8-edf6-fc8c-c659-222ebbf3feea"
on_reboot = "restart"
start_time = "1176124400.97"
on_poweroff = "destroy"
name = "Mini-0S"
xend = ""
restart_count = "0"
vcpus = "1"
vcpu_avail = "1"
memory = "32"
on_crash = "destroy"
maxmem = "32"

Many of the settings here are provided by the domain configuration file used
to create the domain. The ostype field is slightly misleading. It refers to the
domain builder used to create this domain. At present, two domain builders come
with Xen: Linux and HVM. Linux is a fairly generic ELF loader with support
for loadable modules, whereas HVM is designed to boot unmodified operating
systems. Adding a new domain builder requires patching Xen. Both Plan 9 and
Minix do this currently, in order to support booting an a.out format kernel image.

The vcpus and vecpu_avail fields indicate the number of virtual CPUs that
the domain has access to. The first value contains the number that are allocated
to the domain in total, and the second the number that are not disabled. Some



144 Chapter 8. Looking through the XenStore

of the information in the /vm tree is duplicated in the /local/domain tree, which
indexes virtual machines by domain. This tree also includes runtime information,
such as the configuration of connected devices. The same Mini OS domain has
this information in the /local/domain part of the tree:

# xenstore-ls /local/domain/1
console = ""

ring-ref = "5400"

port = "2"

limit = "1048576"

tty = "/dev/ttypl"

name = "Mini-0S"

vm = "/vm/1d6af2c8-edf6-fc8c-c659-222ebbf3feea"
domid = "1"

cpu = ""

O = nn

availability = "online"

memory = ""

target = "32768"

store = ""

ring-ref = "5401"

port = "1"

Mini OS, being simpler than most guests, only uses two devices: the console
and the XenStore. As mentioned earlier, the locations of these are both passed in
via the shared info pages at boot time. The ring-ref and port entries in the store
should match the grant references and event channel numbers from the start info
page. The console subtree also includes information relating to the implementation
of the back end, such as the amount of data that will be buffered and the device
used by the console. The buffer is not the ring buffer used for I/O, but something
similar to the scroll-back buffer on a virtual terminal. In this example, 1IMB of
text can be stored here. This is more important on a VM than a physical machine,
because the console on a VM is likely not to be connected to a real device for much
of the time, and so maintaining history is important.

The /local/domain tree is conceptually similar to the /proc hierarchy on a
UNIX system, a virtual filesystem containing a directory for every process run-
ning on the system. The contents of /proc vary widely between UNIX-like systems
(Linux, for example, uses it as a substitute for sysctls in many cases, and XNU
omits it entirely), but at a minimum it is likely to contain one entry for each valid
PID in the system. The local domain hierarchy in the XenStore is arranged simi-
larly, with one entry for each domain in the system. Domains in Xen correspond
very closely to processes in UNIX. Each has its own address space, and can have



8.3

99
100

101
102
103

104
105

8.3. The XenStore Device 145

multiple threads (VCPUs) that may or may not execute concurrently, depending
on the nature of the number of physical CPUs in the system.

The XenStore Device

The XenStore was discussed from a high-level perspective in the previous chapter.
Now we will take a look at exactly how the guest interacts with it. The page used
by the XenStore is mapped into the guest’s address space by the domain builder,
and the machine frame number is provided by the start info page.

To use this page, you must first obtain a pointer to it. On x86, and other
platforms where the guest is aware of the difference between pseudo-physical and
machine addresses, you can do this using the machine frame list. This is placed
in the top of the guest’s virtual address space, in a region that is read-only to
the guest, and identified by the variable machine_to_phys_mapping. This is an
array of pseudo-physical frame numbers, indexed by machine frame number. The
pseudo-physical frame of the store’s page will be:

machine_to_phys_mapping[start_info.store_mfn]

Remember that this is a frame number, rather than an address. To turn it
into an address, you must multiply it by the size of a single page, typically 4K.
This is typically done by means of a left-shift, because the page size is always a
power of two. The address can then be used as a pointer to a structure of the
form shown in Listing 8.1, and defined in the io/xs_wire.h public header.

Listing 8.1: XenStore interface structure ffrom: xen/include/public/io/xs wire.h]

#define MASK_XENSTORE_IDX(idx) ((idx) & (XENSTORE_RING_SIZE—1))
struct xenstore_domain_interface {
char req [XENSTORE_RING_SIZE]; /« Requests to xenstore
daemon. x/
char rsp [XENSTORE_RING.SIZE]; /+* Replies and async watch
events. %/
XENSTORE_RING_IDX req_cons, req_prod;
XENSTORE_RING_IDX rsp_cons, rsp_prod;

+s

This structure contains two ring buffers—one for requests and one for
responses—and their associated producer and consumer counters. Note that these
do not use the ring macros described earlier. This is because they do not fit into
the neat one-request-per-response idea that the generic ring macros expect. A
request might register a watch, and then have several responses every time the
watched node is updated. Worse, the first response may come a long time after



146 Chapter 8. Looking through the XenStore

the request is added. Using the generic ring model, we would quickly run out
of space in the rings. Instead, requests are enqueued in one ring, and responses
in another, with an event (described in more detail in the next chapter) used to
signal the arrival of a new response.

Requests sent to the back end are fairly similar conceptually to network pack-
ets. The fact that the structure used to represent them is called xsd_sockmsg
only helps to reinforce this parallel. The structure is actually the message header,
rather than the entire message, and contains four fields, all of which are 32-bit
integers, as shown here:

struct xsd_sockmsg

{
uint32_t type;
uint32_t req.id;
uint32_t tx_id;
uint32_t len;

s

The first indicates the type of the packet, and must be selected from an enu-
merated type declared in the same file. The second is a unique identifier. Any
responses to this request will have the same req_id value. The tx_id field is used
to indicate which transaction a request is part of. If a number of requests have
to complete atomically, they can be grouped inside a pair of requests with the
XS_TRANSACTION_START and XS_TRANSACTION_END types, respectively, and
have the same transaction ID set for all of them. The back end should wait until
the end of the transaction, lock any relevant data structures, and then execute
the transaction in one go. Finally, the len field indicates the length of the body.

After the header, the body of the message is generally a text string. The
XenStore, for simplicity, is based around text strings. If more than one string
is required for a given request or response, they are separated by NULLs. For
example, if you are writing a value, the path of the key and the associated value
will both be provided as strings in the message body. Note that this imposes a
practical limitation on the size of XenStore, because the length of a key, value and
the message header must all be able to fit in the request ring at once in order to
set them. In the current implementation, the rings are 1024 bytes each.

The types of XenStore messages are all prefixed with XS_. The simplest are
XS_READ and XS_WRITE, responsible for reading and writing a key, respectively.

When reading a key, the XS_READ command is used in the type field of the
message header, and the message body is set to a NULL-terminated string indi-
cating the key. A response is then enqueued in the response ring with the same
req-id. If the type of the response is XS_.ERROR, the request failed. In this case,
the message body will contain the name of the error—for example, "ENOENT"—if
the path did not exist. Note that a string is returned for an error, rather than a
symbolic value.



8.4

8.4. Reading and Writing a Key 147

If the read request worked correctly, the message body of the response will
contain the value associated with the key. A write request is handled in a sim-
ilar way, although the request should contain two NULL-terminated (and, thus,
NULL-separated) strings, the first indicating the key path and the second indi-
cating the value. Errors are reported in the same way, and a response of a type
other than XS_ERROR indicates success.

Keys paths are written in the same style as UNIX file paths, so /local/
domain/0/name is used to represent the path to the name of the dom0O guest.
Each VM has its own subtree in /local/domain represented by its domain num-
ber, and all relative paths are assumed to start here. This allows a domain to
check for devices without having to be aware of its domain number. The path
device/vbd/0, for example, always points to the first virtual block device avail-
able to this domain. A list of all available device categories can be discovered by
enumerating the keys in the device hierarchy, and the available devices of each
type by enumerating keys in children. For example, the available virtual network
interfaces can be discovered by enumerating the children of the device/vif key.

Enumerating keys is done using the XS_DIRECTORY message type. This re-
turns a list of NULL-terminated strings indicating the children of the given key.
Note, again, that the children of any given key must fit into the response ring in
order for a guest to be able to enumerate them. This is not typically a problem,
because the size of keys is small, as is their number.

If you are considering storing other information in the XenStore, however,
keep these limitations in mind. The XenStore should be used as a mechanism for
communicating small amounts of data. It might be tempting to use it as a general
purpose storage or communications system, but block devices, virtual interfaces,
or shared memory pages are generally better for this kind of use.

Reading and Writing a Key

The primary use of the XenStore is to store key-value pairs in a location that
is easily accessible to running guests and tools. The userspace tools may use
the store to contain their own configuration information, or to set information
intended to be read by other guests.

There are three ways in which it is possible to access the XenStore. You
can use the command-line tools, from a shell in a running system that supports
Python and has had the tools ported. This is the best way for accessing the
XenStore from shell scripts, or for performing simple administrative tasks that
require XenStore interaction. Going to a slightly lower layer, we can use the C
API, which communicates with a XenStore device exported by the host operating
system. Finally, we can use the kernelspace interface directly. The last of these is
most likely to be used on a newly ported guest, because the higher level approaches



148 Chapter 8. Looking through the XenStore

cannot be used until the kernel exposes an interface for the tools to use. You will
examine how each of these works.

8.4.1 The Userspace Way

The store can be used from the command line relatively easily to read and write
keys. The xenstore-read and xenstore-write commands are used for this pur-
pose.! We will try creating, inspecting, and removing a key in the /example
namespace, in a variety of ways. First, simply using the existing tools, you can

run the following commands:

# xenstore-write /example ""

# xenstore-write /example/foo bar
# xenstore-list /example

foo

# xenstore-read /example/foo

bar

# xenstore-rm /example/foo

# xenstore-list /example

#

Note that, outside example usage, it is generally considered to be a bad idea
to create a new key in the root of the XenStore.

The first command creates the dictionary that will be used to store the rest
of the example. The next creates a key inside this called foo, with the contents
“bar.” It is worth noting that keys have both values and children. The /example
key contains the empty string as its value, but it also contains the foo key as a
child. Convention within the XenStore is that each key should only have either
values or children; however, this is not enforced.

The xenstore-list command is a nonrecursive version of the xenstore-1s
command shown earlier. This command only lists the children of a particular
key; it does not display their values nor the children of children. This command
corresponds a lot more closely with the underlying XenStore commands being
issued than the xenstore-1s.

We will now take a look at what the command is actually doing when
you invoke it. All of the XenStore functions are exported to the userspace
tools via libxenstore. This library and the tool that uses it are both in the
tools/xenstore part of the Xen tree. First, we will take a look at the tool.

The xenstore-* family of tools are all built from the same source file, which
is full of conditional compilation directives. The file is xenstore_client.c. A

IThe command-line examples in this section are run from Domain 0. Depending on your
configuration, some may fail when executed from other domains.



8.4. Reading and Writing a Key 149

lot of the code here is for handling the arguments. The actual code calling the
library is very simple. The first thing that needs to happen is for the program to
establish a connection to the XenStore:

xsh = socket ? xs_daemon_open() : xs_domain_open();

The xsh variable is a pointer to an xs_handle structure. This is instantiated
using one of two functions, depending on whether the -s option was specified,
setting the socket variable.

If a transaction is being used, the tool next needs to create one:

xth = xs_transaction_start(xsh);

This gives a xs_transaction_t containing the transaction ID. A value of
XBT_NULL is returned to indicate an error. The return value for this function
should be passed to other XenStore functions to indicate that the associated oper-
ation should be regarded as being part of the transaction. Alternatively, the value
XBT_NULL can be used to indicate operations that are not part of any transaction.

At the end of the transaction, it is completed using this call:

xs_transaction_end (xsh, xth, ret);

This ends transaction xth on connection xsh, with ret containing a Boolean
value indicating whether the operations within the transaction succeeded. If they
failed, the entire transaction should be reverted.

In between the start and end of the transaction, some operations need to be
performed. The simplest of these is reading a key:

char xval = xs_read(xsh, xth, argv[optind], NULL);

The third argument of this function is the name of the key to read. If multiple
keys are passed on the command line, the function will loop over them, increment-
ing the value of optind until it has attempted to read all of the values. The final
argument is a pointer to the length of the returned string. If this is NULL, it will
be ignored.

The returned string will be malloc()’d by the callee, and must be freed by the
caller. The same general structure is used for all interactions with the XenStore.
When we tried to list the children of a key, the command used the following API
call:

char xxlist = xs_directory(xsh, xth, argv[optind], &num);

This is almost identical to the read function. Here, an array of strings is
returned, rather than a single string, and the final argument indicates the length
of the array (the number of elements) rather than the length of a single string.

The function for writing into the XenStore uses a slightly different structure:

xs_write(xsh, xth, argv[optind], argv[optind + 1],
strlen(argv[optind + 1]);



150 Chapter 8. Looking through the XenStore

This returns a Boolean value indicating an error (following the C convention
of zero indicating success). The first two arguments, as always, are the XenStore
connection and the transaction ID. The next are the key and value to write,
followed by the length of the value. When creating our /example key into which
the remainder of the example was inserted, the call looked something like this:

xs_write(xsh, xth, ”/example”, ", 1);

Note that the length includes the terminating NULL. The smallest value that
can be stored is a single zero.

8.4.2 From the Kernel

A guest kernel can interact with the XenStore with a similar degree of control. The
XenStore, like most other devices, is interacted with via a shared memory page and
an event channel. In implementation, it is similar to the console device. Unlike
other devices, which retrieve their configuration information from the XenStore,
the store has its page mapped into the guest’s address space and the event channel
connected on system boot.

The two pieces of information required to begin using the XenStore are found in
the start info page, in the store_mfn and store_evtchn fields. The first of these gives
the machine frame number of the shared memory page containing the XenStore
ring buffer. This must be converted to a virtual address before it can be used. The
other is the event channel. A handler should be configured for this, as discussed
in the last chapter.

The XenStore is very similar, in terms of interface, to the console device.
Both are mapped into the new domain’s address space by the domain builder,
and have their event channels assigned at boot time. Both have two rings, one for
requests and the other for responses, and producer/consumer counters for each in
the shared ring. Both mainly deal with text.

Setting up the XenStore device, as with the console, is simply a matter of
getting the pseudo-physical address of the shared page and keeping this as a
pointer. After that, an event handler should be set up for retrieving asynchronous
responses, both from requests and from watches. Listing 8.2 shows the basic
initialization required for the store.

The biggest difference between the XenStore interface and most others is the
way in which data is sent between the front and back ends. The console is fairly
unique in that it doesn’t have discrete requests and responses, instead providing
a stream interface. Most other drivers, however, have fixed-length messages. The
XenStore is closer to a packet-based interface. The XenStore message structure,
shown in Listing 8.3, only represents the “header” for the message, rather than
the entire message. The body is then a plain-text string.



21
22
23
24
25
26
27
28
29
30
31
32

8o
81
82
83

84
86

87
88

8.4. Reading and Writing a Key 151

Listing 8.2: Setting up the XenStore (from: examples/chapters/xenstore.c]
/* Initialise the XenStore x/

int xenstore_init(start_info_t * start)
xenstore = (struct xenstore_domain_interfacex)
(( machine_to_phys_mapping[start —>store_mfn] << 12)
+
((unsigned long)&_text));
xenstore_evt = start—>store_evtchn;
/+* TODO: Set up the event channel x/
return 0;
Listing 8.3: XenStore message header [rom: xen/include/public/io/xs_wire.h]
struct xsd_sockmsg

{
uint32_t type; /x XS5.777 x/
uint32_t req-id;/x Request identifier , echoed in daemon’s
response. %/
uint32_t tx.id; /* Transaction id (0 if not related to a
transaction). x/
uint32_t len; /* Length of data following this. %/
/+x Generally followed by nul—terminated string(s). %/
b

For now, we will write a purely synchronous implementation of the store.
Rather than putting messages into the request queue and then processing the
responses in the callback, we will use a scheduler operation to poll for the response
and wait until it is found. This stops our implementation from being re-entrant,
so only a single thread in the kernel may access it at once without locking, but
makes it a lot easier to see the execution flow.

Most of our interactions with the store require writing a message into the
buffer and signaling the back end. Because this is going to be used a few times,
we will put it in a function that can be called from elsewhere. This function,
shown in Listing 8.4, is quite similar to the code for writing to the console. The
main difference is that we don’t support writing messages bigger than the size of
the buffer. Because the console was stream based, we could write a part of the
message and then tell the back end to handle it and then write the rest. We can’t



34
35
36
37
38
39
40
41
42
43
44
45

47
48
49
50
51
52
53
54
55
56
57
58

59
60

61
62

152 Chapter 8. Looking through the XenStore

do this with the XenStore, because requests should be processed as a complete
message. If the message is too big for the buffer, we just return.

Listing 8.4: Writing a message to the XenStore back end (fom: examples/chap-

ter8/xenstore.c]

/* Write a request to the back end x/

int xenstore_write_request(char *x message, int length)
{
/+* Check that the message will fit x/
if (length > XENSTORE_RING_SIZE)
{
return —1;
}
int i;
for (i=xenstore—>req_prod ; length > 0 ; i++,length——)
{
/+* Wait for the back end to clear enough space in the
buffer x/
XENSTORE_RING_IDX data;
do
{
data = i — xenstore—>req_cons;
mb () ;
} while (data >= sizeof(xenstore—>req));
/+x Copy the byte x/
int ring_index = MASK_XENSTORE_IDX( i) ;
xenstore—>req [ring_index] = xmessage;
message—+-+;
}
/+* Ensure that the data really is in the ring before
continuing x/
wmb () ;
xenstore —>req_prod = i;
return 0;
}

The other difference is that we need to explicitly state the length of our mes-
sage. For console output, we could simply use a terminating NULL to detect the
end of the message. XenStore messages, however, use these as separators. When
writing to the store, for example, both the key and value will be passed as NULL-
terminated strings. If we stopped sending after reaching the zero byte, we would
send the key but not the value.

We will also define a function, shown in Listing 8.5 for reading a response
from the store. This reads a fixed size message from the store into a preprepared



64
65
66
67
68
69
70
71
72
73
74
75

77
78
79
80
81
82
33
84
85

8.4. Reading and Writing a Key 153

buffer. We can’t just use the data from the ring, unfortunately, because when it
wraps around the end of the buffer we would have to track the discontinuity. In
principle, we could only copy noncontiguous messages, but for simplicity we will
always copy.

Listing 8.5: Reading a response from the XenStore (trom: examples/chapters/xenstore.c]

/* Read a response from the response ring */

int xenstore_read_response(char *x message, int length)
{ - .
int 1;
for (i=xenstore—>rsp_cons ; length > 0 ; i++,length——)
{
/+x Wait for the back end put data in the buffer x/
XENSTORE_RING_IDX data;
do
{
data = xenstore—>rsp_prod — i;
mb () ;
} while (data = 0);
/+x Copy the byte x/
int ring_index = MASK_XENSTORE_IDX( i) ;
xmessage = xenstore—>rsp[ring_index |;
message—+-+;
} .
xenstore—>rsp_cons = 1| ;
return 0;
}

We also define the variable and macros shown in Listing 8.6. The req.id
variable contains the next request ID to use. Every time we issue a new request,
we increment this counter. The macros are used to notify the back end via an
event channel, and to ignore part of a response. The latter is used when a response
includes some extra information that isn’t required by the requester. For now, we
use it for ignoring errors, although a full implementation should handle them
properly.

This example first required writing a key, so we’ll implement that first. The
basic process for doing this can be viewed as follows:

1. Prepare the message header.
2. Send the header.

3. Send the (key, value) pair.
4

. Signal the event channel.



87
88
39
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

154 Chapter 8. Looking through the XenStore

Listing 8.6: Macros from the XenStore driver (from: examples/chapters/xenstore.c]

/* Current request ID x/
static int req_id = 0;

#define NOTIFY() \

do {\
struct evtchn_send event;\
event.port = xenstore_evt;\
HYPERVISOR_event_channel_op (EVTCHNOP_send, &event);\
} while (0)

#define IGNORE(n) \
do {\
char buffer [XENSTORE_RING_SIZE];\
xenstore_read_response (buffer, n);\
} while (0)

5. Read the response.

The function shown in Listing 8.7 does exactly this. The three components of
the message—the header, key, and value—are written in turn, and then a response
is read. This basic implementation doesn’t check the return value for an error, it
just ignores it.

Listing 8.7: Writing a key in the XenStore (from: examples/chapters/xenstore.c]

/* Write a key/value pair to the XenStore x/
int xenstore_write(char % key, char x value)
{

int key_length = strlen (key);

int value_length = strlen(value);

struct xsd_sockmsg msg;

msg.type = XS_WRITE;

msg.req_-id = req-id;

msg. tx_id = 0;

msg.len = 2 + key_length 4+ value_length;

/+x Write the message */

xenstore_write_request ((charx)&msg, sizeof(msg));

xenstore_write_request (key, key_length + 1);

xenstore_write_request (value, value_length + 1);

/* Notify the back end x/

NOTIFY () ;

xenstore_read_response ((charx)&msg, sizeof(msg));

IGNORE(msg. len) ;



121
122
123
124
125
126

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

8.4. Reading and Writing a Key 155

if(msg.req_id != req_id++)

{
}

return O;

return —1;

After we can write a key, the next thing to do is try reading it back. This
procedure here is very similar. We first prepare the header. The structure of a
read message is slightly simpler than a write; it only has the header and key, not
a value. The response uses the same packet header as the request, and is followed
by the value.

Listing 8.8 shows how we read a value. First we write the message header
with the XS_READ type and then the key we want to read. Note that keys are
in fact key paths, separated by the / character, although the interface makes no
distinction between local keys and full or relative paths.

These messages both return errors in the same way. Rather than returning the
expected string, they return a string containing the error value, such as “EINVAL”
for an invalid key or “EACCES” for a permissions error. This is not a problem
when writing a key,? because you do not expect a string return value and so
anything after the header is going to be an error code. For a read operation, where
a return value is expected, it may cause problems. As long as you avoid writing
error codes as keys or values in the XenStore, it should be possible to distinguish
the two. By convention, XenStore entries are all lowercase, which makes them
easy to distinguish from error codes, although there is nothing stopping you from
writing uppercase strings to the store.

Listing 8.8: Reading a value from the XenStore (mrom: cxampies/chapters/xenstore.c]

/* Read a value from the store x/
int xenstore_read (char % key, char x value, int value_length)
{
int key_length = strlen (key);
struct xsd_sockmsg msg;
msg.type = XS_READ;
msg.req_-id = req-id;
msg. tx_id = 0;
msg.len = 1 + key_length;
/+x Write the message */
xenstore_write_request ((charx)&msg, sizeof(msg));
xenstore_write_request (key, key_length + 1);
/+x Notify the back end x/
NOTIFY () ;
xenstore_read_response ((charx)&msg, sizeof(msg));

2And isn’t a problem for this implementation, which pretends errors never happen.



156 Chapter 8. Looking through the XenStore

143 if(msg.req_id != req_id++)

144

145 IGNORE (msg. len) ;

146 return —1;

147 }

148 /+ If we have enough space in the buffer x/
149 if(value_length >= msg.len)

150 {

151 xenstore_read_response (value, msg.len);

152 return O0;

153

154 /* Truncate %/

155 xenstore_read_response (value, value_length);
156 IGNORE(msg.len — value_length);

157 return —2;

158| }

The other operation we will add to the simple XenStore driver is a xenstore_ls
function, not listed here. The request part of this looks exactly like the read
function, with a type of XS_DIRECTORY instead of XS_READ. Beyond that, the
implementation is exactly the same. The only remaining difference is that the
response is now a NULL-separated list of strings, rather than a single string. To
help the caller split them up, the function is modified so that it returns the total
length of the array, as provided in msg.len.

To ensure all of this is working correctly, we add one final function to test the
store. This first attempts to retrieve the domain’s name from the name key. It
then writes a value of “foo” to example and tries to read it back. Finally, it lists
the keys in the console dictionary.

Listing 8.9 shows the full implementation of the testing function. This
and xenstore_init () are called from the kernel’s main function. Note the stack-
allocated buffer here. This is fairly reasonable in a userspace program (security
considerations of reading data to the stack aside), but could cause problems for
our tiny kernel, which has a statically allocated 8KB stack. It should be okay
here, because there is only one function above it on the stack, and only one below.
Deep event handlers could be a problem, but there are none here. In general,
however, it is not a good practice.

Listing 8.9: Testing the XenStore [rom: examples/chapters/xenstore.c]
191| /* Test the XenStore driver x/
192| void xenstore_test ()
193] {
194 char buffer[1024];
195 buffer[1023] = "\0’;
196 console_write("\n\r");



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

8.4. Reading and Writing a Key 157

/+ Get the name of the running VM x/
xenstore_read ("name”, buffer, 1023);
console_write ("VM_name:_.");
console_write(buffer);
console_write("\n\r");

/+x Set the key "example” to "foo” x/
xenstore_write ("example”, "foo”);
xenstore_read (”"example”, buffer, 1023);
console_write ("example_.=.");
console_write (buffer);

console_write ("\n\r");

/+x Get info about the console x*/

int length = xenstore_ls(”"console” , buffer ,1023);
console_write("console_contains:\ r\n..");

char *x out = buffer;

while (length > 0)

{
char value[16];
value[15] = "\0’;
int len = console_write(out);
console_write(”"\n\r_o.");
length — len + 1;

out += len + 1;

Now that the basic XenStore driver is finished, you should run it and see if it
works. You start it in the same way as the other test kernels, and tell xm to grab
the console as soon as it starts:

# xm create -c domain_config

Using config file "./domain_config".
Started domain Simplest_Kernel
Hello world!

Xen magic string: xen-3.0-x86_32p

VM name: Simplest_Kernel
example = foo
console contains:
ring-ref
port
limit
tty



158 Chapter 8. Looking through the XenStore

The string after the VM name is specified in the domain_config file. To
check that this is working, try changing this. Because this isn’t the simplest
possible kernel anymore (it has console and XenStore drivers, even if it doesn’t
do much with them), let’s rename it “SimpleKernel.” This is done by editing the
configuration file and changing the name line to:

name = "SimpleKernel"
If you run the kernel again, you should get a different output:

# xm create -c domain_config

Using config file "./domain_config".
Started domain SimpleKernel

Hello world!

Xen magic string: xen-3.0-x86_32p

VM name: SimpleKernel

This shows one of the key features of the XenStore; it can be accessed easily
by different components in different domains. The name is written by userspace
tools in Domain 0 and then read by our simple kernel.

Other Operations

The kernel example in the previous section read and wrote different keys to the
Domain 0 userspace example. This is because it would not have had the correct
permissions to write into the root of the XenStore. You can check the permissions
on a particular key using XS_GET_PERMS and write them using XS_SET_PERMS
(assuming you have enough privilege to do so).

Permissions on a node are identified by a single character: 'r’and 'w’represent
read-only and write-only permissions. A node for which you have both permissions
is indicated by a value of b’ whereas 'n’ indicates no permissions. After this
character is the domain ID to which the permission refers. A node that domain 5
has read and write permissions for will be indicated by the string “b5”.

The most useful feature of the XenStore that has not been discussed here is the
ability to set up watches. Sending a message of type XS_'WATCH creates a watch
on a key. The payload for this message is a pair containing the path to the key,
and the key to monitor. This is like a read or list operation, but does not return
immediately. Instead, a response is placed in the queue whenever the watched
key is next updated until a corresponding XS_UNWATCH request is sent. This is
used by the XenBus mechanism, described in more detail in the next chapter, so



8.5. Other Operations 159

that the front end of a split device driver can wait for the back end to enter the
correct state for proceeding with the connection, and vice versa.

The watch system is not, strictly speaking, required. The same effect could be
achieved by polling the key periodically. This is fine for small numbers of keys,
but does not scale well.



This page intentionally left blank



9.1

Chapter 9

Supporting the Core Devices

There are two devices in Xen that can be regarded as “core”—the block and
network devices. The block device allows a guest to have a persistent store,
preventing the state from being lost between reboots, whereas the network device
allows it to communicate with the rest of the world. Between the two, they allow
a Xen guest to provide a service to the user of the system.

The Virtual Block Device Driver

All but the most trivial guest will need to support the block device driver. This
driver is used to present an interface to an abstract block device, typically a virtual
hard disk. This can be backed by various things: real disks, individual partitions,
or even files on a host filesystem.

The boot process of a typical operating system involves initializing the block
device driver relatively early on, and then passes control over to some initialization
code in userspace. Support for block devices is typically the absolute minimum in
terms of hardware support for an operating system, after support for the console.

The Xen virtual block device is a simple abstraction of a general block device.
As with most other devices, it uses the I/O ring mechanism atop a shared memory
page. The virtual block device supports three operations. The first two are
obvious: reading and writing a block (or series of block). The third one is a write
barrier, which not all back ends support. The write barrier forces all outstanding
writes to be completed, and can be used to implement userspace calls such as
fsync.

The virtual block device is quite similar to many real block devices (SCSI and
SATA device, in particular) in that it supports command-reordering. This means
that commands issued to it may not complete in the order in which they are

161



162 Chapter 9. Supporting the Core Devices

issued. Although this is useful in a real machine, it is essential for achieving good
throughput in a virtualized environment. A number of guests may be accessing
the same device at the same time, and reordering their commands may well give
a significant speed boost. This is particularly true when a number of guests have
read-only access to the same backing store, but it is often applicable in other cases
too.

The block device makes heavy use of the grant tables. Each transfer is going
to be a multiple of the block size, typically at least several KB. As has been shown
with real devices, transferring this amount of data is generally much more efficient
if done using DMA transfers than host-based copying. To facilitate this, the domU
guest makes the destination page available for access by back end of the driver,
which can then use it directly for DMA transfer.

The read and write operations are similar in structure to the lio_listio system
call. It takes a list of grant reference and block ranges, and transfers the requested
data between the specified memory and device. Each transfer has an ID written
by the caller, which is preserved in the response, allowing the guest kernel to easily
reorder the responses to correspond to the correct requests. A typical implemen-
tation might keep a small array of control structures representing transfers, and
set the ID for each request to the index of the associated buffer.

9.1.1 Setting Up the Block Device

As with other split device drivers, the front end should initialize the shared mem-
ory page and offer the grant references to the back end. It also allocates an event
channel, and passes this to the back end. The XenBus mechanism is used to de-
termine the connection state between the back and front ends, and the XenStore
is used to transmit the setup information between the two halves.

When a virtual block device is assigned to a given domain, the XenStore should
be populated with some information about it. The first step for the front end is
to read the XenStore and find out any information it needs to know about the
device. The domain’s device/vbd/0/backend key in the XenStore will give the
location within the XenStore of the back end for the first virtual block device.
This contains a few keys that need to be read by the front end before finishing
the connection:

sector—-size contains the size of a block.
size contains the number of sectors in the device.

info provides some extra information about the device. This will be a num-
ber generated by ORing several flags together. Currently supported flags
indicate that the device is a CD-ROM (1), removable (2), and read-only (4).



B W N =

9.1. The Virtual Block Device Driver 163

Both the front and back end entries in the XenStore include a state entry.
The front end sets its XenBus state, and reads the back end’s state, whereas the
back end does the converse. The aim when attaching the device is for both states
to be set to XenbusStateConnected, indicating that the device is connected at both
ends.

The front end should not do anything until the back end’s state is Xen-
busStatelnitialised. Prior to this, the back end is still opening the requisite devices
and populating the back end. A particularly verbose front end implementation
might want to output the back end state to the console while it is waiting, but
this should generally not take long enough for a user to actually read it.

The front end needs to do two things in order to make the device ready:
allocate the shared memory segment and the event channel. The first of these
steps can be broken into the following stages:

1. Allocate a free page.

2. Initialize the ring on this page.

3. Initialize the private data elsewhere.
4. Share the page using the grant tables.

5. Enter the grant reference into the XenStore.

The first stage is highly kernel-specific. Your kernel, presumably, keeps a
list of free memory pages somewhere, which can be used to allocate an unused
one. Assuming that the new_page() function (or macro) gets a new page from
this list, Listing 9.1 shows how the ring is prepared. This uses the ring macros
discussed in detail in Chapter 6. These initialize the producer and consumer
counters associated with the rings.

Listing 9.1: Preparing the shared ring for the block device

blkif_sring_t % shared = new_page();

blkif _front_ring_t ring private;
SHARED_RING_INIT (shared) ;
FRONT_RING_INIT(&private , shared, PAGE_SIZE);

In a real implementation, the private ring would obviously not be allocated on
the stack, because it will be needed for future uses of this device.

After the page is allocated and correctly initialized, it must be set up for
sharing with the back end. Don’t forget that the grant table uses the machine
frame number, not the virtual address. The virt_to_.mfn macro can be used to
convert from the address to an MFN. The domain ID of the back end is also
needed. This is stored in the backend-id key in the front end’s XenStore tree. In
most current configurations, this is 0.



Tk W N~

164 Chapter 9. Supporting the Core Devices

Listing 9.2 assumes the existence of a get_grant_ref () function, returning the
next free grant reference. The GRANT_TABLE variable should be the grant table
itself, and the backend_domain variable should have been filled in with the value of
backend-id from the XenStore. This snippet shows how the shared page should
be offered for sharing.

Listing 9.2: Sharing the block device ring

int ref = get_grant_ref();
GRANT_TABLE[ ref ].frame = virt_to_mfn (shared);
GRANT_TABLE[ ref |.domid = backend_domain;
wmb () ;

ref—>GTF _permit_access;

As always, this is example code and not production code. It is assumed that
the new_page() and get_grant_ref () functions always succeed. In the real world,
where such depressing concerns as finite memory space exist, this may not be
the case. If either of these fails, a real driver should return an appropriate error
message to the kernel.

The shared ring is now set up, and ready for the back end to use. The ring —ref
entry in the front-end’s XenStore tree should be set to the value of ref for this.
Don’t forget that the XenStore is entirely text-based, so a string representation
of this number is required.

The next step is to set up the event channel. This is relatively easy; an
unbound channel must be allocated and then passed to the back end to complete
the connection.

After the ring and event channel have been offered to the back end, the front
end needs to set its XenBus state to XenbusStatelnitialised. This tells the back
end that it is ready to be connected. All the front end has to do now is wait for
the back end to set its state to XenbusStateConnected. It should then read the
three keys mentioned earlier to determine the geometry of the device, and finish
any in-kernel configuration that is needed before the rest of the kernel can use the
device. Finally, it sets its own state to XenbusStateConnected and transfer can
begin.

From the perspective of the back end, the connection process is fairly similar.
It does everything it needs to access the physical device, and then sets its state
to XenbusStatelnitialised. The front end then does all of the connection steps
described earlier, enters the XenbusStatelnitialised state, and waits. Now the back
end needs to perform its own part of the connection.

This is symmetrical to the front end’s operations. The back end must map the
offered grant reference and then bind the proffered event channel. Mapping the
grant reference requires some space to be allocated in the guest’s virtual address
space to hold it; performing the grant table mapping operation updates the page
table entry for the specified page to point to the shared page, but space must be



9.1. The Virtual Block Device Driver 165

allocated in the kernel’s virtual address space to prevent it from being mapped
over a real page.

Typically,’ a guest’s memory layout has the kernel text near the bottom, fol-
lowed by the remainder of the memory that can be used by the guest. Xen is
mapped in at the top, with some shared data (specifically the MFN to PFN map-
ping table) read only and the rest no-access. This is optimization, making context
switches into the hypervisor more efficient. When switching to Xen, the trans-
lations for the hypervisor’s memory are already mapped, and become accessible
when entering ring 0 via the hypercall. The bit in the middle is available. The
guest kernel needs to allocate a page from this range for use when performing the
mapping.

Assuming that we can retrieve a free page with spare_page(), the mapping
should look something like Listing 9.3.

Listing 9.3: Mapping the shared ring into the back end driver

1| blkif_sring_t % shared = spare_page();

2| struct gnttab_map_grant_ref op;

3l op. host_addr = shared;

4|lop.flags = GNTMAP _host_map;

5lop.ref = front_end_ref;

6/ op.dom = front_end_dom;

7l HYPERVISOR _grant_table_op(GNTTABOP _map_grant_ref, &op, 1);

The front_end_ref and front_end_dom variables should have already been filled
in from the information provided in the XenStore. The hypercall returns a grant
reference, which must be kept around for the cleanup phase later, when the grant
is unmapped.

9.1.2 Data Transfer

Each transfer to or from a block device is initiated by the guest domain inserting
a request into the I/0O ring. The structure of the request is shown in Listing 9.4.
This defines which operation should be started, and where the data should go or
come from.

Listing 9.4: Block device request structure [irom: xen/include/public/io/blkit.h]

74| struct blkif_request_segment {

75 grant_ref_t gref; /+* reference to |/O buffer frame
*/
76 /x @first_sect: first sector in frame to transfer (
inclusive). */

IThis layout describes 32-bit guests. 64-bit guests have the hypervisor mapped differently.



7

78
79

81
82

33
34
85
86
87

88
89

166 Chapter 9. Supporting the Core Devices

/+x @last_sect: last sector in frame to transfer (inclusive)
uint8_t first_sect , last_sect;
i
struct blkif_request {
uint8_t operation ; /* BLKIF_OP_?7?
*/
uint8_t nr_segments; /x number of segments
*/
blkif_-vdev_t handle; /* only for read/write
requests x/
uint64_t id; /* private guest value, echoed
in resp x/
blkif_sector_t sector_number; /* start sector idx on disk (r
/w only) x/
struct blkif_-request_segment seg]|
BLKIF_.MAX_SEGMENTS_PER_REQUEST | ;
i
typedef struct blkif_request blkif_request_t;

The ring itself does not contain the data being loaded or stored, just the
command queue. Each element in the seg member specifies a grant table reference.
This should be thought of as being roughly equivalent to a DMA operation; you
specify a bit of memory, tell the device to read from it or write to it, and tell
you when it is finished. Exactly the same thing happens with the block device.
The main difference is that the memory must be explicitly made available via the
grant table mechanism. If you have written a device driver for a device on the
other side of an IOMMU, this might be familiar to you.

The location on disk is specified by a pair of sector numbers, representing the
start and end of the contiguous region. Be aware, however, that the region may
not be as contiguous as it seems. A real disk typically presents a linear interface to
the kernel, hiding the messy details of the multiple tracks and heads. The virtual
block device is likely to be using a disk that performs these abstractions as the
final backing store. It is possible, however, that the virtual block device is backed
by an object in the Domain 0 filesystem, giving another layer of abstraction. This
file may not be contiguous on disk. For this reason, you should be careful when
implementing things like read-ahead caching—making the reads all a bit longer
might well not be as cheap as you expect.

A common idiom when interacting with block devices is to maintain a block
cache. Loaded blocks are stored in the cache and if they are modified and then
flushed they are written back to the disk. A userspace process might have direct
access to the physical pages of some of these buffers using mmap() or an equivalent



DO B W N

O © 003 UL = W N

e e e e
DU = W N

9.1. The Virtual Block Device Driver 167

call, or access to a copy of a subset of the data in a buffer using read() and write ()
system calls.

In such a system, the first step in performing a read operation on the block
device is to allocate and prepare a buffer to receive the block. The rest of this
example will assume a 512-byte block size and 4KB (page sized, page aligned)
buffers. Listing 9.5 shows how such a buffer would be prepared.

Listing 9.5: Preparing a buffer for reading

char * buffer = new_buffer();

int ref = get_grant_ref();
GRANT_TABLE[ ref |. frame = virt_to_mfn (buffer);
GRANT_TABLE[ ref ]|.domid = block_backend_domain;
wmb () ;

ref—>GTF _permit_access;

The buffer must be allocated and offered to the back end via the grant table
mechanism. The next step, shown in Listing 9.6, is to tell the back end what data
to transfer and where it should put it.

Listing 9.6: Reading a block from a block device

blkif_-request_t * RING.GET_REQUEST (private , private—>req_prod
++);

request—>operation = BLKIF_OP_READ;

request —>handle = block_vdev;

request —>sector_number = block_index;

request—>id = read_index;

request —>nr_segments = 1;

request —>seg [0]. gref = ref;

request —>seg [0]. first_sect = 0;

request—>seg [0]. last_sect = 7;

RING_PUSH_REQUESTS_AND_CHECK_NOTIFY ( private , shouldNotify);

if (shouldNotify)

{
struct evtchn_send event;
event.port = block_port;
HYPERVISOR_event_channel_op (EVTCHNOP_send, &event);
}

The first thing to do is get a new request, using the ring macro. Note the
use of the private ring here. You update the local request producer counter first,
and update the shared one later. The next step is to set up the request. For
this request, we are only issuing a single read. The sector_.number shows the
start sector for the request. Each segment is then used to provide a portion of



CU ks W N =

168 Chapter 9. Supporting the Core Devices

a buffer. Each page is divided into eight 512-byte? sectors. The first and last
sector fields for the request indicate which of these should be used. Setting these
to zero and seven, respectively, means that the whole page will be filled. The back
end performs a linear read, starting at sector_number and continuing until it runs
out of buffers to put blocks in. With the current maximum number of segments
(BLKIF_.MAX_SEGMENTS_PER_REQUEST) being 11, this gives a maximum read
or write size of 44KB in a single operation. Note, however, that the back end
may combine requests before passing them on to the hardware, so a pair of reads
where the second starts at the end of the first could be combined into a single
contiguous read.

When the request has been set up, it must be pushed to the back end. This
involves a write memory barrier (to ensure that the request has been committed
to RAM) and then updating the request producer in the shared ring to reflect the
private value.

The macro used to push the request also checks whether the back end has other
pending requests. If it does, there is no need to notify it, because it keeps reading
requests until it has done all of them, and then sleeps pending future events. If it
is waiting, you need to signal it, which you do using the event channel.

The communication between the back and front ends is asynchronous, so the
front end now needs to wait until the data is ready before it can proceed. It might
do this by masking events and polling, or by returning and waiting for the event
upcall. When either of these conditions is reached, the driver should execute some
code that looks a little bit like the snippet in Listing 9.7.

Listing 9.7: Handling the response from a read

blkif_-response_t % response RING.GET_RESPONSE(private, i);
if (response—>id = read_index)

{
}

A real implementation, of course, is likely to have several requests in flight
at once. To support this, you will likely keep an array around somewhere with
some meta-data associated with each request and use this to handle the correct
action. Don’t forget to check the response ID, because the back end is permitted
to reorder the requests. Assuming all went well, the status field of the response
is set to BLKIF_RSP_OKAY.

Performing a write operation is almost exactly the same. The operation should
be set to BLKIF_OP_WRITE, but apart from that, the steps are exactly the same.
The only difference is that the data should be in the buffer before a write is
performed.

/* Handle response x/

2A different sector size can be defined in the XenStore, but 512 is currently the only one
used. Very modern hard disks use 4KB sectors, so this may change in the future.



9.2. Using Xen Networking 169

9.2 Using Xen Networking

Most Xen guests require some networking functionality. This is implemented by
the virtual interface driver, which follows the standard ring model used by the
block device driver and others. Unlike the block device driver, the network is
unlikely to be needed for boot, so it can typically be implemented after much of
the rest of the operating system is working in Xen. It is somewhat more important
to have a working network in a Xen guest than other platforms because much of
the communication between a guest and the outside world goes via the network.
A Xen guest may use NFS for storage and X11 for user interaction and not use
any local devices other than the network interface.

9.2.1 The Virtual Network Interface Driver

The basic structure of the network interface is quite simple. It uses two I/0
rings, one for outgoing packets and one for incoming. These are declared in
xen/include/public/io/netif .h. The rings are used to transmit instructions,
but not data. Data is sent via other shared memory pages, offered via the grant
mechanism. Each transmission request contains a grant reference and an offset
within the granted page. This allows transmit and received buffers to be reused,
preventing the TLB from needing frequent updates.

A similar arrangement is used for receiving packets. The domain U guest
inserts a receive request into the ring indicating where to store a packet, and the
Domain 0 component places the contents there. Earlier versions of this used the
grant table transfer mechanism to move data between domains; the buffer would
be moved between the two communicating domains’ address spaces whenever a
packet was received. This caused a lot of TLB churn, however, which turned out
to be detrimental to performance, and so newer versions use copying. The copy
operation is handled by the hypervisor, in much the same way that the old transfer
operation worked.

9.2.2 Setting Up the Virtual Interface

Mapping the network interface is performed in almost exactly the same way as
mapping the block interface. The most obvious difference is that the virtual
network interface uses two rings, one for transmitting and one for receiving. This
is because network traffic can arrive without being directly requested.

The transmit ring is used in the same way as the block device ring when
writing. Requests are enqueued in it with packets to write to the network. The
receive ring is used in a similar manner to the block ring when performing a read.
The front end should take care that there are always some buffers available in the



170 Chapter 9. Supporting the Core Devices

receive ring. Whenever a frame is received from the network, it is put in the first
available® buffer. If there are no receive buffers, frames will simply be dropped.

The rings are set up in exactly the same way as before; the same ring.h macros
were used to define them. Where the data structures defined by these macros for
the block device were prefixed with blkif, the network interface rings are prefixed
with netif_tx and netif_-rx for the transmit and receive rings, respectively.

The next difference is the contents of the XenStore subtree related to the front
and back end devices. The keys related to setting up the communication channel
are almost the same. A single event channel is used, but two rings are needed.
The grant references of both rings must be exported using the rx-ring-ref and
tx—ring—ref keys.

The back end includes a mac key, containing the MAC address of the virtual
interface. This replaces the sector and device size keys in the block device back
end, which would have no meaning in the context of a network.

The protocol for communicating between the front and back ends drivers allows
a few bits of processing to be offloaded. A few keys are written in the XenStore
to indicate what features are supported. These keys all start with feature —.

The most important feature is checksum offloading, which is enabled by de-
fault, and is disabled by writing “1” to the feature-no-csum-offload key. The
front end should set it if it doesn’t want to make use of this feature.

Another useful feature is TCP segmentation offloading. This is offered by the
back end writing “1” to the feature-gso-tcpv4 key in its tree, and the front
end doing the same thing. This allows the guest to write large TCP (currently
only IPv4) packets to the payload and have the hardware split them up. More
importantly, it does the same thing in reverse and allows the hardware to re-
assemble them on arrival into individual large packets that can be transferred
efficiently.

9.2.3 Sending and Receiving

The same ring macros used for communicating with the block device are used for
talking to the virtual network interface. The first thing to do when sending a
packet is to create it in memory somewhere.

An Ethernet frame has five fields: the source and destination MAC addresses,
the frame type, the payload, and a checksum. Unless the guest has explicitly
requested not to use checksum offloading, the checksum should be left blank. This
is primarily an optimization for interdomain communication. It is assumed that
data does not become corrupted in memory, at least with the frequency it does on
the wire, and so calculating and checking the value of the checksum is superfluous.

3This will not always be true. See the NetChannel2 section later in this chapter.



68
69
70
71
72
73
74
75

9.2. Using Xen Networking 171

This can save a fair amount of CPU time in a pair of domains communicating over
the virtual network interface.

Listing 9.8 shows the structure used to transmit a frame. Unlike block 1/0O,
network I/O often deals with odd sized data. The block device can treat a page
as an array of blocks to be read from or written to. The network driver does not
have this luxury. It must be able to read (and write) arbitrary length Ethernet
frames. For this reason, the location of the frame is identified by a page, and then
an offset and length within this page. The page is passed by grant reference.

Listing 9.8: Network interface transmit request structure firom: xen/include/pub-
lic/io/netif.h]

struct netif_tx_request {

grant_ref_t gref; /* Reference to buffer page */
uintl6_t offset; /+* Offset within buffer page %/
uintle_t flags; /x NETTXF_x x/
uintl6_t id; /* Echoed in response message. */
uintlé6_t size; /* Packet size in bytes. */
i
typedef struct netif_tx_request netif_tx_request_t;

Older versions of the Ethernet specification limited the payload size to 1518
bytes. Newer versions support “jumbo frames,” which can be much larger. The
typical size is 9000 bytes, which allows S8KB of data and headers for higher layer
protocols, without reducing the effectiveness of the 32-bit checksum too much.
Although the original frames fit easily inside one page, jumbo pages do not.

This is a problem for the network interface layer, because it passes a single
page in each request. This can be addressed by splitting a request across multiple
requests. The NETTXF_more_data flag indicates that this request is followed by
another that contains the next part of the packet, and that the two should be
treated as a single frame.

There are two flags associated with  checksum  information.
NETTXF_csum_blank indicates that the checksum is blank, and
NETTXF _data_validated indicates that the checksum has been calculated to
match the data in the buffer. Both of these should be set for interdomain
communication, because a blank checksum is a valid checksum in this case.

The final flag, NETTXF _extra_info, is used to indicate that the next request
contains some extra info in the form of the structure shown in Listing 9.9. Cur-
rently, this is only used for segmentation offloading.

The type is there for future expansion, and currently must be set to
XEN_NETIF_EXTRA_TYPE_GSO, if this is being used. Note that the segmen-



O © 00~ DU =~ W N ~

12
13
14

172 Chapter 9. Supporting the Core Devices

Listing 9.9: Network interface extra information

struct netif_extra_info {
uint8_t type; /x XEN_NETIF_EXTRA_TYPE_ x x/
uint8_t flags; /*« XEN_NETIF_LEXTRA_FLAG_x x/
union {
struct {
uintl6_t size;
uint8_t type; /* XEN_NETIF_.GSO_-TYPE_x x/

uint8_t pad;
uintl6_t features; /* XEN_NETIF_GSO_-FEAT_x x/
} gso;

uintl6-t pad[3];
bous

tation offloading currently only works with TCP on IPv4, not IPv6. The flags are
currently not used.

When sending an IP packet across a network, it is sometime necessary to
split it into smaller components and then reassemble it at the other end. On an
Ethernet network, the host typically splits the packet up into smaller ones that
will fit within an Ethernet frame. If the userspace process has provided the data
in a single block, this can be quite inconvenient, because it means an extra copy
to insert the packet headers in each block.

Segmentation offload delegates this to the card. The host passes a large packet
to the network card, which then splits it up into smaller frames. This requires
the network card to have some understanding of the high-level protocol so that
the appropriate header can be written to each frame, so that the receiver can
reassemble the packet.

This extra info section is used by the front end to provide some information
about how the fragment should handle the splitting. The size field indicates the
size of the resulting packets, which is typically the TCP maximum segment size.
The type should be set to XEN_NETIF_GSO_TYPE_TCPV4 for TCP on IPv4, which
is currently all that is supported. The remaining two fields are reserved for future
use.

When a packet has been sent, a response is pushed back into the transmit
ring. This is very simple, and only includes two fields: id and status. The first is
the same value as was passed in with the request, whereas the second is usually
NETIF_RSP_OKAY. If there were multiple request slots used for a single request,
the first one will have this result, whereas subsequent ones will be filled in with
NETIF_RSP_NULL, indicating that their status is handled elsewhere.



153
154
155

156
157

158
159

9.2. Using Xen Networking 173

There are two possible failure conditions when sending a packet.
NETIF_RSP_DROPPED indicates that the packet was dropped and should be re-
sent. The other is NETIF_RSP_ERROR, indicating a more serious error.

Receiving packets is simpler than sending them. The netif_rx_request struc-
ture only has two fields: the obligatory id field used to match request and response
pairs, and a grant reference (gref) indicating the buffer used for receiving packets.
Note that the current version of the protocol only permits single-page buffers.

The response, shown in Listing 9.10, is a little more complicated. This indicates
the request to which it is responding, and the offset within the page that the
received packet starts. The length of the packet is usually stored in the status field.
If an error occurs, this will contain an error value (one of the ones listed earlier)
instead. All of the error values are negative, so the sign of this value should be
checked to determine what the contents represents. Note that NETIF_RSP_NULL
is never used for a receive response. Frames that don’t fit in a single page will
have the length of the segment in the current page passed back in this field.

Listing 9.10: Network interface receive response structure (from: xen/include/pub-
lic/io/netif.h]

struct netif_rx_response {

uintlé6_t id;

uintl6_t offset; /+* Offset in page of start of
received packet x/

uintle_t flags; /% NETRXF_x x/

intl6_t status; /* —ve: BLKIF_RSP_x ; +ve: Rx’'ed pkt
size. x/

+s

typedef struct netif_rx_response netif_rx_response_t;

The flags field is almost the same as the equivalent in the transmit request
structure. If the frame has come from another domain on the same machine,
NETRXF_csum_blank will be set, telling the domain not to worry that the checksum
has not been filled in. If checksum offloading is turned on, NETRXF_data_validated
will be set indicating that the checksum matches the data. This means that the
front end does not need to bother with the checking itself.

For frames bigger than a single page, the NETRXF_more_data flag will be set,
and the next receive request in the queue will be used to contain the remainder.

Note that the virtual network interface is not the only solution for interdomain
communication, although it is the easiest to use. The XenSocket mechanism,
which is under development, includes a mechanism for using a shared-memory
transport for communicating between two userspace processes in cooperating do-
mains. If you just need to move a lot of data between two domains, you might



174 Chapter 9. Supporting the Core Devices

Copying versus Flipping

For the size of data of an average network packet, it is faster to copy the data
than suffer the hit from invalidating the cache. If the feature-rx-copy key in
the back end’s XenStore subtree is set to “1”, it supports copying instead of
transferring the page. If this is not used, the back end swaps the page offered
by the grant reference with the one containing the buffer. Depending on where
the packet was DMA’d to by the physical interface, this may require a copy
operation in the back end.

If copying is allowed (by the front-end also setting its feature-rx-copy
to “1”, a much cheaper operation is performed. The hypervisor-based copy
is used. Because the hypervisor has all of machine memory mapped into its
address space, it can copy from one domain to another without incurring any
MMU-interaction overhead.

consider providing an extension to the conventional POSIX shared memory func-
tions that allows interdomain mappings to be established by userspace programs.
Getting the security right is nontrivial, but the performance advantage might be
worth it for several classes of virtual appliance.

9.2.4 NetChannel2

Networking is a much harder problem than block I/O for Xen. Block I/O typically
works on large quantities of data. The practical minimum is the device block size,
which is often of the order of 512B, and many operating systems use a 4KB
machine page as the minimum amount of data to be read from or written to a
block device to make a unified caching infrastructure easier to implement. Network
packets are typically less than 1500B for Ethernet. They may be fragmented, or
even smaller, especially if they have gone via the Internet. Block I/O operations
are typically much less rapid than network operations as well. If more throughput
is required from a block device, this is more likely to be accomplished by increasing
the size of the requests, rather than the number.

More importantly, unlike block I1/O, the correct destination for a network
packet can only be determined after reading the header. This contains the MAC
address of the recipient, which is either a specific guest or a broadcast address.
This means that the block device can DMA data directly into a waiting buffer
offered by the receiving guest. For network interfaces, the interface can DMA the
data into a buffer owned by the back end, but it must then read the header and
decide where to send the data. It then has to either copy the data or remap the
page, neither of which is particularly cheap.

If the network card could read the destination MAC, and use a different receive



9.2. Using Xen Networking 175

queue for each destination, this could dramatically improve performance for back
end drivers. In this case, the back end would have to handle two situations:

e Local VM to local VM traffic, which doesn’t need to go via the network
interface at all

e Broadcast traffic which goes to all domains

Some smart NICs offer this kind of functionality. More advanced ones, such
as the Solarflare series, allow safe, isolated access to guests. A similar approach is
taken by Infiniband interfaces, which allow userspace programs to directly access
the interface. This relies on either an IOMMU, or the device enforcing the memory
boundaries. In a paravirtualized environment, the driver component in Domain 0
is responsible for providing the device with a list of allowed machine page ranges,
and the guest is then allowed to instruct the device to DMA into any of these.

This approach can give the best performance, because there is no hypervisor
nor Domain 0 interaction required beyond the initial setup. It has a few issues,
however. Firstly, it limits the number of virtual network interfaces to the number
available on the card. This is not a huge problem, because the dom0 guest can
reserve one for more traditional virtual interface operations, and fall back to that
after those on the card have been exhausted, probably with a system administrator
assigning the physical device channels to those domains that had the heaviest
network traffic.

The other obvious problem of this approach is that it requires domU guests to
have hardware-specific drivers. One of the nice features of Xen is that it can be
used as a hardware abstraction layer; a domU operating system can implement
the front-end network interface driver and be able to make use of as wide a range
of network hardware as Domain 0 (or a specialized driver domain) supports.

This, in itself, is not hugely important. Guests can still fall back to using
the generic implementation, and use the native hardware support if they need
and want to. The problem comes when you start migrating domains. If you
move a domain from a machine with a smart NIC to one without, the guest’s
driver needs to be able to move from using the native card to using the Xen front
end. This means that a native driver can’t be used directly; instead, a modified
version that wraps the Xen and native interfaces must be written. It would be
highly inefficient for every interface of this nature to implement this switching
code itself, so a standard interface for plugging in multiple interfaces would be
useful.

Another problem comes from the fact that communicating between local VMs
by sending packets over an external bus is highly inefficient. The current virtual
interface is fairly good for interdomain communication. For local communication,
it ignores checksums, for example, because if data is becoming corrupted in main
memory, you typically have much bigger problems than the odd damaged packet.



176 Chapter 9. Supporting the Core Devices

One variation on this approach is for a physical interface to appear to be
multiple PCI devices, and incorporate a layer 2 switch. This has, roughly, the
same advantages and limitations as a device that permits userspace access.

The existing infrastructure for Xen networking has a number of limitations.
The most obvious is that it assumes network interfaces are fairly dumb devices, and
does not make it easy to take advantage of advanced features. Checksum offloading
is supported, and this is quite useful because it allows checksum calculation and
checking to be ignored for local communication. More advanced features are
difficult to take advantage of.

Another limitation is that the receive buffer size is fixed. Some incoming
packets are likely to be very small, whereas others can be huge. A better design is
to provide a mechanism for enqueuing different sized receive buffers, and allowing
the back end to select the correct sized one. This also addresses the problem of
fragmentation of large packets. Currently, if a network packet is larger than the
receive buffer, the back end must split it between two or more buffers and the
front end must reassemble it. With variable-sized buffers, the back end could just
grab a large receive buffer and use that. Typical usage leaves a number of receive
buffers enqueued by the front end, and the best fit one is used by the back. This
also makes it easier to take advantage of smart NICs that performed reassembly
of fragmented packets themselves.

The continual mapping and unmapping of granted buffers by the back end
results in a fair amount of TLB churn. It is more efficient if buffers can be reused.
Typically, a receiving guest needs to perform an additional copy (unless the un-
derlying hardware supports Mondrian Memory Protection) to give the userland
process access to the data, so buffers become unused relatively quickly.

The NetChannel2 protocol is designed to replace the existing virtual interface,
and incorporate all of these enhancements. The existing protocol will still be
supported for some time, and because it is simpler, it might be a better choice
for a first implementation, although the newer interface is likely to give better
performance.

At the time of writing, the NetChannel2 specification is a long way from being
finalized. It is expected to be finished at some point in 2008.



Chapter 10

Other Xen Devices

The last few chapters have described some of the most important types of paravir-
tualized devices available to Xen guests. There are quite a few others available,
however. Every guest is likely to want to implement support for the console and
block devices, and most will want to include support for the network device. Some,
however, will also want to add support for USB devices, virtual framebuffers, and
the Trusted Platform Module (TPM). Xen provides all of these, assuming the guest
in Domain 0 has the requisite drivers and the hardware is physically present.

If you need to support a device that does not have an existing virtual device
type, you may want to add your own. The end of this chapter contains a num-
ber of suggestions for building a good interface that fits within the existing Xen
infrastructure.

10.1 CD Support

CD drives are block devices like any other, but they often need some special
handling. Seeking on a CD is a very expensive operation (typically requiring
around a second, compared to under ten milliseconds for a hard disk), and so
the caching strategy is likely to be different. CDs also have a somewhat different
structure to most hard disks; they have different sessions and tracks rather than
a partition table, for example.

Although CDs are not exported as completely different device types, they do
have a flag set identifying them. This allows a guest with a mounted CD to handle
it differently than other kinds of block devices.

177



178 Chapter 10. Other Xen Devices

10.2 Virtual Frame Buffer

95
97
98
99
100
101

102

103

For a lot of guests, there is no need to provide a graphical display. A virtual
network appliance might provide a Web-based configuration interface, and only
need to use the console output for debugging boot-time failures. Other guests
might prefer to provide a GUI using an existing network-transparent protocol,
such as RDP or X11. For some, however, a local frame buffer is preferable.

For these cases, recent versions of Xen provide a virtual frame buffer device.
This is backed by a VNC server! in Domain 0, and has a somewhat VNC-like
interface. The guest writes data into the frame buffer and then notifies the front
end of the area that has been updated. This maps directly to the VNC protocol,
which only retransmits parts of the image that it detects have been changed.

The virtual framebuffer device is quite unusual, in that it began life as being
only available to HVM guests, and was later modified to allow paravirtualized
guests to access it. The original code came from QEMU, and did not provide any
paravirtualized interface. Since then (Xen 3.0.2), the virtual device has evolved
rapidly.

The framebuffer device, like most others, uses a ring structure to transfer
commands between the front and back ends. As with many others, the rings are
used to transmit commands, rather than data.

Listing 10.1 shows the structure used for the page containing the mapping.
This is particularly unusual for a Xen device interface, because it doesn’t include
the rings for requests and responses. These are implicitly assumed to be stored in
the same page as the control structure. Their location is calculated by adding an
offset to the address of the start of the page that stores the control structure.

Listing 10.1: Virtual framebuffer device shared structure (from: xen/include/public/io/

fbif.h]

struct xenfb_page

{

uint32_t in_cons, in_prod;
uint32_t out_cons, out_prod;

int32_t width; /* the width of the framebuffer (in
pixels) x/

int32_t height; /* the height of the framebuffer (
in pixels) x/

uint32_t line_length; /x the length of a row of pixels (
in bytes) x/

uint32_t mem_length; /+* the length of the framebuffer (
in bytes) x/

LOf course, this does not have to be the case. It could be mapped directly to an X11 window
by a suitable back-end driver, for example.



104

105
106
107
108
109
110
111

112

113
114
115

116

10.2. Virtual Frame Buffer 179

uint8_t depth; /* the depth of a pixel (in bits)
*/

/%

x Framebuffer page directory

*

* Each directory page holds PAGE_SIZE / sizeof (xpd)

x framebuffer pages, and can thus map up to PAGE_SIZE x

x PAGE_SIZE / sizeof(xpd) bytes. With PAGE_SIZE — 4096
and

x sizeof (unsigned long) — 4, that's 4 Megs. Two
directory

x pages should be enough for a while.

*

/

unsigned long pd[2];
i

The biggest difference between the framebuffer and other devices is the way in
which updates are handled. Most drivers either place the data directly in the ring,
or include a grant table reference pointing to the data. The framebuffer contains
a fairly large amount of data (3MB for 800 x 600 in 32-bit color). Copying this
much data would be very expensive. Equally importantly, the typical use for such
a region does not require old versions of it to be maintained. Because of this, the
driver keeps the frame buffer statically mapped by both halves of the driver. The
front end writes to it and sends the back end notifications of “dirty” (modified)
regions. These can then be redrawn on the screen.

Most of the fields in this structure describe the shape of the buffer. The width,
height, and depth define the display mode. Unlike real displays, which are limited
by the capabilities of the hardware, there are far fewer limits on the dimensions
of a Xen display. The entire framebuffer must be able to fit into 4MB, due to the
way in which the memory is mapped (although this would be simple to expand
in the future). Beyond that, it can be any resolution the back end can display,
typically any rectangle that will fit in memory. One thing to note is that there
is no way of specifying a palette, limiting displays to some form of “true color,”
either 16 or 32 bits per pixel.

The line_length and mem_length are used to describe the size of the memory
used to store the framebuffer. The line length is usually the number of bytes per
pixel, multiplied by the number of pixels per line. It might be slightly longer
in some cases, to allow the start of every line to be aligned on a natural (ma-
chine word) boundary. Similarly, the memory length is normally the line length
multiplied by the number of lines.

The location of the framebuffer in memory is defined by the pd field. This
contains the machine frame numbers of one or two page directory entries pointing
to the region containing the framebuffer.



44
45

47
48
49
50
51

180 Chapter 10. Other Xen Devices

Although two rings are defined, one for input and one for output events, cur-
rently only one output event is defined: update. In future, an input event might
be used to notify the guest that regions are occluded (if the virtual framebuffer is
being displayed in a windowing system), and that it doesn’t need to update these
regions. For now, the front end is free to ignore any message sent from the back
end. It should, however, increment the in_cons field in the shared structure to
clear them.

The only kind of message that can be sent by the front end is a display update.
This defines a rectangle in the framebuffer that contains pixels that have changed.
The format of this message is shown in Listing 10.2. This should be sent to the
back end after updating the pixels, to indicate which regions need to be updated
before the next frame is displayed. A full-screen update can be requested by
setting x and y to zero and width and height to the width and height of the virtual
screen.

Listing 10.2: Framebuffer update message (trom: xen/include/public/io/fbit.h]

struct xenfb_update

{
uint8_t type; /* XENFB_TYPE_UPDATE x/
int32_t x; /* source x %x/
int32_t vy; /* source y */
int32_t width; /x rect width x/
int32_t height; /x rect height x/
i

This structure is not used directly. Instead, xenfb_out_event union should be in-
stantiated. This will have other message types added to it as they a need for them
is identified and they are defined. Messages less than XENFB_OUT_EVENT _SIZE
can be added without breaking binary compatibility, because the union currently
includes a char array of this size for padding. Larger messages can be added
breaking binary compatibility, but maintaining source compatibility.

The framebuffer itself is only half of the puzzle. A guest that only exposes
a command-line interface can use the console for both input and output. After
a graphical user interface is displayed, it is likely that the console input will be
inadequate. Although it is simple to implement, it does not allow access to a
pointing device nor the capability to detect when keys are held down. These
extra functions can be accessed via the virtual keyboard interface, which is the
companion of the virtual framebuffer.

The design of the virtual keyboard interface is very similar to the virtual
framebuffer—both map a single page for control messages, with a C structure at
the start for control variables and the rings implicitly stored at a known offset



114
115
116
117
118

55
56
57
58
59

10.2. Virtual Frame Buffer 181

within the page. The virtual keyboard interface structure, shown in Listing 10.3,
is much simpler than the framebuffer page. It simply contains producer and
consumer pointers for the two rings. Again, two rings are defined, although only a
single one is used. Messages should only be sent to the back end when requested,
and there is currently no message type defined to request a message from the front
end, nor any “out” message type.

Listing 10.3: Keyboard device shared structure (from: xen/include/public/io/kbdif.h]

struct xenkbd_page

{

uint32_t in_cons, in_prod;
uint32_t out_cons, out_prod;

+s

Three different types of message can be sent from the back end: two relating
to mouse motion and one relating to the keyboard. Keyboard events are of the
form shown in Listing 10.4. As with all other messages, the first field defines the
type of the message, and should be inspected first to determine how to interpret
the message.

These messages signal the change of state of a key. When a key is pressed,
the pressed field is set to one, and then a second message is sent when the key is
released with this field set to zero. To extract key strokes, the guest must time
the interval between these events occurring and implement its own thresholding
for auto-repeat.

Listing 10.4: Keyboard button message structure (irom: xen/include/public/io/kbdif.h]

struct xenkbd_key

{
uint8_t type; /* XENKBD_TYPE_KEY x/
uint8_t pressed; /% 1 if pressed; 0 otherwise x/
uint32_t keycode; /* KEY_x from linux/input.h %/
&

Mouse events can be delivered in one of two ways. Either absolute or relative
positions can be given. Absolute positions, if they can be supported, are generally
preferable because they allow a user on the host machine to interact with the guest
without it “capturing” the mouse. Mouse movement events can be triggered as
the mouse cursor moves over the window containing the VM’s display, allowing
the remote display to act just as any other window in the desktop.

Relative motion has some benefits, allowing the mouse to be used for things



182 Chapter 10. Other Xen Devices

Alternative to the VFB

Some GUI systems support remote display natively. Recent versions of Win-
dows, for example, support the Remote Display Protocol (RDP), which can
be used to export a display to a remote machine. Similarly, most UNIX-like
systems (Apple’s OS X being the most notable exception) use X11 to display
graphics.

X11 was built around the idea of network transparency, and works quite
cleanly over a virtual network interface. If the Domain 0 (or remote display
host) is running X11, the Xnest program can be used to run a child X server in
a window. This can be used by a virtual machine to display its “screen” inside
the Domain 0 windowing system. For other systems, it is often possible to run
an X server within another windowing system.

The biggest advantage of using X11 over the framebuffer is that you can
take advantage of any acceleration features supported by the host windowing
system. Even OpenGL (which was also designed to be network-transparent)
can be accelerated if the X server supports accelerated indirect GLX.

X11 runs faster locally than over a network by using the MIT Shared Memory
Extension to allow clients (applications) to use a shared memory transport for
sending large amounts of data to the server (display). For intradomain displays,
an implementation of this wrapping the grant table mechanism would provide
a significant speed boost.

other than moving a pointer over the framebuffer (for example, rotating an object
in 3D space), and so this option is also available. A client that wants to receive
absolute positioning should set the request-abs-update field in the device’s entry
in the XenStore.

The message used to indicate an absolute mouse position is shown in Listing
10.5. The only fields in this containing data are the absolute coordinates of the
new mouse position. These are measured in pixels, and so will always be between
zero and the width set for the framebuffer device.

Relative motion is sent by an almost identical structure, with abs replaced by
rel in the x and y coordinate fields. This motion is measured in pixels on the
host system, but the guest may adjust mouse sensitivity by applying a scaling
factor without causing any problems. The type for relative position messages is
XENKBD_TYPE_MOTION.

When the framebuffer and keyboard drivers are both working well, a guest
can provide a GUI to users from very early on in the boot process. Because the
framebuffer is stored in the guest’s memory, it can be reattached after migration,
without userspace processes in the guest having to be aware of the migration.




62
63
64
65

66

67

10.3. The TPM Driver 183

Listing 10.5: Absolute mouse position message Structure (from: xen/include/public/io/kb-

dif.h]

struct xenkbd_position
{
uint8_t type; /* XENKBD_TYPE_POS x/
int32_t abs_x; /* absolute X position (in FB pixels)
*/
int32_t abs_y; /* absolute Y position (in FB pixels)
*/
+s

10.3 The TPM Driver

The Trusted Platform Module (TPM) is a controversial piece of hardware, which
provides a number of security-related features. One of the complaints often levelled
at TPM is that it removes control of the computer from the user. In many
situations involving a hypervisor, this is an advantage, because no single virtual
machine should be allowed to have complete control of the system. A hypervisor
can use some of the features of a TPM to help enforce isolation of VMs. The
remote attestation features could also be used to ensure that a remote hypervisor
waiting to receive a migrated guest was not compromised.

Guests running atop Xen can also make use of a TPM. The TPM provides
a mechanism for storing encryption keys and running encryption algorithms in a
way that means that the running program never has the key in memory. Because
the hypervisor (and Domain 0 in many configurations) can always access guest’s
memory, a virtual machine cannot trust that its memory is always secure storage.
A user may want to carry a VM around with him, to use the same environment
on both trusted and untrusted machines. The guest could use the TPM to ensure
that sensitive data could only be accessed while the VM was running on a trusted
machine, but still allow less sensitive data to be accessed from insecure machines.
A similar mechanism could be used to ensure that the kernel was not tampered
with while running on an insecure machine.

The interface to the TPM is quite low-level. All the virtual interface does is
provide an abstract way of moving TPM control packets to and from the physical
(or emulated) device. The contents of the packets are defined by the TPM speci-
fication, and will not be discussed here as it is assumed that anyone implementing
TPM support is already familiar with the TPM command protocol.

The TPM driver is quite unusual, in that it does not implement ring buffers
at all. The protocol for communicating with the TPM is a strict request-response
interface, with only a single request in-flight at a time.



184 Chapter 10. Other Xen Devices

10.4 Native Hardware

A guest running in Domain 0, or a driver domain, is typically expected to provide
drivers for a number of native pieces of hardware. The easiest way to do this is to
give the domain direct access to the hardware. On some platforms, this is possible,
because the external interfaces can be made virtualization-aware. On legacy x86,
where Xen originated, this is not the case. It is not possible to provide access to
part of a PCI bus, for example, without providing access to all of it, making this
option impractical for driver domains.

10.4.1 PCI Support

67
68
69
70
71

Xen provides a paravirtualized PCI bus device as a way of implementing device
pass-through to paravirtualized domain U guests. The guest may interact with
the PCI virtual device as it would with a real PCI device. Only devices that
are explicitly exported from Domain O are visible to the guest, although in the
absence of an IOMMU the usual security concerns remain.

This device is fairly simple. It allows PCI device registers to be written to and
read from in a way that gives Domain 0 a chance to intercept them and perform
basic bounds checking. The PCI device is designed for more-or-less synchronous
operation; a single operation is written into the shared memory structure, which
must complete before the next one starts.

The shared memory page used for the PCI device is shown in Listing 10.6.
The flags field is used to indicate the state of the operation. This has the
XEN_PCIF_active bit set by the front end when an operation has been stored in
the op structure. This bit is then cleared when the operation has been completed.
The remaining 31 bits are reserved for future use.

Listing 10.6: Virtual PCI device shared info page (irom: xen/include/public/io/pciif.h]

struct xen_pci_sharedinfo {

/x flags — XEN_PCIF_x x/
uint32_t flags;
struct xen_pci_op op;

I

The event channel associated with the device is used to signal the fact that
a request or response is waiting; however, the device is designed to be used in a
polling manner. When waiting for a response, event delivery (upcalls) should be
masked. The device can then test the flag to see if the response is ready, and while
it isn’t, it can wait for the event using the poll scheduling operation. Note that



47
48
49
50
51

52
53
54
55
56
57

59
60

61
62

63

64

10.4. Native Hardware 185

use of this device does not require any grant table operations (after the initial
setup), making it relatively cheap, because there are no TLB updates required.
The message format for this device is shown in Listing ??. This allows a single
register to be read or written in a specified PCI device. A single message of this
format is stored in the op field of the structure on the shared memory page.

Listing 10.7: Virtual PCI device operation [irom: xen/include/public/io/peiit.n], label

struct xen_pci_op {
/* IN: what action to perform: XEN_PCI_OP_x x/
uint32_t cmd;

/* OUT: will contain an error number (if any) from errno.h
*/

int32_t err;

/* IN: which device to touch x*/

uint32_t domain; /x PCl Domain/Segment x/
uint32_t bus;

uint32_t devfn;

/* IN: which configuration registers to touch x/
int32_t offset;
int32_t size;

/x IN/OUT: Contains the result after a READ or the value to
WRITE =/
uint32_t value;

Whether the operation being performed is a read or a write is decided by setting
the cmd field to XEN_PCI_OP _conf_read or XEN_PCI_OP_conf_write. This decides
whether the value field is an input or output parameter. If a write operation is
being performed, the value to be written is placed there. If the operation is a
read, this field is used to return the value.

Most of the rest of the fields are used to identify the register to be accessed:
the domain, bus, and devfn. These represent the 8-bit bus, 5-bit device, and 3-bit
function ID used to uniquely identify a PCI device. This identifies a 256-byte
device configuration space. The offset is then used to identify where within this
configuration space the value should be read or written, with the size indicating
the number of bits to read or write.

Note that the quantities provided here are larger than those in the PCI spec-
ification. This serves two purposes. First, it makes checking that they are valid



186 Chapter 10. Other Xen Devices

easier; the back end can check them without needing to extract them from a more
dense format first. Also, it allows the same structure to be used to support PCI
Extended and PCI Express buses to be exported without changing the ABI.

If the command proceeds correctly, the error value is set to
XEN_PCI_LERR_success. For incorrect device settings, there are two possible
errors. If the device simply does not exist, XEN_PCI_.ERR_dev_not_found is
returned. If it does, but this guest is not permitted to use it, the error code
XEN_PCI_ERR_access_denied is returned. For valid devices, the operation can
still be blocked if the offset is out of the valid range, with the error value
XEN_PCI_ERR_invalid_offset being returned. Finally, functions that are not
recognized by the back end returns XEN_PCI_ERR_not_implemented.

Enumerating PCI roots is typically done via a firmware call. This is not pos-
sible under Xen. Instead, this information must be retrieved from the XenStore.
The root_num key in the device’s tree contains the number of roots, and root-0
represents the first one. These are stored in the form domain:bus. These keys
should be enumerated and parsed when the driver for the bus is connected, re-
placing the code that would probe a physical device.

The design of the device is such that it should be able to be inserted relatively
easily into any kernel that has an abstraction layer for interacting with the PCI
bus. This allows existing drivers to be used unmodified, although care still needs
to be taken with DMAs, because the drivers must be aware of the machine page
numbers.

10.4.2 USB Devices

Support for USB devices within guest domains is quite useful in a number of
contexts. Unlike PCI devices, USB devices are plugged in and unplugged relatively
frequently, and so need a much more dynamic mapping.

Xen 2.x supported pass-through of USB devices, but this was not well sup-
ported and was eventually removed. The Linux implementation was never moved
from the 2.4 series kernels to the 2.6, and so it is no longer an option with Xen 3.

Two options currently exist for providing USB devices to other domains. The
first is to simply assign a USB controller (PCI device) to the guest. This works
well, because the guest simply interacts with the controller as it would with any
other USB controller. There are two major downsides to this, however.

The first problem is that it’s a static mapping. You can’t plug a camera in to a
USB port and use it from one domain and then plug a mouse or USB mass storage
device in and use it in another. In principle, you could suspend one domain and
resume another, and use this mechanism to swap access to the devices, but it’s
something of a hack and may cause problems with the controller, which will need
to be reinitialized fully every switch.

The second is that the guest has control over the entire USB host controller. If



10.5. Adding a New Device Type 187

you are lucky, your machine may have two such controllers, allowing you to assign
half of the ports to one guest and half to the other, but it is quite likely that you
will have to assign all of your USB devices to a single guest.

The other option is to use USB-over-IP. This encapsulates USB messages in
IP packets. Currently, the protocol is only well supported in the Linux kernel;
however, it is possible to use this to export USB devices over an Ethernet (or any
other IP-capable network) connection. This was originally designed for shared
network resources. For example, a USB scanner connected to one machine could
be accessed from any other device on the network (assuming access permissions
were set correctly).

Because USB-over-IP works over any network connection, it can run over the
Xen virtual interface. This is generally faster than a USB device, for interdomain
connections, but it is still not ideal.

Even with the fast network connection, there is a fair amount of overhead
imposed encapsulating the USB data inside IP. This could be reduced somewhat
by putting it directly in Ethernet frames, but a better solution is to send it directly
using the grant table mechanism. There is work underway to add a USB virtual
device, which is likely to be based around the Linux USB-over-IP code, but it is
not finished at the time of writing.

10.5 Adding a New Device Type

The Xen hypervisor is not aware of virtual devices at all. It understands events
and shared memory, but everything else is built by agreement by virtual machines
running in Xen. A virtual device driver is simply an agreement between two
domains that a set of shared memory pages, grant table entries, and events should
be understood as having certain semantics. As such, implementing a new device
type is simply a matter of defining the protocol, and implementing it on both
ends, although placing the back end somewhere other than Domain 0 can require
some extra work.

10.5.1 Advertising the Device

All devices with the exception of the console and the XenStore itself are adver-
tised via the XenStore. When adding a new device category, it is customary to
create a new subtree in the XenStore for each domain and advertise the device
there. All configuration information should be supplied in this tree, including the
grant reference of the shared memory page for ring buffers and event channels for
asynchronous notifications that may be needed.

Assuming the device follows the conventional split driver model, it needs to
advertise two things: the event channel and the grant reference of the shared



188 Chapter 10. Other Xen Devices

memory page. The new device should have a name used to identify itself in the
XenStore, such as newdev.? In each domain that may run a device front end,
a device/newdev tree should be created, with a numerical ID for each available
device. Within this, there should be a backend-id field containing the domain
hosting the back end and a backend key containing the XenStore path to the back
end. It should also contain all other information required to set up the device,
typically a ring-ref key for the grant reference to the page containing the device
ring and event-channel for the event channel used for notifications. Other keys
may be created as required.

A similar structure should be created in the device hosting the back end’s
backend/newdev tree, with one entry for each domain that may contain a front end
and one entry in this for each device exported to that domain. This should contain
frontend and frontend-id keys containing the domain ID and the XenStore path
to the front end. It should also contain any configuration information required for
the back-end driver.

10.5.2 Setting Up Ring Buffers

There are two generally used alternatives to ring buffers. If your device has a
one-to-one relationship between requests and responses, you can use the generic
ring macros in ring.h. These handle the creation, initialization, and accessing of
rings.

To use these, you need to define a type representing a request, and one rep-
resenting a response. If you have more than one type of either, you should use a
union type. The size of a union type is the size of the largest element, so this en-
sures that the slots in the rings are big enough to contain all of your requests and
responses. The macro for creating a ring itself creates a union of the request and
response type for exactly this purpose. These macros were discussed in Chapter 6.

The other option is to define your own rings. This is the option used by most
drivers, the exceptions being the block and network devices. If communications
happen in only one direction (with no acknowledgment), or in both directions
with different rates, this is the best bet. At first glance, it appears that this is the
case for the network device, but this is not the case because the front end needs
to send grant references to the back end that are used to transfer data from the
back end to the front. Something like the console is a better example, because the
amount of data transferred is quite small.

The next thing to decide is what other information needs to go in the shared
memory space. The virtual framebuffer uses its page to set the dimensions and
color depth of the buffer. The decision on whether data should be stored here or
in the XenStore is somewhat cosmetic. It’s easier (and faster) to access data in

20bviously, this is a bad name for a real device, but it is used here for the purpose of
discussion.



10.5. Adding a New Device Type 189

the shared memory page from within the driver, but data in the XenStore can be
more easily read or modified by tools. The other down side of storing static data
in the shared memory page is that it reduces the amount of space available for
the rings.

After you have decided how much, if any, static data should be stored in the
shared memory page, and the kind of rings you need, you have one final decision
to make. Are your rings going to just contain control messages, or will they
also contain data? This generally depends on how much data you need to move
between the front and back ends of the device.

If you are moving a lot of data, you have two options. You should either pass a
grant reference (or more than one) with each request (or response), or use a large
static buffer. The block and network devices use the former mechanism. A block
write request, for example, includes a grant reference to the page containing the
data to be written. The virtual framebuffer uses the second option, and statically
maps the entire buffer into both domains’ address spaces.

In some situations, a hybrid solution might be useful. For example, something
like an interdomain pipe could allocate a few pages as a static buffer, and have
two types of message. The first would indicate a range in the buffer containing
the new data and the second would contain a grant reference to a page containing
the data. For large blocks of data, the overhead of using the grant table would be
lower. For smaller bits, the overhead of copying would smaller.

After you've defined the structures for the shared page, including rings and
messages, and put them in the header file, you can start writing the two halves of
the driver.

10.5.3 Difficulties

Be careful when defining device control structures. When you define a structure
for a device’s shared memory page, you are defining a binary interface. You can
add extra fields in the XenStore without breaking backward compatibility, but if
you add fields in the shared memory page, all guests will need their drivers to be
recompiled. If you think this is likely, it might be worth adding a “padding” field
to the structure, with a few bytes that can be turned into more useful fields later.
The down side of this approach is that you are then wasting space in the shared
memory page (where you are likely to only have 4KB in total). If possible, it is
better to add new data to the XenStore, rather than the shared memory page. If
you expect to need a lot more space in the future, you could consider defining an
interface including multiple shared pages, allowing the rings to grow to more than
4KB.

The same is true of fields in the request types. If you are using a union type
to define requests and responses, you might consider adding some padding to
the union. Listing 10.8 shows an example from the virtual framebuffer device.



DU W N =

190 Chapter 10. Other Xen Devices

This only defines a single message currently, but has two other elements in the
union. The first is the type. This is useful to have because the first byte can
always be accessed using this. The other is padding, which means that other
message types can be added without changing the ABI. The protocol states that
an implementation should ignore messages it does not understand; so as long as
new messages only implement optional functionality, they should still work.

Listing 10.8: Using a union to reserve space for future message types

union xenfb_out_event

{
uint8_t type;
struct xenfb_update update;
char pad [XENFB_OUT_EVENT SIZE];
}s

Another thing to look out for is variable sizes. C types such as int only define
a minimum size, not an absolute size. Worse, the sizes might vary between guest
operating systems; some systems define an int as 32-bits, and some as 64 on x86-
64. Even long, which should be the same length as a machine word, can cause
problems because it is possible to run 32-bit guests on a 64-bit hypervisor and
Domain 0. If possible, you should always use explicitly sized types. If you are
sending values such as pointers that can be either 32 or 64 bits it is better to use
a 64-bit quantity, so you do not need special cases for different domains.

Defining the ABI is relatively simple after you have picked a good abstraction,
as long as you keep these things in mind. Picking a good abstraction is very
important, however. A virtual device has the following requirements:

e Ease of implementation
e Good mapping to operating system features

e Capability to take advantage of available hardware

The block device is currently the best example of an interface that has all of
these properties. The interface is fairly simple, and just defines a way of moving
blocks of data between the front and back ends. It maps nicely to how operating
systems perceive block devices, because most use them via an abstraction layer
with very similar properties, and it can take advantage of DMA and command
reordering on devices that support it. The framebuffer is fairly good at the first
two, but fails badly on the last one because it can’t even take advantage of the 2D
acceleration features that have been standard in graphics cards for over a decade.



10.5. Adding a New Device Type 191

10.5.4 Accessing the Device

The front half of the driver should not perform any grant table related hypercalls.
The front end should create the grant references, and then pass the grant references
via the XenStore to the back end. Although this is not required, it does have the
advantage that it simplifies the creation of front-end drivers for HVM guests,
which are currently unable to issue grant table hypercalls.?

The front end should use the XenStore to find the configuration details. It
should write the grant references into the store to allow the back end to perform
the mapping, and then connect up the event channel.

Although high-end workstations and servers have supported hot-plugging of
devices for some time, this is not the case yet with consumer-grade hardware. In
a virtual machine, however, all hardware should be regarded as hot-pluggable.
When the virtual machine is suspended, it needs to disconnect all of the front-
end drivers from the back ends. An operating system on a physical machine
entering suspend mode can usually expect the same hardware to be present when
it resumes. A virtual machine can make a weaker assumption: that equivalent
hardware will be available.

A virtual machine might be suspended on one machine and then resumed on
another (or live-migrated). When this happens, it needs to reinitialize the device
drivers. When this happens, the back ends might be different. At the very least,
machine frame numbers are likely to be different, and event channel numbers on
the remote domain are also likely to be different. If your device does not correctly
detach and reattach, it will break suspension and migration for the kernel using
it.

Exactly how the front-end driver is structured depends on your kernel. For
most device categories, most kernels have a generic set of interfaces that higher
levels of the kernel use. A well-designed device interface will match these closely.

10.5.5 Designing the Back End

The front end of the device is generally simpler to design than the back. The back
end of most devices is somewhat more complicated. The front side interface is
usually designed to have a very close mapping from abstractions used in common
operating systems, and so is simple to implement. Part of the reason for this
is that the front half needs to be implemented in more places; every operating
system that runs in Domain 0 also runs in domain U, but the converse is not true.
Similarly, a Xen install has only one dom0,* but many domU guests. This means

3This is likely to change soon, because several people want to run back end drivers in HVM
guests.

4In this subsection, the back end is discussed as if it runs in Domain 0. Although this is
often true, it is also possible to run drivers in “driver domains,” specialized domUs with access
to certain physical devices.



192 Chapter 10. Other Xen Devices

that the front side of the interface needs to be implemented more times than the
back end, and so should be simpler.

The back end, hopefully, can tie into existing multiplexing features in the
operating system. At a fundamental level, the purpose of an operating system is
to multiplex the resources of a computer between different processes. A back-end
block device driver can choose to use either high-level abstractions such as files, or
lower level abstractions such as partitions (if the operating system exposes them
to userspace tools). It could even choose something in the middle, such as logical
volumes, which might be only slightly higher level than partitions (as in Linux’s
Logical Volume Manager) or almost as high-level as files (as in Solaris’ ZFS).

The network device has a similar choice to make: It could interface with the
Domain 0 networking stack anywhere from the Ethernet layer right up to the top
of the TCP stack. At the lower layers, you get more flexibility, whereas at the
higher layers, you get more performance. Because most guest operating systems
already have code for injecting Ethernet packets into Ethernet adapters, it is
easier to plug a virtual network interface in at the bottom of the network stack.
This decision is slightly different from that made by the block device, because it
affects the design of the front end, as well as the back. The block device has a
“read/write blocks” interface at the front end irrespective of whether the blocks
are being stored directly in a partition, in a logical volume, or in a file atop
another filesystem. For the block device, the lower levels give better performance,
but greater system administration overhead (it is much easier for an administrator
to create a file than a partition); but the choice is deferred until runtime.

Some of the implementation details of the back end will be decided by the
design of the interface. If your new device presents a fairly high-level abstraction,
it might need to interact with the higher layers of the Domain 0 interface stack.
The virtual TPM device, for example, needs to tie in quite closely with the physical
device.

Simple interfaces tend to offer more flexibility, at the cost of some performance.
The virtual framebuffer is a good example of this. All that this device needs is
some mechanism of displaying pixels on the screen. One implementation of the
back end does this using X11, a system originally designed for providing virtual
framebuffers for running text terminals or simple graphical applications inside
windows on graphical terminals connected to UNIX machines. This back end
maps pixels on the guest’s framebuffer to pixels in a window. Another uses the
VNC protocol for remote display. At a lower level, a back end could use a real
framebuffer device and draw the pixels directly on the screen. The cost paid for
this flexibility is performance. A guest cannot draw complex 3D scenes in the
virtual framebuffer without incurring a high CPU cost. Drawing a polygon in
3D space first involves mapping it to a 2D polygon, and then to a set of pixels.
Newer graphics cards can do all of this in hardware, and older ones can still do the
second stage. Even very primitive graphic hardware had support for operations



10.5. Adding a New Device Type 193

such as “bit blitting,” transferring a rectangular region from memory to the frame
buffer with a bit mask indicating whether each pixel in the destination should
be overwritten. Modern hardware generalizes this to an alpha blending function,
which replaces the bit mask with a transparency value.

When you have determined where the driver needs to go in the host operating
system’s abstraction layers, the next step is determining what translations are re-
quired. For the network interface, the MAC address needs altering. Each network
card has a unique MAC address. This is used for routing Ethernet frames, in the
same way that an IP address is used for routing IP packets. The original Ethernet
design was a bus network, where each frame was broadcast over the connection.
Each network interface would compare the destination address against its MAC
address and pass matching packets up to the computer. On a switched network,
the first frame sent to each MAC address is broadcast on all ports, and the one
that replies is cached so that all future frames to that address are only sent to
this port.

When the virtual interface is run in bridged mode, the guest virtual machine
has its own virtual MAC address which can send and receive Ethernet frames
directly from the network. Because this virtual MAC address is not the same
as the physical hardware’s MAC, the card must be run on “promiscuous” mode.
In this mode, the card delivers all Ethernet frames received to the (Domain 0)
operating system. This allows frames addressed to the guest’s virtual MAC to be
received. This kind of behavior is not common for Ethernet interfaces (although
it is often supported for debugging network problems), and so serves as a good
example of how a back-end driver may need to provide some slightly unusual
functionality.

If at all possible, it is often good to have the device driver run in userspace.
The framebuffer back ends (X11 and VNC) do this, which allows the virtual
framebuffer device to be ported to a new Domain 0 guest much more easily. Of
course, the new guest must support the same userspace APIs as Linux (where the
device originated) for this to work, but this is generally more common than a new
system supporting Linux kernel interfaces.



This page intentionally left blank



Part 11l

Xen Internals



This page intentionally left blank



Chapter 11

The Xen API

The Xen API is a somewhat confusing term. Most of this book discusses how to
interact with Xen, and so it seems odd to have a single chapter dedicated to the
“APL.” This is because Xen provides two interfaces. One is used by guests, and
the other is used by tools. The first is known as the hypercall API, and is the
focus of most of this book. The other is known as the Xen API, or sometimes the
Xen Management API, and is the focus of this chapter. This chapter will discuss
the design of the Xen API, how it is used, and how components of the Xen system
use it to communicate.

The Xen API is built atop XML-RPC, although C and Python bindings are
available, which are generally easier for developers to use. The full API specifica-
tion is well over 100 pages, and so a complete discussion is well beyond the scope
of this chapter.

The Xen API is used by the userspace components of Xen, such as the xm
command-line tool to control the system. The xend dsemon listens for XML-RPC
connections! and then performs a number of administrative functions.

The Xen API exports everything that you can do with xm. This includes most
of the control for a VM’s lifecycle. This chapter will discuss the API itself, and
how the various layers used to implement it are connected.

This chapter will begin by looking at XML-RPC, the underlying protocol from
which the Xen API is developed. It will then discuss how the API interfaces with
the rest of the system, including the userspace tools and the xend dsemon.

IEarlier versions of the deemon used a custom protocol based on S-expressions. This has been
deprecated in favor of the XML-RPC protocol described in this section, which should be stable
in all releases after 3.1.

197



198 Chapter 11. The Xen API

11.1 XML-RPC

If you are already familiar with XML-RPC, you can skip this section. If not, this
should serve as an overview of the protocol, rather than a complete reference. It
should, however, provide enough detail to gain an understanding of the XML-RPC
usage within the context of the Xen API.

11.1.1 XML-RPC Data Types

As with most programming languages, XML-RPC defines a small number of prim-
itive data types, and then allows them to be joined together to produce compound
data types. Those of relevance to the Xen API are int double, boolean, dateTime
.is08601, and string. These are used to represent int, float, bool, DateTime and
string types in the abstract API.

Each primitive type is represented by a string contained in a pair of XML tags.
A floating point value, for example, might be represented in the following way:

<double >3.14159< /double>

The data must be escaped as valid XML character data. In practice, this
limitation only applies to the string type, because none of the others permit any
characters that are not valid XML. Within the context of the Xen API, all integers
are assumed to be 64 bit.

From these simple data types, more complex ones can be constructed. XML-
RPC permits two methods of doing this: structs and arrays. These closely mirror
the C compound data types of the same name. Arrays and structs are both quite
similar—both contain a list of child elements. Arrays contain an ordered list of
children, whereas structs contain an unordered list of key-value pairs.

Unlike C arrays, XML-RPC arrays can have heterogeneous contents. Another
key difference from C is that the type of every value is encoded with the value,
rather than by the variable containing the value. The following is a valid XML-
RPC array:

<array>
<data>
<value><double >3.14159</double ></value>
<value><int >12</int ></value>
<value><string>Xen is the answer.</string ></value>
</data>
</array>

Each array tag must contain exactly one data tag, which may contain any
number of values. Structs are similar. Unlike C structs, which have a rigid
structure, XML-RPC structs are associative arrays. Each struct has an arbitrary



11.1. XML-RPC 199

number of key-value pairs. Keys are character data strings, and values can be any
XML-RPC type, including arrays or structs. The following shows a simple struct:

<struct>
<member>
<name>Answer </name>
<value><int >42</int ></value>
</member>
<member>
<name>Question </name>
<value><string>To be, or not to be?</string></value>
< /member>
<member>
<name>True</name>
<value><boolean>1</boolean></value>
</member>
</struct>

11.1.2 Remote Procedure Calls

Defining an XML format for structured data is potentially useful, but it’s not the
core of XML-RPC. RPC stands for remote procedure call, and so there needs to
be some mechanism for doing this. The standard is built on top of HTTP; each
call and response is an HTTP request and response pair.

The format of the request mirrors the structure of a procedure call. Each call
contains the name and arguments of the procedure. The request is sent as an
HTTP POST of this form:

<?xml| version="1.0"7>
<methodCall>
<methodName>example. function </methodName>
<params>
<param>
<value><string >parameter </string ></value>
</param>
</params>
</methodCall>

The method name is just a string, but convention is to treat them as a dot-
separated hierarchy. The response is a similar format:

<?xml| version="1.0"7>
<methodResponse>
<params>
<param>
<value><string >South Dakota</string ></value>



200 Chapter 11. The Xen API

</param>
</params>
</methodResponse>

Although the structure is similar, there are more constraints. The response
may only contain a single parameter, although this can be a compound data
type (array or structure). Because these are all completing over HT'TP, they are
synchronous. In many cases, this is not ideal. The Xen API defines a second
top-level namespace “Async”. By prefixing the method name with Async. a Xen
API user can access an asynchronous version of the calls.

The asynchronous versions of the calls all return a task ID. This is a unique
identifier that can be used later to get the real return value. Two additional
calls, Async.Task.GetAllTasks and Async.Task.GetStatus are available to get a list
of pending completions and the return value of the tasks, respectively.

11.2 Exploring the Xen Interface Hierarchy

The Xen API is defined as XML-RPC at the lowest level. This replaces the older
S-expression interface, providing a language-agnostic interface to the control mech-
anisms for talking to the Xen deemon. Although S-expressions are as expressive
as XML, and simpler to parse and transform, they lack the benefit of existing
libraries. XML-RPC is well-supported by a number of third-party libraries that
provide language-agnostic ways of invoking XML-RPC calls.

Figure 11.1 shows how the layers are built up in the control interface. The new
libxen provides C bindings, allowing management tools to be written that do not
require a Python runtime. This is used by libvirt, which is an aim to provide a
consistent API across different virtualization tools. Currently, libvirt supports
Xen fairly well, and is adding support for KVM and QEMU as well. Several Linux
distributions are using it, rather than working with the Xen API directly, and the
GNOME desktop environment now includes a local virtualization manager built
on top of libvirt.

Earlier versions of 1ibvirt spawned instances of the xm command and parsed
the results. This was problematic, because the output from xm was intended
to be human-readable, and so it was changed periodically to better present the
information. The newer versions use the API directly, and so are likely to be
more stable. In some ways, the Xen API makes libvirt obsolete, because one
of its original goals was to isolate tool writers from having to deal with changes
in the output format and commands supported by xm and related tools. Libvirt
still serves the secondary purpose of providing the same interface to different
virtualization environments, however.

The Xen API is used to provide a bridge between the low-level deemons and
userspace applications. Most Xen management functions are performed by the



11.3. The Xen API Classes 201

Xen-CIM ' Other

Xen-CIM xm I

’W‘ tools

Language

: Other
libxen (C) pyxen I bindings

xend deemon

Kernel

e

Hypervisor

Figure 11.1: The Xen interface hierarchy

xend daemon. This parses the requests from userspace tools and communicates
with the Domain 0 kernel to perform management functions.

When a userspace tool issues a command, it is first translated into XML-RPC
request by the language bindings, such as libxen for C or pyxen for Python. This
library then sends the XML over a socket to the listening instance of xend, which
then either handles the request itself or passes it on to the kernel’s hypervisor
interface and then on to the hypervisor itself.

11.3 The Xen API Classes

The first object in the Xen API that all users have to deal with is the session.
Interactions using the API are stateful, and are associated with a particular ses-
sion. The first task is always to create a new session object. Further interactions
are then conducted via this session object.

A session is primarily a means of mapping a user to a host. A session object has
a single host associated with it. The host object identifies the physical machine
with which the user is communicating. A single management tool might create
several different sessions each talking to a different host, allowing a cluster of
machines running Xen to be administrated from a central location.

The host has three main types of object associated with it, as shown in Figure



202 Chapter 11. The Xen API

11.2. These correspond to the physical capabilities of the machine, and are used
to enumerate the physical block and network devices, and the capabilities of the
CPU. Each of these is an attribute with get_x methods associated with it. For
example, the host.get_ PBDs method returns the set of all physical block devices
associated with a given host.

Metrics

In addition to the classes discussed here, most have an associated metrics ob-
ject. This provides information about the object that would be useful for
monitoring tools. For example, every VM has an associated VM _metrics ob-
ject, which contains the amount of memory, the CPUs, the current state, and
a few other bits of information.

The metrics objects are separated from the rest of the system to provide
a clean distinction between objects that can be modified by tools and those
that simply report on current state. A Xen cluster monitoring tool would be
likely to poll all of the metrics objects periodically, and present statistics and
warnings to an administrator.

The virtual machines currently running on a given host can be accessed with
the host.get_resident_'VMs method. This returns a set of VMs running on the
system. These then all have the children shown in Figure 11.3, representing the
virtual block devices, network interfaces, and TPMs that are associated with the
domain and its console.

host

.PIFs .host_CPUs
.PBDs

PIF PBD host_cpu

Figure 11.2: Objects associated with a host

Each of these has an associated set of get_ methods, which can be enumerated
to determine the configuration information. In principle, the same information




11.3. The Xen API Classes 203

could be extracted directly from the XenStore. This is no longer recommended,
since the XenStore layout is not guaranteed to remain stable. It will be likely to
remain stable between minor versions, but the Xen API is guaranteed to remain
backward compatible from version 1.0. This means that a tool that uses the
Xen API to get this data will work with Xen 4.0, but a tool that queries the
XenStore directly might not. This becomes more apparent with the NetChannel2
development, which will alter the network interface protocol considerably. If this
changes the layout of the XenStore for virtual interfaces then xend will perform
the translation transparently.

The remaining objects serve as bridges between virtual and physical devices.
The various virtual interfaces need to be mapped to physical interfaces, and the
virtual block devices to physical block devices. The two objects that are responsi-
ble for this mapping are the network and SR (storage repository) objects. These
each maintain a list of physical and virtual devices. Every VIF and PIF belongs
to exactly one network, and the same mapping is true for block devices to storage
repositories.

VM

VBD “ VIF console VTPM “

Figure 11.3: Objects associated with a VM instance

11.3.1 The C Bindings

The functions available via the C interface from libxen are exposed through a
collection of headers with the xen_ prefix; for example, xen_vm.h provides function
prototypes and structure definitions for dealing with manipulation of a virtual
machine.

The C bindings are designed to closely mirror the underlying interface. They
are written by hand to provide the same structures and functions that the XML-
RPC interface provides, in a way that can be directly accessed by C programmers.



204 Chapter 11. The Xen API

One thing that makes this difficult is that C does not have a “dictionary” or
associative array data type. In most programming languages, these are supported
at a fairly primitive level®> and can be used directly to map the dictionary type
used by XML-RPC.

In C, it would be possible to define a dictionary opaque type, with functions for
setting and getting key-value pairs. This would not, however, be a programming
style that is particularly familiar to C programmers. The usual substitute for a
dictionary in C is a struct. Unlike a true dictionary, the “keys” in a structure are
defined at compile time. Fortunately, the Xen API also defines the keys that may
exist in any given dictionary. This allows a struct to be constructed for every
corresponding dictionary in the API.

In addition to this, a number of enumerated types are defined for symbolic
constants sent as strings in the wire protocol. This makes use of the API easier
because the standard comparison operator (==) and control structures such as
switch statements can be used on values from enumerated types, but not on
strings. The following snippet of XML represents the reply to a query of the
features supported by a given CPU:

<array>
<data>
<value><string >CX8</string ></value>
<value><string >PSE36</string ></value>
<value><string >FPU</string ></value>
</data>
</array>

Listing 11.1 shows the structure used to represent this reply in a prerelease
version of the C API. This is a simple array type, which contains a count (because
C arrays do not have an accessible size attribute) of the number of elements, and
an array of members of the xen_cpu_feature enumerated type. For this reply, the
array would be:

reply .size = 3;
reply.contents = {XEN_CPU_FEATURE_CX8, XEN_CPU_FEATURE_PSE36,
XEN_CPU_FEATURE_FPU };

This pattern is followed everywhere in the API where a discrete number of
possible results are returned. The C bindings are likely to be the ones that require
the most work of this nature. Most other languages that would be useful for
writing tools either permit direct and easy manipulation of strings, have a “string
to atom” built in function, or both. In the final release version of the C bindings,
the strings returned by the XML-RPC call are exposed directly. This allows others
to be added without modifying the bindings. This pattern is still used where the

2Some provide lists of pairs, as a close approximation of a dictionary.



Tk W N =

78
79
8o
81
82
33
34

86
87
38
39
90
91
92
93
94
95

97
98

11.3. The Xen API Classes 205

Listing 11.1: CPU feature set structure from libxen

typedef struct xen_cpu_feature_set

{

size_t size;
enum xen_cpu_feature contents [];
} xen_cpu_feature_set;

number of returned types is unlikely to change, for example the power state of the
virtual machine.

The C bindings do not provide their own way of sending HTTP requests.
Users must provide their own functions for actually sending the request. The
most common way of doing this is to use libcurl, which provides a mechanism
for submitting HTTP requests and processing the reply.

Listing 11.2 shows the example call function from the Xen bindings unit test-
ing program. A pointer to this function is passed into libxen when initializing
the session. Every subsequent call to the API then uses this to retrieve the re-
sults. This function performs an HTTP POST operation to the specified URL
and delivers the returned data to the specified function, given as an argument.

Listing 11.2: An example function for sending the Xen API call to the server
[from: tools/libxen/test/test_bindings.c]

static int
call_func(const void xdata, size_t len, void *user_handle,
void *result_handle, xen_result_func result_func)

(void)user_handle;

#ifdef PRINT_XML
printf(”\n\n Data_to._server : . \n");
printf(”%s\n”,((charx) data));
fflush (stdout);
#endif
CURL *curl = curl_easy_init();
if (lcurl) {
return —1;
}
xen_comms comms = {
.func = result_func,
.handle = result_handle
I



99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114

206 Chapter 11. The Xen API

curl_easy_setopt(curl, CURLOPT_.URL, url);
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1);
curl_easy_setopt(curl, CURLOPTMUTE, 1);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &write_func);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &comms) ;
curl_easy_setopt(curl, CURLOPT_POST, 1);
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, data);
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, len);
CURLcode result = curl_easy_perform(curl);
curl_easy_cleanup(curl);
return result;

}

The C bindings also rely on libxml, an MIT-licensed XML-parsing library
from the GNOME project. Because it is MIT-licensed, it imposes no restrictions
on use nor redistribution in binary form. The C bindings to the API are released
under the GNU Lesser General Public License, which imposes no restrictions on
the code that links to it, other than that it must be possible for the user to upgrade
his version of libxen. This is likely to only be a problem for developers creating
Xen monitoring appliances, which are intended to be a black box, and do not have
a mechanism for installing a modified 1ibxen.

11.4 The Function of Xend

The Xen deemon is responsible for providing the interface between the rest of
the userspace tools and the kernel interfaces. Because Xen hypercalls are only
permitted from ring 1, it can’t issue them directly. Instead, the kernel exports
devices with a standardized interface, which are then opened as regular files by
the deemon. It might seem at first glance that xend could be implemented entirely
in kernel space. It would certainly not be difficult to expose a “perform hypercall”
system call, or allow userspace applications to access the Xen device directly. To
see why this is not the case, it is necessary to see what xend does beyond simply
issuing hypercalls.

One of the most obvious responsibilities of xend is access control. On the
local machine, this is managed by setting the permissions on the socket used to
connect to the deemon as you would any other file, allowing access to be granted
to specific users or groups (by default, only root may talk to xend). For remote
administration, access can be granted to specified SSL client certificates.

Not all management functions require direct interaction with the hypervi-



11.4. The Function of Xend 207

sor. Some, such as starting various virtual driver back ends, happen entirely
in userspace, or with a small amount of hypervisor interaction to establish shared
memory regions via the grant tables. If xend were entirely kernel-based, it would
be very difficult for it to perform many of these functions.

The other major reason for making xend a userspace tool is that it makes
porting other systems to run as Domain 0 much easier. The kernelspace interface
is purposefully kept fairly simple so that as much code can be shared as possible.
Although userspace code can trivially be moved between POSIX-compliant oper-
ating systems, moving code between kernels is much harder. The Solaris, NetBSD,
and Linux Xen ports all run xend when being used in Domain 0. The only changes
required are relatively minor tweaks to take into account the different filesystem
layouts of the guests (such as the correct place in /var to store the PID).

Like xm, xend is written in Python. This imposes an extra constraint on an
operating system wanting to run in Domain 0; it must be able to run a Python
virtual machine, or include a reimplementation of the management functions. One
side effect of a relatively stable API is that the second option is now more readily
available. Previously, the interface between xm and xend was subject to major
changes between versions, and was not regarded as public.® The introduction of
the Xen API means that xend could, potentially, be completely replaced without
abandoning existing tools. For high-security configurations, a minimal implemen-
tation of the API could be written in a language that allowed formal verification,
eliminating a potential exploit vector.

Xend can be found in the xen/tools/python/xen/xend part of the tree. Each
of the files in this directory contains an implementation of a part of the Xen
API. The Xen API implementation is spread over a small number of files. The
server/XMLRPCServer.py file contains the code that is first encountered by an
incoming request. This sets up the XML-RPC server and maps the XML-RPC
commands to various Python methods.

The next step is found in the XendAPI.py file. This first performs basic valida-
tion of the arguments of XML-RPC methods, such as checking that the referenced
objects exist. After this has been done, it acts as a trampoline, and invokes the
correct methods for actually handling the request. This trampoline mechanism
allows the API and implementation to be changed independently of each other.
The same functions are used to implement both the new Xen API, and the old xm
interface for legacy compatibility.

This has allowed a gradual migration to the Xen API. Individual functions in
xm were moved over to support the APT as it gradually stabilized. With Xen 3.1,
the API reached the stage where it supported all of the legacy functions of xm,
and so could be used as a complete substitute for the old interface. New features
added to xm will only use the Xen API, and so will be usable from other tools.

30bviously, because both components are open source, it could be inferred relatively easily,
but using it was not recommended.



208 Chapter 11. The Xen API

11.5 Xm Command Line

The xm (“Xen Master”) command is the simplest way of managing Xen. The
program itself is written in Python, and can be found in tools/Python/xen/xm
in the Xen tree. Each command is implemented in a separate source file.

Prior to Xen 3.1, xm was the only way of controlling Xen. The program commu-
nicated with the back-end deemon via a private protocol that was not guaranteed
to be stable between releases. As of Xen 3.1, xm is just another front end to
the API, no more important conceptually than any others, although it is still the
“standard” way of administrating a Xen system.

The xm tool—or, rather, family of tools—is joined together by the code in
main.py. This contains a number of simple utility functions and common code,
as well as the basic command parser. This parser displays usage messages when
commands are invoked with no arguments, or when no command is specified.
After it has parsed and validated the arguments for a given command, it passes
control over to the relevant module.

The xm command has always had an interactive mode, invoked by running “xm
shell” and with the introduction of the Xen API, this was expanded to allow
users to talk to the API directly. The following example shows how the metrics
for Domain 0 are retrieved (the null UUID always refers to Domain 0 on the local
host).

# xm shell
The Xen Master. Type "help" for a list of functioms.
xm> VM.get_metrics 00000000-0000-0000-0000-000000000000
’b£050307-1ce4-169e-83d7-295703ba3b2a’
xm> VM_metrics.get_record bf050307-1ce4-169e-83d7-295703ba3b2a
{’VCPUs_CPU’: {’0’: ’0’},
’VCPUs_flags’: {’0’: [’online’, ’running’l},
’VCPUs_number’: ’1°,
’VCPUs_params’: {’cap’: ’0’,
’cpumap0’: ’0,1,2,3,4,5,6,7,8,9,10,11,12,13...
’weight’: ’256°},
’VCPUs_utilisation’: {’0°: 0.0014919782698009033},
’last_updated’: <DateTime ’20070529T12:14:42’ at b7bOfdac>,
’memory_actual’: ’486543360°,
’start_time’: <DateTime ’19700101T00:00:00’ at b7b0Ofelc>,
’state’: [’running’],
>uuid’: ’bf050307-1ce4-169e-83d7-295703ba3b2a’}

The metrics are retrieved with the first call, which gives a handle to the object
containing the metrics. Note that in the object-oriented style of the API, the first
argument of every method is the “self” object. After a reference to the metrics



11.6. Xen CIM Providers 209

object has been retrieved, the data associated with it can be fetched. This is a
structure with a number of fields representing data about the running machine.

This shell is a fairly easy way of experimenting with the Xen API. Although
at the time of writing, the help command does not provide any information on
the Xen API, TAB-completion does work. This allows the methods on objects to
be easily listed, or filtered by prefix:

xm> host.get_API_version_<TAB><TAB>
host.get_API_version_major
host.get_API_version_minor
host.get_API_version_vendor
host.get_API_version_vendor_implementation
xm> VM<TAB>

Display all 107 possibilities? (y or n)

If you are experiencing problems with API calls from a script or application
written with one of the bindings, attempting the calls in the xm shell can be a
quick way of checking that the API actually works as you think it does.

11.6 Xen CIM Providers

One of the driving forces behind the development of a stable API for Xen was the
capability to plug in different management interfaces. The Common Information
Model (CIM) is one such desired interface. CIM refers to a family of standards
used to define interfaces to management tools. These are not limited to virtual-
ization, and are widely used for a number of management tasks, such as managing
complex storage systems. The Distributed Management Task Force (DMTF') has
created a working group to define a standard for integrating virtualization into a
CIM stack. The preliminary results of this, the System Virtualization, Partition-
ing, and Clustering Working Group (SVPC WG@G), are being used to construct a
CIM provider built on top of the Xen API.

In a sense, the CIM provider is just another language binding. Unlike other
bindings, such as libxen and pyxen, the CIM provider translates between the
Xen API and another very high-level, domain-specific language. Although you
would use C to write a tool that used libxen, you would write something that
interfaced with the CIM provider in a general purpose language of your choice.
CIM is a data modeling language, not a general purpose programming language.

Why would you want to translate the Xen API into C, and then into CIM,
and then into your tool’s internal representation, rather than just using the API
directly? The main reason is interoperability. Although the Xen API is public,
and likely to remain relatively stable, it is not a standard. CIM is a standard,



210 Chapter 11. The Xen API

and is vendor-neutral. A tool that supports CIM is likely to work with other
hypervisors, such as the hardware-based hypervisors from Sun and IBM.

CIM versus libvirt

At first glance, CIM and 1ibvirt appear to be serving similar purposes. Both
provide a hypervisor-agnostic abstraction layer for writing tools. There are a
few major differences. CIM is an abstract model, with representations built
on XML, and usable in a language-agnostic way. In contrast, 1ibvirt is quite
closely tied to C.

Another major difference is in the development model. The relevant parts of
the CIM standard are being defined by a working group representing multiple
vendors. Libvirt began life as a wrapper around xm and has grown to a more
general interface. It is still quite closely tied to the Xen way of doing things,
however. It is also designed exclusively for managing virtualization on the local
machine, whereas CIM management tools are generally used to organize large
numbers of computers and other devices.

Finally, CIM is a large specification, and the parts relevant to virtualization
are relatively small. Adding support for managing virtualization to a CIM-
aware management tool is relatively simple.

CIM itself is only part of the puzzle. CIM provides an abstract way of de-
scribing models of real systems. It is then the job of CIM-XML to describe a way
of representing the models, and something like WS-Management, one of the web
services family of standards, to describe a way of interacting with them.

Currently, the Xen CIM provider is being developed out of the main tree.*
This is likely to continue until the relevant CIM specifications are stable.

11.7 Exercise: Enumerating Running VMs

This section will look at a simple use for the Xen API: enumerating the running
virtual machines. First, we will look at how to do this using the C and Python
APIs, then examine the XML that is generated, and finally see how xend handles
the request.

At the highest level, you need to perform the following actions:

1. Establish a connection to xend with an associated session.

2. Get the local host for the connection.

4Although it can be downloaded from http://xenbits.xensource.com/ext/os—cmpi-xen.
hg.


http://xenbits.xensource.com/ext/os-cmpi-xen.hg
http://xenbits.xensource.com/ext/os-cmpi-xen.hg

53

55
56

57

58
59
60
61
62
63
64
65
66
67

68
69

11.7. Exercise: Enumerating Running VMs 211

3. Get the list of VMs for the host.
To get an idea of how this will work, we’ll start by trying it in the xm shell:

# xm shell

The Xen Master. Type "help" for a list of functioms.

xm> session.get_all

[’77900a47-c611-8450-28bc-acabab1f8af9’]

xm> session.get_this_host 77900a47-c611-8450-28bc-acabablf8af9
’a86612fa-85b8-eal9-aae7-e60£124d4cb5’

xm> host.get_resident_VMs a86612fa-85b8-eal9-aae7-e60f£124d4cbb
[200000000-0000-0000-0000-000000000000°]

xm> VM.get_name_

VM.get_name_description VM.get_name_label

xm> VM.get_name_label 00000000-0000-0000-0000-000000000000
’Domain-0’

Here, we cheat slightly getting the session, and get the list of all sessions,
because there is only one. Then we get the host from this, and the resident VMs.
There is only one VM on the machine being used for this example, Domain 0.

Listing 11.3 shows how you would do the same thing in C. This is a simple
program that takes three arguments from the command line: the address of the
server and the username and password.

Listing 11.3: Enumerating running VMs in C (from: examples/chapteri1/enumerate_vms.c]

int main(int argc, char xxargv)

{

if (argc |= 4)

fprintf(stderr, "Usage:\n\n%s_<url>_<username>_<
password>\n", argv[0]);

}
url = argv[1];
/+ General setup %/

xen_init ();
curl_global_init (CURL.GLOBAL_ALL);

xen_session xsession =
xen_session_login_with_password (call_func, NULL, argv
[2], argv(3]):

if (session—>ok)



70
71
72
73
74
75

7
78
79
80
81
82
33
84
85
86
37

89
90
91
92
93

212 Chapter 11. The Xen API

{
/+ Get the host */
xen_host host;
xen_session_get_this_host(session, &host, session);
/+ Get the set of VMs x/
struct xen_vm_set x VMs;
xen_host_get_resident_vms (session , &/Ms, host);
/* Print the names x/
for (unsigned int i=0 ; i<VMs—>size ; i++)
{
char * name;
xen_host_get_name_label (session , &name, host);
printf("W_.%d:_%s\n", i, name);
}
}
else
{
printf(stderr, "Connection_failed\n");
}
xen_session_logout (session);
curl_global_cleanup ();
xen_fini();
return O;
}

A couple of helper functions, call_func and write_func, are in the full listing,
not shown here. The first is similar to the one shown in Listing 11.2, whereas the
second is simply there to reformat the callback from the four-argument version
used by libcurl to the three argument version required by libxen.

Lines 55-60 just ensure that we’ve got the correct arguments. The address of
the server is stored in a global, so that the call_func higher-order function can
access it. Lines 62-64 perform initialization of the two libraries that we are using,
libcurl and libxen. Lines 90 and 91 do the corresponding cleanup after we have
finished.

In line 66, we attempt to connect to the server with the given username and
password. If this works, we proceed. This is the only place where this simple
example does any error checking; if we can connect, we will assume that everything
else will work. Line 89 is the corresponding destructor for the session object.

In line 73, we retrieve a handle to the host object. Note that the session
object is passed in twice. The version of this function from version 0.4 of the API,
shipped with Xen 3.0.4, only took two parameters. In this version, the first session
is the one we are using for connecting, and the second is the session for which we
are looking up the host. The middle parameter is the value in which the host will
be returned. This three-argument version allows the host for connections other



O © 001 U = W N =

R e e e
O OO B W N

11.7. Exercise: Enumerating Running VMs 213

than the current one to be looked up. This is not currently useful, because all
sessions connected to a single machine will have the same host, but it will be in
future versions of the API.

After we have the host, we ask for a set of virtual machines resident on the
host (line 76), and then iterate over the resulting set, getting the label (line 81)
and then printing it.

Compiling and running the example on the same machine as before gives the
following result:

# cat Makefile
enumerate_vms: enumerate_vms.c
@c99 $~ -lxenapi -lcurl -o $6@

clean:

Orm -f enumerate_vms
# make && ./enumerate_vms localhost:8005 user password
VM 0: localhost.localdomain

Before we move on, let’s take a look at what happens on the wire for some
of this. Each of our C function calls corresponds to an XML-RPC request and
response. Our initial login corresponds to the XML shown in Listing 11.4. Each
of the other functions generates a similar snippet of XML. If you’d like to see
exactly what is going on, try modifying the example code to output the XML in
the write_func () and call_func () functions.

Listing 11.4: XML generated when logging in

OUT:
<?xml| version="1.0"7>
<methodCall>
<methodName>session . login_with_password </methodName>
<params>
<param><value><string >user </string ></value ></param>
<param><value><string >password </string ></value ></param>
</params>
</methodCall>
IN :
<?xml| version='1.0"7>
<methodResponse>
<params>
<param>
<value><struct >
<member>
<name>Status </name>
<value><string >Success</string ></value>



19
20
21
22

23
24
25
26
27

2465
2466
2467
2468
2469
2470
2471
2472
2473

751
752

753
754
755

214 Chapter 11. The Xen API

</member>
<member>
<name>Value </name>
<value><string >8a795a7e —1354—f885 —0c41—
bd4f4ea991fd </string ></value>
</member>
</struct ></value>
</param>
</params>
</methodResponse>

Rather than try to do the same thing in Python, we will take a look at how
xm implements the list command. The first thing that needs to be done is to set
up the session object, and log in. When using the Xen API, this is done as shown
in Listing 11.5.

Listing 11.5: Settlng up the SeSSiOH ln X [from: tools/python/xen/xm/main.py]

server = XenAPl.Session (serverURI)
username, password = parseAuthentication ()
server.login_with_password (username, password)
def logout():
try:
server .xenapi.session.logout ()
except:
pass
atexit.register(logout)

After this, it calls the xm_list () function. Much of this performs parsing of
arguments. It then calls getDomains(), the relevant part of which is shown in
Listing 11.6.

Listing 11.6: Getting domain info in Xm ffrom: tools/python/xen/xm /main.py]

dom_recs = server.xenapi.VM. get_all_records ()
dom_metrics_recs = server.xenapi.VM_metrics.
get_all_records ()

for dom_ref, dom_rec in dom_recs.items():
dom_metrics_-rec = dom_metrics_recs[dom_rec[ "metrics

11

This gets all of the VM records and metrics, and iterates over them. Most of
the remainder of this function handles reformatting the data.



11.8. Summary 215

11.8 Summary

You have now seen how to interact with the Xen API from C and Python, and
how the API works on the wire, making it easy to use from any language with
XML-RPC bindings. You have seen how xend and xm interact within the Xen
system, both how they communicate with each other, and where they fit into the
rest of the system.

The pyxen and libxen bindings for Python and C can be used to create
monitoring and management tools in Python and C, and other languages can
use the API directly, or have bindings written for them relatively easily. Abstract
documentation of the interfaces can be found in the docs/xen-api part of the tree.
At the time of writing, this compiles to a 167-page PDF, which gives developers
a lot of information about the functioning of the API. The code for the bindings
is in the tools subtree, as is xm, which provides some examples of how to use the
Python interface.



This page intentionally left blank



Chapter 12

Virtual Machine Scheduling

One of the core features of Xen is multitasking. The hypervisor is responsible for
ensuring that every running guest receives some CPU time. As with a multitasking
operating system, scheduling in Xen is a tradeoff between achieving fairness for
running domains and achieving good overall throughput. Some other constraints
apply in Xen, due to the nature of some of its uses. One common use for a
hypervisor environment is to provide virtual dedicated servers to a variety of
customers. These are likely to have some form of service level agreement associated
with them, and so it is necessary to ensure that no customer receives less than
his allocated amount of CPU, and, for billing purposes, to track when he receives
more.

Scheduling for a system like Xen shares some concepts with an operating sys-
tem that provides an N : M threading library. In such a system, the operating
system kernel schedules N threads (typically one per physical context), which a
userspace library multiplexes into M userspace threads. In Xen, the kernel threads
are analogous to VCPUs and the userspace threads represent processes within the
domain. In a Xen system, there can even be another tier, because the guest do-
main can have userspace threads running on top of it. This gives a potential of
up to three schedulers between a thread and the CPU:

1. Userspace threading library mapping userspace threads to kernel threads
2. Guest kernel mapping threads to VCPUs

3. Hypervisor mapping VCPUs to physical CPUs

The hypervisor scheduler, sitting at the bottom of this stack, needs to be
predictable. The layers above it will make assumptions on the behavior of the
underlying scheduling, and will make highly suboptimal decisions if these are

217



218 Chapter 12. Virtual Machine Scheduling

invalid. This leads to bad, or unpredictable, behavior for processes in the running
domains. The design and tuning of the scheduler is one of the most important
factors in keeping a Xen system running well.

12.1 Overview of the Scheduler Interface

O © 01 UL =~ W N K

12
13
14
15
16
17
18
19

Xen provides an abstract interface to schedulers. This is defined by a structure
that contains pointers to functions used to implement the functionality of the
scheduler. Listing 12.1 shows this interface. Readers familiar with static object-
oriented languages such as C++ or Java will find this somewhat familiar as a
method of defining interfaces.

Listing 12.1: Interface to a Xen scheduler

struct scheduler {

char xname; /* full name for this scheduler x/
char xopt_name; /* option name for this schedulerx/
unsigned int sched_id; /x ID for this scheduler */
void (xinit) (void) ;

int (xinit_domain) (struct domain x);

void (xdestroy_domain) (struct domain x*);

int (xinit_vcpu) (struct vcpu x*);

void (xdestroy_vcpu) (struct vcpu x*);

void (xsleep) (struct vcpu x*);

void (xwake) (struct vcpu x*);

struct task_slice (xdo_schedule) (s_time_t);

int (xpick-cpu) (struct vcpu x*);

int (xadjust) (struct domain x*,

struct xen_domctl_scheduler_op x);
void (xdump_settings) (void);
void (xdump_cpu_state) (int);

When adding a new scheduler, it is necessary to create one of these struc-
tures pointing to the newly implemented scheduling functions, and to add it to
a static array of available schedulers. At boot time, the correct scheduler can
be selected by specifying an argument to the hypervisor. The hypervisor reads
“sched={scheduler}” from the list of boot parameters and attempts to match
“scheduler” to the opt_name of the schedulers defined as described in Listing 12.1.

Not all of the functions defined by the structure need to be defined for any
given scheduler. Any initialized with a NULL pointer are simply ignored. The



12.2. Historical Schedulers 219

simplest valid scheduler would set almost all of the functions to NULL, although
this might not actually be very useful.

Current versions of Xen include two schedulers, the older Simple EDF (SEDF)
and the newer Credit Scheduler. SEDF is more stable, as it has had longer to
undergo testing, but has a few limitations that are causing it to be gradually
phased out in favor of the Credit Scheduler.

Adding a new scheduler is something that requires modification to the hy-
pervisor sources and recompilation. This is not as much of a problem as it may
appear. Generally, each scheduler can be separated out into its own source file,
and the only modification required to the rest of the Xen sources is to add it to
the list of available schedulers at the top of scheduler.c. This makes it relatively
easy to maintain a scheduler outside the main Xen tree.

As well as a list of available schedulers, the scheduler.c file contains all of
the scheduler-independent code. Each of the functions in the scheduler definition
structure has an analog in this source file, which performs any general operations
and then calls the scheduler function (if one exists). For example, the schedule()
function defined in this file deschedules the running domain and then calls the
do_schedule() function for the current scheduler. This returns the new task to
be scheduled and the time for which it should run. The generic code then sets a
timer to fire at the end of the designated quantum, and runs the new task.

Unlike most of the other scheduler functions, do_schedule() is not optional.
All of the other functions are called via a macrom which tests for a non-NULL
value and returns 0 if one is found; however, this one does not. This means that
a scheduler that does not implement do_schedule() will crash the hypervisor.

Adding a new scheduler is not something that most users of Xen are likely to
need to do; however, it is possible that some users of Xen may require scheduling
beyond that provided by the existing schedulers. Although the Credit Scheduler
is highly configurable, it is not always possible to coerce it to a particular set of
needs. If you find this to be the case, you may want to add your own.

Even if you never modify a Xen scheduler, you are likely to find that under-
standing how it works is beneficial to ensuring that your own guests make effective
use of the paravirtualized environment in which they run.

12.2 Historical Schedulers

The two schedulers currently present in Xen are not the oldest ones. Earlier
versions of Xen included Borrowed Virtual TimeBVT, Atropos and Round Robin
schedulers.

The BVT scheduler attempted to give an equal share of runtime to all do-
mains, modified by an administrator-defined weighting. This was the recom-
mended scheduler for Xen 2. It suffered from some problems scheduling I/0



220 Chapter 12. Virtual Machine Scheduling

intensive domains, although it was possible to tweak some parameters to avoid
certain pathological cases. It also lacked a non-work-conserving mode, making it
unsuitable for some uses.

The BVT scheduler works using the concept of virtual time, which elapses only
while the domain is scheduled. To allow weighting of VCPUs, BVT increased the
virtual time at a rate that is configurable on a per-domain basis. A domain with
a low weight would have a smaller virtual time than one with a bigger weight
after running for the same amount of wall time. Whenever a scheduling decision
needs to be made, the scheduler picks the runnable VCPU that has the earliest
effective virtual time. This alone gives a fairly close approximation of a round robin
scheduler. The feature that accounts for the word “borrowed” in the name is the
capability of domains to “warp.” Each domain has the ability to set its virtual
time to some point in the past, within a range defined by the administrator.

Each VCPU has an effective and actual virtual time associated with it, with
the effective virtual time being calculated by subtracting the warp time from the
actual time. There are two limits placed on warping: the maximum amount of
time a VCPU can run warped for, and the maximum amount of time it can warp.
When a domain requires low latency, it enters the warping state, which makes the
scheduler more likely to select it, until it has elapsed its warp time. It must then
wait another configurable interval until it is allowed to warp again.

The Atropos scheduler, also from Xen 2, provided soft realtime scheduling.
Unlike BVT, which dealt with weights, Atropos guaranteed that each domain
would run for n milliseconds every m milliseconds of real time. This was good
for latency-sensitive virtual machines, but it was not ideal for CPU throughput.
The scheduler did not permit overcommitting of CPU resources. Each CPU was
guaranteed a fixed allotment of CPU time, and the remainder was shared out
evenly. This made it much harder for a domain to receive CPU “bursts.” It is
quite common for a virtual (or physical) machine to spend some of its time using
almost no CPU, and then some using as much as it has available. This kind of
workload did not work well with the Atropos scheduler.

For each VCPU, Atropos maintained a record of the end of its deadline and the
amount of time it would be allowed to run before this (that is, the amount of time
it had to run every interval, minus the amount of time it had run this interval).
Runnable domains were kept in a queue, ordered by deadline. Whenever the
scheduler was invoked, it would perform the following steps:

1. Subtract the amount of time for which the domain had just run from its
remaining runtime, and if this were zero, move it from the run queue to the
waiting queue.

2. Move back to the run queue any domains in the waiting queue that were
due to run again.



12.2. Historical Schedulers 221

3. Calculate a new scheduler interrupt time. This could be caused by a domain
in either queue. Domains in the waiting queue with very short periods could
need to be scheduled before any of the ones in the run queue.

4. Return the domain at the head of the run queue and the time calculated in
the previous step.

Realtime scheduling is a difficult problem for Xen, due to the nature of virtual-
ization. It is somewhat difficult to design a realtime scheduler on a single machine
without compromising throughput too much. The two (or sometimes three) tier
nature of Xen makes it even harder. A solution would likely require some close
cooperation between the hypervisor and kernel schedulers, with the kernel sched-
uler registering wake-up deadlines with the hypervisor. Even this, however, would
only allow best-effort realtime scheduling. Soft realtime scheduling is important
for a lot of tasks, particularly those on the desktop that involve media recording
or playback.

The final historical scheduler was the round robin implementation. Unlike the
other two, this was not intended for production use. It was a simple example
of the scheduler API that could be used for demonstration purposes. It had a
fixed-length quantum that, in the absence of a guest voluntarily yielding its CPU
time, each domain would be run for a fixed quantum in order.

Work Conserving

The term work conserving is used to describe a scheduler that permits the CPU
to run at 100% if any virtual machine (or process, in the case of operating
system schedulers) has work to do. A non-work-conserving scheduler imposes
a hard limit on the amount of CPU time a given process can consume. Work
conserving schedulers are preferred in a lot of cases, because they allow the
most efficient usage of the CPU. In some situations, it is desirable to limit
the total amount of CPU time a VM can consume—for example, to conserve
power or for billing purposes. In these cases, a non-work-conserving scheduler
is desirable.

12.2.1 SEDF

The Simple Earliest Deadline First (EDF') scheduler is the older of the two current
Xen schedulers. It is no longer in active development, and is likely to be phased
out in the future.

This scheduler works by saying that each domain is set to run for an n ms slice
every m ms, where n and m are configurable on a per-domain basis. This scheduler



222 Chapter 12. Virtual Machine Scheduling

then picks the VCPU to run which has the closest deadline. For example, consider
the following three domains:

1. 20ms slice every 100ms
2. 2ms slice every 10ms

3. bms slice every 10ms

Initially, domains 2' and 3 have the earliest deadlines for starting their quanta,
because they both need to be scheduled within 10ms. Domain 3 has the earliest
deadline for starting its quantum, because it must be run in the next bms, whereas
domain 2 can wait for 8ms.

After domain 3 has run, its next deadline moves into the future, to beyond that
of domain 2. These two are scheduled periodically for about 80ms, until domain
1 has to be run. It then wants to take control of the CPU for 20ms. Note that
this is longer than the period of the other two domains, which would cause them
both to miss their allotments.

At this point, a special case in the code is reached. This detects that allowing
domain 1 to run for its maximum slice would mean that other VCPUs would
miss theirs. In this case, the SEDF scheduler reduces the allocation so that it
terminates in time for the next deadline.

12.2.2 Credit Scheduler

On recent versions of Xen, the Credit scheduler is used by default. Each domain
has two properties associated with it, a weight and a cap. The weight determines
the share of the physical CPU time that the domain gets, whereas the cap rep-
resents the maximum. Weights are relative to each other; if all domains have a
weight of 128, this has the same effect as giving all domains a weight of 256. In
contrast, the cap is an absolute value, representing a proportion of the total CPU
that can be used.

By default, the Credit Scheduler is work-conserving. Given two virtual ma-
chines with priorities of 128 and 256, the first gets half as much CPU time as the
first while both are busy, but can use the whole CPU if the second is idle. The
cap is used to force a non-work-conserving mode. If all domains have a cap, and
the sum of all caps is below the total CPU capacity, the scheduler does not run
any domains for some of the time.

The Credit Scheduler uses a fixed-size 30ms quantum. At the end of each
quantum, it selects a new VCPU to run from a list of those that have not already

1The SEDF scheduler actually works on VCPUs, rather than domains. For illustrative pur-
poses, we will assume that each domain has a single VCPU.



12.2. Historical Schedulers 223

exceeded their fair allotment. If a physical CPU has no underscheduled VCPUs,
it tries to pull some from other physical CPUs.

Whether a CPU is over- or underscheduled depends on how it has spent its
credits. Credits are awarded periodically, based on the priority. Consider the
following example domains:

1. Priority 64, cap 25%.
2. Priority 64, no cap.
3. Priority 128, no cap.

At the start of a scheduling interval, the first two domains will have 64 credits,
whereas the last will have 128.2 Although all CPUs have work to do, they will be
scheduled in a round robin manner. Eventually, the first two domains will be out
of credits, and the third one will get all of the CPU to itself for a little while.

If the last domain is idle, the first and second will get equal shares of the
CPU until the first has reached its cap of 25%. At this point, the second VCPU
continues to run. By doing this, it quickly exhausts its allowance of credits, and is
moved into the “overscheduled” queue in the next accounting process. Meanwhile,
the other VCPUs continue to accrue credits. At the next accounting, they will be
classified as “underscheduled.”

Any new allocation of credits that occurs while domain 1 is capped takes this
into account, and divide the credits that would be awarded to domain 1 between
the other two. This means that the priority of a domain should not be larger than
the percentage of the CPU allocated to its cap, or slightly surprising results will
occur.

The scheduler ticks every 10ms, subtracting credits from the running VCPU,
and caps the minimum number of credits as the number that would be achieved
by a process running for one complete time slice having started with no credits.

This minimum value has little effect on the scheduling algorithm. If one VCPU
is getting enough runtime to be exceeding the minimum threshold, the others
must be either capped or idle. Because idle and capped VCPUs are ignored when
determining the allocation of credits, the running VCPU will get more credits
than it otherwise would, balancing out the drop. When the other VCPUs have
work to do again, they will be factored into the credit allocation and the currently
running VCPU will be throttled back to its fair share.

2The scheduler actually allocates credits based on a function of the weight, rather than
directly as the number given by the weight. These numbers are used for illustration only.



224 Chapter 12. Virtual Machine Scheduling

12.3 Using the Scheduler API

52
53
54
55

Device Scheduling

Access to the CPU is not the only thing that needs to be scheduled. A
machine performing a lot of I/O could potentially slow down other domains—
for example, by causing a lot of disk seeks, which would reduce total disk
throughput.

The hypervisor scheduler is only responsible for controlling access to the
CPU. For good (and fair) performance, the back-end drivers need to provide
some means of regulating the number of I/O requests that a given domain can
perform. Because the hypervisor is not directly aware of the existence of split
device drivers, this is delegated to Domain 0 or driver domains.

The scheduler APT is defined by the structure from Listing 12.1. This contains
four fields that must be filled in, and a number of optional ones. The name
field should contain a human-readable name for the new scheduler, whereas the
opt_name field contains an abridged version to be used as a selector when specifying
a scheduler at hypervisor boot time.

The remaining required field, as mentioned earlier, is the do_schedule() func-
tion pointer. This is passed the current time, and returns a struct containing the
next VCPU to run, as well as the amount of time for which it should run before
being preempted in a task_slice structure, as shown in Listing 12.2.

Listing 12.2: The task slice structure used to indicate the VCPU to run from:

xen/include/xen /sched-if.h]
struct task_slice {

struct vcpu xtask;
s_time_t time ;

To be able to return a VCPU in this structure, it is necessary for the scheduler
to maintain a record of which VCPUs are available at any given time. Whenever
a VCPU is started, it is passed to the scheduler’s init_vcpu () function. Similarly,
when it is destroyed, it is passed to the destroy_vcpu () function. These can be used
by a scheduler to keep track of which virtual CPUs are available for scheduling at
any given time.

Each vcpu structure has a sched_priv member, which can be used to contain
private information for the scheduler, relating to that VCPU. If this is used, then
it is the responsibility of the scheduler to destroy it when the VCPU is destroyed.




12.3. Using the Scheduler API 225

Some schedulers may treat virtual CPUs different depending on the domain by
which they are owned. The domain structure contains a vcpu field, which contains
an array of the virtual CPUs owned by the domain. This can be used to ensure
fair scheduling between domains, rather than just VCPUs. It should be noted
that not all VCPUs for a given domain need to run at the same speed. In extreme
cases, it is possible to delegate all scheduling to Xen, and create one VCPU per
process in a guest domain. The guest’s scheduler is then only responsible for
assigning tasks to VCPUs.

The two dump functions are used for debugging purposes. When an adminis-
trator requests the current status of the hypervisor, these two functions are called
to output the state of the scheduler.

12.3.1 Running a Scheduler

The function pointed to by the do_schedule field of the scheduler structure is called
when a scheduler decision is needed. This is called very often, and so should be
as short and efficient as possible. The scheduler-independent code that calls this
performs the context switch; all that this function needs to do is select the next
VCPU to run, and the duration for which it should run. The most common way
of doing this is to maintain a run queue and simply take the next available VCPU
from the head of this queue.

The do_schedule function should select the next VCPU to run on the current
physical CPU. The ID of this CPU can be accessed with the smp_processor_id ()
macro. This provides the ID of the current physical CPU. It is up to the scheduler
itself to store any information it needs to about this physical CPU. Typically, it
maintains an array of structures indexed by CPU ID.

After the scheduler is created, the first domain, Domain 0, is assigned to it
via the init_.domain function. Domain 0 is a special case for scheduling; it has one
VCPU for each physical CPU, and these VCPUs are pinned to the corresponding
physical CPU, preventing the VCPU being migrated to another physical CPU.
The scheduler API does not provide a mechanism for explicitly initializing physical
CPUs, and uses this fact as a work-around for needing one.

When a VCPU is added, the init_vcepu function is called. The argument to
this function is a vcpu structure, from xen/include/xen/sched.h. The processor
field of this points to the currently assigned physical CPU. Listing 12.3 shows a
snippet from the Credit Scheduler’s csched_vcpu_init function, which the Credit
Scheduler’s init_vcpu field points to. This checks whether the physical CPU as-
sociated with the new VCPU is new, and performs per-CPU initialization if it
is. There is currently no way of informing a scheduler that a physical CPU is
no longer available. Supporting hot-pluggable CPUs requires modifications to the
scheduler API.

The scheduler determines how often the do_schedule function is called. When-



597
598
599
600
601
602

226 Chapter 12. Virtual Machine Scheduling

Listing 12.3: Checking if a physical CPU needs initializing in the Credit Sched-
uler [from: xen/common/sched_credit.c]

/+ Allocate per—PCPU info x/
if ( unlikely (!CSCHED_PCPU(vc—>processor)) )

{
if ( csched_pcpu_init(vc—>processor) != 0 )
return —1;

ever a domain exhausts its quantum (as defined by the return value of the previous
call to this function), or voluntarily yields CPU time, this function is invoked. In
earlier versions of the API, there was a periodic timer event associated with each
VCPU. Every 10ms of domain virtual time, the VCPU’s VIRQ_TIMER virtual
interrupt is raised. At the same time as this, the scheduler’s tick function was
called.

The tick function could be used to trigger periodic accounting functions. The
Credit Scheduler used this to invoke the accounting function every tick and the
global accounting function every n ticks (where n defaults to 3). This function
had just one argument; the index of the physical CPU being ticked. This could
be used to tie certain accounting functions to a given CPU, preventing the need
for locking. This was used by the Credit Scheduler, which currently always runs
the global accounting function on the first CPU. This is a simple way of ensuring
that only one version of the function is running at once. Because the tick function
was not used by all schedulers, it was removed. Schedulers that require this
functionality can schedule their own periodic interrupt.

Most of the other functions within the scheduler are largely to allow internal
bookkeeping. The scheduler needs to keep track of:

e Which domains exist
e Which VCPUs are assigned to which domains

e Which VCPUs are sleeping or awake

The scheduler can keep most of this kind of information in the static variables
defined in the source file. Some things need to be kept on a per-VCPU basis,
however. It is possible to keep a list of structures containing pointers to VCPUs,
and scan this whenever scheduler-specific VCPU metadata was required, but it
would be incredibly expensive. Instead, the domain and vcpu structures have a
sched_priv field. This is a pointer, and can be used to store any information the
scheduler chooses to put in there. The Credit Scheduler defines the structure and



© 0 UL b~ W N =

13
14

15

16

17
18

19

12.3. Using the Scheduler API 227

macro in Listing 12.4. The structure contains scheduling information about the
domain, and is accessed by passing the pointer to the domain into the macro.

Listing 12.4: Per-domain information and accessors from the Credit Scheduler

struct csched_dom {

+

struct list_head active_vcpu;
struct list_head active_sdom_elem;
struct domain *xdom;

uintl6_t active_vcpu_count;
uintl6_t weight;

uintlé_t cap;

#define CSCHED_DOM(_dom) ((struct csched_-dom %) (-dom)—>

sched_priv)

Because the rest of the system is entirely unaware of the existence of this data,

it is up to the scheduler to allocate space for it, and free it when the domain is
destroyed.

In some cases, a scheduler may need to keep some metadata for each physical

CPU. This is slightly more complicated; per-CPU data is stored in a platform-
specific way. Each platform defines a set of macros for allocating one instance of
a structure for each CPU and accessing these elements. The common scheduler
code declares a per-CPU instance of the structure shown in Listing 12.5 called
schedule_data.

Listing 12.5: Per-CPU data for scheduling (trom: xen/inciude/xen/sched-it.h]

struct schedule_data {

spinlock_t schedule_lock; /* spinlock protecting
curr */

struct vcpu xCUrr ; /* current task

*/

struct vcpu xidle; /* idle task for this
cpu */

void xsched_priv;

struct timer s_timer; /* scheduling timer

*/
} __cacheline_aligned;

Again, the sched_priv member of this can be used to store scheduler-specific

information. Accessing this structure must be done using one of two macros.
The per_cpu macro takes two arguments. The first is the name of the structure



228 Chapter 12. Virtual Machine Scheduling

(scheduler_data in this case) and the second is the index of the CPU. A common
CPU value is the processor element from the VCPU structure, which stores the
processor on which the VCPU was last run. The other macro, __get_cpu_var, takes
only the name of the structure, and returns the copy that is associated with the
current CPU. Semantically, the following two are equivalent:

data = per_cpu(scheduler_data, smp_processor_id()));
data = __get_cpu_var(scheduler_data);

On some platforms, they perform exactly the same operations; however; it is
possible that one or the other might have been optimized for a given platform. On
64-bit PowerPC, the Linux version of the latter is more efficient than the former,
for example. Because the implementation of these is subject to change between
versions and between ports, no assumptions should be made as to their relative
efficiency.

12.3.2 Domain 0 Interaction

287
288
289
290
291
292
293
204
295
296
297
298
299
300
301
302
303
304
305
306
307
308

The HYPERVISOR_domctl hypercall, available from Domain 0, allows access to,
and modification of, settings for the scheduler for a given domain. These settings
are defined on a per-scheduler basis, as shown in Listing 12.6.

Listing 12.6: Domain 0 scheduler control operation (from: xen/include/public/dometl.h]

#define XEN_DOMCTL _scheduler_op 16
/* Scheduler types. x/

#define XEN_SCHEDULER_SEDF 4
#define XEN_SCHEDULER_CREDIT 5

/+ Set or get info? x/
#define XEN_DOMCTL_SCHEDOP_putinfo 0
#define XEN_DOMCTL_SCHEDOP getinfo 1

struct xen_domctl_scheduler_op {
uint32_t sched_id; /x XEN_.SCHEDULER_x x/
uint32_t cmd; /* XEN_DOMCTL_SCHEDOP_* x/
union {

struct xen_domctl_sched_sedf {
uint64 _aligned_t period;
uint64_aligned_t slice;
uint64_aligned_t latency;
uint32_t extratime;
uint32_t weight;

} sedf;

struct xen_domctl_sched_credit {
uintl6_t weight;
uintlé_t cap;

} credit;



12.4. Exercise: Adding a New Scheduler 229

309 }ou;
310| };

Because the settings are passed via a union, adding a new scheduler that
responds to this hypercall requires the modification of the domctl.h header, which
defines it, as well as recompilation of any tools that issue the call. This is not
as big a problem as it might first appear. A guest that does not understand the
scheduler being used cannot meaningfully interact with it, and so does not need to
be aware of the modifications to the hypercall interface required by the scheduler.

The Credit Scheduler has very simple configuration parameters: only a weight
and cap can be provided for each domain. SEDF is somewhat more complicated.
The difficulty in configuring SEDF was one of the reasons why it was deprecated;
it took five settings, all of which could impact performance in related ways. In
contrast, the two settings of the Credit Scheduler are largely orthogonal; the
weight indicates how much CPU a domain should use when others are competing,
and the cap indicates the maximum it can use whether others are competing or
not.

At the simplest level, allowing domains to interact with the scheduler allows
things like an equivalent of the UNIX nice command, adjusting priorities. For
some schedulers, it permits more fine-grained control, for example, to give a do-
main a minimum and maximum CPU allocation.

A scheduler designed specifically for a virtual grid might use a market-based
approach, where the cost of CPU time would fluctuate based on demand. Guests
could define policies within their domain and buy cycles when they had a lot of
work to do, or buy up cheap CPU time to perform periodic bookkeeping work.

Whatever the available options for a given scheduler, they are handled by the
function pointed to by the adjust field. This takes the scheduler operation from
Listing 12.6 and the domain as arguments. How the contents of the structure is
interpreted is entirely up to the scheduler.

12.4 Exercise: Adding a New Scheduler

The simplest scheduler to implement, conceptually, is a round robin scheduler
without preemption. Because Xen is built around the idea of preemptive mul-
titasking, however, it is actually simpler to implement schedulers that do pre-
emption than those that don’t. This example will describe the addition of a
trivial scheduler. To simplify matters further, our trivial scheduler will not be
SMP-aware; it will not provide any code for dealing with migration of VCPUs or
CPU-affinity.

Our code will live in a new scheduler file, sched_trivial.c, which must be
added to the Xen build configuration. We will not allow any configuration in-



© 03 O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

230 Chapter 12. Virtual Machine Scheduling

formation, and so there will be no modifications to the hypercall interface nor
recompilation of the guest kernel and tools.

Our simple round robin scheduler will not bother to track domains. Each
VCPU will be scheduled independently, for a fixed time interval, and then the
next one will be run. To do this, it needs to implement three functions: adding
and destroying VCPUs and selecting the next one to run.

A list of VCPUs will be maintained as a linked list. New VCPUs will be
appended to the list, and whenever a scheduler decision is required the VCPU on
the head of the list will be scheduled and moved to the end.

We'll start by creating the run queue, as shown in Listing 12.7. This is a
simple singly linked list. Because we are just performing a simple round robin
scheduling, we will just use VCPU’s scheduler private data pointer to point to the
next element.

Listing 12.7: Run queue for the trivial scheduler (trom: examples/chapter12/schod_trivial.c]

/* CPU Run Queue x/
static struct vcpu x
static struct vcpu *x vcpu_list_tail
unsigned int vcpus = 0;

vcpu_list_head = NULL;
NULL ;

Next, we need to add functions for adding and removing VCPUs from the
scheduler’s responsibility. This is fairly simple. Our run queue is just a linked
list, and we don’t store any metadata about the VCPU, so all we need to do is a
simple linked list insertion and removal. The functions for doing this are shown
in Listing 12.8.

Listing 12.8: Initializing and destroying a VCPU in the trivial scheduler (rom:
examples/chapter12/sched_trivial.c]

/* Add a VCPU x/
int trivial_init_vcpu(struct vcpu * v)

{
if (vcpu_list_head = NULL)
{
vcpu_list_head = vcpu_list_tail = v;
}
else
{
vcpu_list_tail =—>sched_priv = vcpu_list_tail = v;
}
v—>sched_priv = NULL;
return O0;
}

/* Remove a VCPU x/



28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

47
48

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12.4. Exercise: Adding a New Scheduler 231

void trivial_destroy_vcpu(struct vcpu x v)
{
if (v = vcpu_list_head)
{
vepu_list_head = VCPUNEXT(v);
}
else
{
struct vcpu * last = NULL;
struct vcpu * current = vcpu_list_head;
while(current != v && current != NULL)
{
last = current;
current = VCPUNEXT (current);
}
if (current != NULL)
{
last —>sched_priv = VCPUNEXT(current);
}
}
}

After we have the list of VCPUs, the only thing left to do is pick one to run.
Listing 12.9 shows how we do this. We always use a 10ms quantum, and then scan
along the VCPU list until we find one that is runnable. If we can’t find one, we
just return the idle task, which is defined by the cross-platform scheduling code
on a per-CPU basis.

Listing 12.9: Selecting the VCPU to run in the trivial scheduler (from: exampies/chap-

ter12/sched_trivial.c]

/* Move the front VCPU to the back x/

static inline void increment_run_queue(void)

{
vcpu_list_tail —>sched_priv = vcpu_list_head;
vcpu_list_tail = vcpu_list_head;
vepu_list_head = VCPUNEXT(vcpu_list_tail);
vcpu_list_tail =—>sched_priv = NULL;

}

/* Pick a VCPU to run x/
struct task_slice trivial_do_schedule(s_-time_t)
{
struct task_slice ret;
/* Fixed—size quantum =/
ret.time = MILLISECS(10);
struct * vcpu head = vcpu_list_head;



66
67
68
69
70
71
72
73
74
75
76

77
78

80
81
82
33
84
85
86
87
88
89

232 Chapter 12. Virtual Machine Scheduling

do
{
/+ Find a runnable VCPU x/
increment_run_queue () ;
if (vcpu_runnable(vcpu_list_head))
{
ret.task = vcpu_list_head;
} while(head != vcpu_list_head);
/* Return the idle task if there isn’'t one %/
ret.task = ((struct vcpux)__get_per_cpu(schedule_data)).
idle);
return ret;
}

This embodies all of the code required to perform scheduling within Xen, in a
very simple way. All that remains is to let the rest of the system know that this
scheduler is available. This is a two-stage process. The first stage is to create the
interface structure, shown in Listing 12.10.

This is an instance of the structure discussed earlier in this chapter, which lets
the scheduler-independent code know which functions to call for which purposes.

Listing 12.10: Trivial scheduler definition structure (trom: examples/chap-

ter12/sched_trivial.c]

struct scheduler sched_trivial_-def = {
.name = "Trivial .Round_Robin_Scheduler”,
.opt_name = " trivial”,
.sched_id = XEN_SCHEDULER_SEDF,
.init_vcpu = trivial_init_vcpu ,
.destroy_vcpu = trivial_destroy_vcpu ,
.do_schedule = trivial_do_schedule ,

+;

The final step is to edit xen/common/schedule.c to contain a pointer to this
definition. The modified section is shown in Listing 12.11. Any other schedulers
you write should be added in the same way—by adding extern declarations of the
structures representing the schedulers and then adding a pointer to the structure
to the array of schedulers. On boot, the hypervisor kernel iterates over this array,
and parses the short name from each structure and sees if the user has selected
it in the boot parameters. After this is done, and the source file added to the
Makefile, it can be built and used.

The example in this section is for illustrative purposes only. It doesn’t do
SMP-safe operations on the run queue, and so it won’t work on multiprocessor



55
56
57
58
59
60
61
62
63

12.5. Summary 233

Listing 12.11: Identifying the scheduler to the system

extern struct scheduler sched_sedf_def;
extern struct scheduler sched_credit_def;
extern struct scheduler sched_trivial_def;
static struct scheduler xschedulers[] = {

&sched_sedf_def ,

&sched_credit_def ,

&sedf_trivial_def ,

NULL

systems. On uniprocessor systems, it gives very poor performance, and may fail
in unexpected ways. Designing a scheduler is a complex task; it is one of the
most-used parts of the hypervisor and you must take into account a number of
corner cases. This example is intended to show how a scheduler fits into the Xen
hypervisor. The design of a good scheduler is a huge topic, and well beyond the
scope of this book.

12.5 Summary

In this chapter, we have looked at some of the historic scheduler implementations
in Xen. These all had various flaws that caused them to be deprecated. We then
looked at the current implementations, and how they improved matters. Next,
we learned how they interfaced with the rest of the system, and examined the
separation between the scheduler-independent and scheduler-specific code.

The scheduler-specific code is invoked via a structure that contains function
pointers to different parts of the implementation. We saw what each of these
functions is supposed to do, and examined some parts of the implementation of
the existing schedulers. We saw how the schedulers took commands from Domain
0, or another domain with the correct administration permissions.

Finally, we saw how to add a new scheduler to the hypervisor. The interface to
the scheduler is very clean, and so this is relatively easy to do, although designing
a good scheduler is still a difficult task.



This page intentionally left blank



Chapter 13

HVM Support

In 2006, both Intel and AMD introduced support for hardware virtual machines
(HVM). Both sets of extensions are conceptually similar, and Xen interacts with
both via an abstraction layer. In some ways, the existence of this hardware reduces
the need for the approach taken by Xen (and other x86 virtualization solutions),
and a new wave of virtualization packages have started to spring up making use
of it.

13.1 Running Unmodified Operating Systems

The most obvious benefit of HVM is that it can be used to run Windows as a
guest. Supporting Windows as a paravirtualized guest is possible in principle,
but since the source code is not publicly available it is not feasible in practice.
This ability is particularly important, because one key use for virtualization is to
continue to support legacy technology while migrating to a new platform. With
HVM, unmodified operating systems can be run in a virtual environment. This
support is not limited to Windows; old versions of Linux or other x86 UNIX-like
systems, OS/2, or BeOS could also be run as an HVM guest.

Although HVM makes it significantly easier to support virtual machines on
x86, the problem of hardware support remains the same. HVM provides a con-
ceptual “ring -1” in which the hypervisor can sit, and allows the trapping of previ-
ously untrapable instructions. It does not, however, magically make the hardware
virtual. This kind of support can be found in mainframe-segment systems, such
as some of IBM’s POWER machines, but is not yet available in commodity x86
hardware. Because of this deficiency, a hypervisor for x86 is required to provide
emulated devices. Xen implements device emulation by borrowing some code from
QEMU.

235



236 Chapter 13. HVM Support

QEMU and Virtualization

QEMU began life as a CPU emulator. It allowed Linux binaries for one ar-
chitecture to run on another but still use the native system calls. It was later
extended to provide full-system emulation by adding various virtual peripher-
als, such as a Cirrus Logic GD5446 video card and an NE2000 network card.

QEMU was further extended by the addition of the QEMU Accelerator (also
known as KQEMU). The accelerator turned the emulator into a virtualization
system; the “difficult” instructions were still executed in the existing emulation
core but unprivileged operations were executed directly on the hardware.

As such, it is possible to use QEMU for virtualization without the need for
Xen at all. Using QEMU, however, removes the option of running paravirtual
guests and doesn’t provide several of the advanced features of Xen such as live
migration.

As discussed earlier, emulated devices are a lot slower than paravirtualized
ones. Because emulated devices are so slow, they are generally considered a last
resort. Xen allows the line between virtualized and paravirtualized to be blurred
significantly in HVM mode. An HVM guest still can access the same hypercalls® as
a paravirtualized guest, so it is possible to write paravirtualized device drivers for
otherwise unmodified guests. Because most operating systems provide an interface
for writing device drivers, paravirtualized device drivers are often an option even
when the kernel source code is not available.

Issuing hypercalls from an HVM guest is performed slightly differently to a
fully paravirtualized one. A paravirtualized (PV) guest specifies a location where
the hypercall page should be loaded in its ELF header. Specifying the location in
the header is obviously not possible in an unmodified HVM guest. Instead, the
guest must determine that it is running under Xen at runtime and then retrieve
the location of the page. This is done by issuing the CPUID instruction. The
cpuid instruction returns the vendor ID string of ‘XenVMMXenVMM’ in EBX,
ECX, and EDX, if EAX is set to zero. If the value of EAX is set to 0x40000000, it
can be used to detect the presence of Xen.

When in HVM mode, hypercalls are implemented differently. In PV mode,
they are delivered via an interrupt. This is not possible in HVM mode, since
interrupts are delivered to the guest kernel. Instead, they must be sent via a
VMEXIT instruction. The ability to support multiple methods of issuing hyper-
calls was a major motivation in moving from the old mechanism of issuing the
hypercall interrupt directly to the newer method of calling an offset in the hy-

LAt present, Xen only supports a subset of hypercalls for HVM guests, but support for others
is added as a need for them is identified.




13.2. Intel VT-x and AMD SVM 237

percall page. Now, hypercalls can be issued in the same way by guests in PV
and HVM environments, although not all of them are yet supported in an HVM
environment.

The possibility of true virtualization on x86 leads to the question of whether
paravirtualization is still a valid strategy. In principle, it is possible to completely
avoid the need to modify the guest. In practice, however, unmodified guests are
far from optimal in terms of performance. The biggest advantage of HVM is that
it makes porting to Xen an operation that can be completed piecemeal. A fully
paravirtualized guest is likely to be faster than an unmodified guest for some time.
The biggest performance improvement comes from moving to paravirtualized de-
vice drivers. Another important feature to port early on is timekeeping, because a
guest that is aware of the distinction between running time and wall time is likely
to make more intelligent scheduler decisions. Next, memory management could
be ported over to the paravirtualized model, eliminating the need for shadow page
tables and giving a further performance boost.

For paravirtualized guests, HVM still provides some advantages. The hyper-
visor can make use of some of the features provided by HVM implementations
in order to accelerate virtual machine execution. For example, an HVM system
typically includes a method of saving the entire CPU state in a single instruction.
This could be implemented as a small collection of shadow registers or as a fast
path to cache, both of which would be significantly faster than manually storing
all of the registers for one guest and loading those for another.

Another example is the writable page table assist provided by Xen. It is
possible to get much finer-grained control over modifications to the page tables
when running on a CPU that supports HVM extensions, allowing these assists to
be implemented in a more efficient way.

HVM provides an alternative to paravirtualization, but the best results can be
accomplished by using both together.

13.2 Intel VT-x and AMD SVM

As seems to be common in recent years, both AMD and Intel have added incom-
patible extensions to the x86 ISA in order to provide roughly equivalent function-
ality: Intel’s Virtualization Technology for 86 (VT-z) and AMD’s Secure Virtual
Machine (SVM). Both provide a higher privilege mode than ring 0, in which a
hypervisor can sit without having to evict the kernel from ring 0. This separation
is particularly important on x86-64, because it means that the kernel does not
have to run at the same privilege level as the applications, and so no tricks are
required to allow it to poke around in their address spaces.

The biggest difference between Intel’s VT-x and AMD’s SVM comes as an
artifact of the way the first chips supporting each are designed. With the Opteron



238 Chapter 13. HVM Support

series, AMD moved the memory controller on-die, whereas Intel kept theirs in
a discrete part. Because of the close integration between the CPU and memory
controller, AMD was able to add some more advanced modes for handling memory.
With VT-x, you simply set a flag that causes page table modifications to be
trapped. SVM provides two hardware-assisted modes: shadow page tables and
nested page tables.

Shadow page tables have already been described in the context of Xen. The
AMD implementation is quite similar. Whenever the guest attempts to update
CR3, or modify the page tables, the CPU traps into the hypervisor and allows it
to emulate the update. This is very similar to the Intel solution, and neither is
incredibly fast.

The second mode is known as Nested Page Tables (NPT), and provides a lot
more assistance. NPT adds a higher level to the page table. Each guest is allowed
to manipulate CR3 directly; however, the semantics of this register are modified.
The guest sees a completely virtualized address space, and only sets up mappings
within the range allocated by a hypervisor. The hypervisor controls the MMU
to manipulate the mappings, but does not need to get involved while they are
running. This is accomplished by means of a tagged translation lookaside buffer
(TTLB). Each TLB entry has a virtual machine identifier associated with it, and
is only valid from within the virtual machine for which it was created. The TTLB
means that it is possible to switch virtual machines without needing to flush the
TLB, which can potentially give a huge speed improvement.

Newer AMD and Intel chips include a TTLB. In the AMD case, each TLB
entry has an Address Space ID (ASID) associated with it. The ASID is a 6-bit
value, giving 64 unique address spaces. Currently, Xen uses two: one for the
hypervisor and one for the guests. The TTLB eliminates the need for a full TLB
flush on entering and leaving the hypervisor, but still requires one when switching
between guests. Work is in progress to use an ASID for each VCPU, allowing up
to 63 VCPUs to be run on each CPU without a TLB flush. ASIDs are distributed
on a round robin basis. They can be recycled, and this considerably reduces the
number of TLB flushes required.

The Intel implementation provides similar results, but in a different way. Ad-
dresses are defined by a four-level page table. The first layer is identified by a
Virtual-Processor Identifier (VPID), similar to an ASID. This is an index into
the top layer of the page directory, and can’t be changed by the guest. The TLB
then simply stores the parts of the whole address that relate to the page and the
associated page.

As mentioned earlier, one of the biggest differences between booting in Xen
and on a native system is that Xen boots in protected mode, whereas the real
hardware starts in real mode. This is somewhat inconvenient for HVM, because it
means that unmodified HVM guests are going to expect 16-bit real-mode support.

All x86 chips since the 80386 have included support for a virtual 8086 mode.



13.3. HVM Device Support 239

This mode was not, however, intended to run real mode operating systems, just
real mode applications. As such, a lot of things are not emulated in hardware, and
simply trap to the host operating system. Switching to virtual 8086 mode permits
the real mode applications to coexist with protected mode ones. Unfortunately,
the relatively poor support for real mode instructions means that a lot of things
must be emulated when dealing with real mode code running in an HVM guest.

AMD’s HVM solution provides a virtual real mode, known as paged real mode.
This makes it much simpler to support real mode code, because it simply runs
natively in the paged real mode environment and causes the same sorts of traps
as protected mode code. Intel’s, however, does not provice these capabilities. The
tools/firmware/vmxassist part of the Xen tree contains a partial emulator that
handles the traps from virtual 8086 mode.

The VT-x assist code sets up a set of descriptor tables corresponding to the
real mode memory layout, then switches to virtual 8086 mode and jumps to the
BIOS entry point. The processor then executes 16-bit code, such as the guest
boot loader, in virtual 8086 mode. When an invalid instruction (that is, one that
is valid in real mode, but not present in virtual 8086 mode) occurs, the processor
issues a general protection fault and jumps into the handler set up by the assist
code. The handler then emulates the missing instruction.

13.3 HVM Device Support

In the simplest case, HVM guests simply receive a number of emulated devices. In
many situations, however, it is beneficial for them to receive pass-through access
to real devices. A simple example of this is video, where a single running guest
has access to the system’s video devices and can run 3D applications.

When virtualizing devices, there are two major things that need to be handled:

1. DMA safety

2. TRQ delivery

AMD’s SVM also provides a feature known as the Device Exclusion Vector
(DEV). The DEV is a block of memory used to determine whether a given device
is allowed to make DMA transfers into a given block of memory. If a guest is
given a piece of hardware, the hypervisor can set up the DEV so that the device
cannot be used to touch memory belonging to other domains. Although this
makes implementing driver domains safer, it still requires that the guest be aware
of virtualization.

To eliminate the requirement for virtualization-aware drivers, an Input/Output
Memory Management Unit (IOMMU) is needed. An IOMMU is similar to the
host processor’s MMU, but works from the device’s perspective. When a device



240 Chapter 13. HVM Support

initiates a DMA operation, it provides a virtual address, rather than a physical
one (although it may not be aware of this), and the IOMMU translates the address
into a physical address.

Both AMD and Intel have proposed interfaces for IOMMUs for x86 systems.
When an IOMMU exists, it is likely that device driver writers are going to want
to use it. At the coarsest granularity, an IOMMU can be used to prevent a device
controlled by one domain from interfering with another. At a finer granularity, it
could be used by the kernel to prevent a driver from writing to memory outside
that driver, or even by the driver itself to prevent the device from writing outside
the buffers assigned to it.

If the hypervisor is controlling the IOMMU, it will appear to the guest that
there isn’t one, which means that the fine-grained control is not possible. Work by
IBM shows that fine-grained use of an IOMMU can result in up to a 60% perfor-
mance hit (although this can be improved in some cases), so in a lot of situations
it is not unlikely that many users will choose to sacrifice this extra safety. If it
is required, the hypervisor needs to provide the guest with access to the IOMMU
indirectly. The AMD design is intended to be virtualizable using a shadow page
table approach. Updates to the IOMMU’s page tables by the guest are trapped
and pushed through to the IOMMU when possible. In the paravirtualized setting,
some of this overhead can be avoided by integrating IOMMU control with the
grant table mechanism.

Intel’s Virtualization Technology for devices (VT-d) goes one step further than
simply providing an IOMMU. It also includes a mechanism for interrupt remap-
ping. This works in tandem with VT-x, which makes the system aware of virtual
CPUs. By using VT-d in conjunction with VT-x, a device’s interrupts are assigned
to a virtual, rather than physical, CPU. Each interrupt is uniquely identified not
only by its interrupt number, but also by the originator ID (derived from the
PCI device ID). The originator ID and interrupt pair is then used to generate a
mapping to a virtual CPU number.

Interrupts delivered via the VT-d interrupt remapping mechanism are auto-
matically queued by the hardware, and only delivered when the target VCPU is
scheduled. Interrupt remapping is one of the features traditionally provided by
Xen. On systems without this capability, the hypervisor must catch all inter-
rupts that are not destined for the currently running guest and translate them
into events for later delivery. With VT-d, interrupts can be delivered directly to
guests without involving the hypervisor at all.

13.4 Hybrid Virtualization

The new approach being taken in the Linux kernel (for domU) is to adopt a form
of hybrid virtualization. The kernel boots in HVM mode, and then checks to see



13.4. Hybrid Virtualization 241

if it is running under Xen. If it is, it replaces several functions with those related
to Xen.

HVM has some advantages from the perspective of a guest. If you execute a
SYSENTER instruction from ring 3, you get a very fast transition to ring 0. In a
fully paravirtualized environment, the hypervisor lives in ring 0, and the kernel in
ring 1. This means that the fast system call mechanism does not work. Instead,
system calls are executed via an interrupt, which is slightly slower. When running
in HVM mode, the kernel runs in ring 0, and the hypervisor in a special mode, so
the fast system call mechanism works as expected.

Similarly, in HVM mode, a number of transitions to and from the hypervisor
can be avoided. A page fault is a good example of such a transition. Page faults are
relatively common on a virtual machine, because memory is typically constrained
more than on a real system. A page fault occurs in two situations:

e A guest attempts to access machine memory outside its allocated range.

e A guest attempts to access memory where the “present” bit is not set in the
page table entry.

The first case is rare. It should not happen at all; if it happened on a real
system, it would be caused by the system accessing memory the BIOS marked as
unavailable, or that doesn’t exist at all. In this case, something is seriously wrong.
The hypervisor may want to give the guest an opportunity to recover, but it is
likely that the guest is in an undefined state and so should be killed or debugged.

The second case is much more common, and is typically caused by an applica-
tion accessing memory that has been swapped out, was lazily allocated,? or simply
was not allocated to that application. In this situation, the kernel is completely
responsible for handling the page fault, by either loading or allocating the mem-
ory, or signaling the application. The hypervisor does not need to get involved.
In a paravirtualized environment, the hypervisor catches the page fault, and then
transitions back to the guest kernel to handle it. In HVM mode, the page fault
is delivered directly to the guest. This eliminates two context switches for every
page fault, and can make performance significantly faster.

The biggest disadvantage of running a guest in HVM mode is that not all hy-
percalls are available to HVM guests (although this situation improves with every
release). This means that some of the features that make paravirtualized guest
operating systems so fast may not be available to a guest running in an HVM
domain. For new guests being ported to Xen, incremental porting by starting
running as an HVM guest is probably the best approach, although new or exper-
imental kernels may want to start in PV mode and use Xen as a thin hardware
abstraction layer to ease development.

2Due to the larger cost of page faults, disabling lazy allocation in PV kernels may result in a
performance gain.



O © 00~ DU =~ W N ~

R
=W N =

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

242

Chapter 13. HVM Support

The first step when porting a guest to run as a Xen-aware HVM guest is to

detect whether you are running under Xen.

Listing 13.1 shows how the presence of the hypervisor can be detected from
a running guest. Because CPUID is an unprivileged instruction, this code can be
run from userspace, rather than requiring kernel modification, although it is going
to be more useful when integrated into a kernel. Note that when CPUID is called
with EAX set to zero, to retrieve the model ID, the string is returned in the next
three registers in the order abx, adx, acx, whereas the return string from the call

to detect Xen is stored in the order of the registers.

Listing 13.1:

ter13/isXen.c]

#include <stdio.h>
#include <sys/types.h>
#include <string .h>

typedef union

{

uint32_t r[3];
char string[12];

} cpuid_t;

#define CPUID(command, result) \

int

__asm __volatile (\
" CPUID"\
"=b” (result.r[0]), "=c” (cpu.r[l]), "=d” (cpu.
[2])\
"a” (command));

main (void)

cpuid_t cpu;
CPUID (0, cpu);

if (strncmp(cpu.string , "XenVWMMXenVMM”, 12) =— 0)
printf(”Running_as.a_Xen_HVM_.guest\n");

}

else
printf(”Running_on_native_hardware_or_a_.non—Xen.

hypervisor.\n");
}
return 0;

Detecting the presence of the Xen hypervisor ifrom: examples/chap-



136
137
138
139
140

141

142
143
144
145
146
147
148
149
150
151

152
153

13.4. Hybrid Virtualization 243

The CPUID instruction, like much of x86, has suffered somewhat from feature
creep. Originally, it was used to identify the model of the CPU, and the supported
features. Now it is used as a way of accessing some quite detailed information
about the CPU, including the layout of the cache and TLB. The instruction writes
a set of values to the first four general purpose registers, depending on the value
in EAX when it is issued.

Accessing the hypercall table from inside an HVM guest is quite simple. First,
the CPUID instruction is issued with a value of 0x40000002 in EAX. This returns
the number of pages required for the hypercall area (currently a single page, but
this could change in the future) and the number of a model-specific register (MSR)
in EAX and EBX, respectively.

The kernel then needs to allocate some space to store the hypercall range
and map the pages by writing to the MSR (using the WRMSR instruction) the
pseudo-physical addresses of the pages to contain the region, in order.

Listing 13.2 shows how Linux performs this mapping, when running as an
HVM guest. The kernel allocates pages pages in its own address space, making
sure to clear the “no execute” bit on the permissions (the pages are going to be
used as jump addresses, so being able to write to them is important). It then
finds the pseudo-physical frame numbers for the pages and maps them.

Listing 13.2: Mapping the hypercall page(s) by an HVM guest (rom: unmoai-

fied_drivers/linux-2.6 /platform-pci/platform-pci.c]

cpuid (0x40000002, &pages, &msr, &ecx, &edx);
printk (KERN_INFO " Hypercall_area.is_%u_pages.\n", pages);

/+x Use __vmalloc() because vmalloc_exec() is not an
exported symbol. x/
/+* PAGE_KERNEL_EXEC also is not exported, hence we use
PAGE_KERNEL . x/
/* hypercall_stubs = vmalloc_exec(pages * PAGE_SIZE); x/
hypercall_stubs = __vmalloc(pages * PAGE_SIZE,
GFP_KERNEL | __GFP_HIGHMEM,
__pgprot (--PAGE_KERNEL & ~_PAGE_NX));
if (hypercall_stubs = NULL)
return —ENOMEM;

for (i = 0; i < pages; i++) {
unsigned long pfn;
pfn = vmalloc_to_pfn ((char x)hypercall_stubs + ix
PAGE_SIZE) ;
wrmsrl(msr, ((u64)pfn << PAGE_SHIFT) + i);



244 Chapter 13. HVM Support

The hypercall macros all work by multiplying the hypercall number by a con-
stant and using the result as an offset within the hypercall page. If the hypercall
“page” grows larger than a single page, the pages must be mapped to a contiguous
region in the kernel’s address space (which is typically the pseudo-physical address
space) in order to work.

This layer of indirection allows the same interface to be used for hypercalls on
different platforms. On pure paravirtualized systems, hypercalls are issued using
an interrupt, just as system calls were on older x86 systems. Intel VT-x systems
use VMCALL, whereas AMD SVM systems use VMMCALL. The running guest
just needs to jump into the hypercall page and the correct mechanism will be
used.

After mapping the trampoline page, hypercalls can be issued as if the HVM
guest were paravirtualized. The hybrid-virtualized Linux kernel uses a subset of
the paravirt ops implementation for Xen. Paravirt ops is an abstract interface
from the Linux kernel to various hypervisors, where paravirtualized versions of
privileged operations are stored in a structure and invoked based on the detected
hypervisor.

13.5 Emulated BIOS

A typical x86 PC contains a BIOS, which provides basic input/output support,
and a VGA BIOS, which provides a simple interface to the graphics card. Because
these have both been around for quite some time, they are generally expected to
exist by an operating system. The BIOS provides basic text-console functionality,
so a VGA BIOS is only required for graphical user interfaces. It is not commonly
used these days, because it does not provide any hardware acceleration support.
Because it is almost always present, however, it does tend to be supported by
a fall-back, or emergency display driver, by most operating systems. Even in
normal use, it is commonly used to initialize the display, before switching to a
device-specific driver.

The BIOS code used by Xen originates with Bochs, an x86 full-system emula-
tor, whereas the VGA BIOS was created to be modular and plug into Bochs and
Plex 86, an open source attempt at virtualizing and later paravirtualizing x86.

The PC BIOS is fairly simple in comparison to more modern firmwares, but
is still nontrivial to emulate. It must support a fairly wide range of calls. When
a guest OS boots, it expects to be able to use the BIOS to communicate with the
keyboard, hard and floppy disks, system console, and so on.

The HVM BIOS is a replacement for the front end to the split device driver
model. The guest issues a BIOS interrupt requesting data be loaded from the
disk, and the “BIOS” then translates the call into a request to the block device.
The BIOS interrupt is caught by code taken from QEMU, which emulates the



13.6. Device Models and Legacy I/O Emulation 245

device’s functionality. As with the split driver model, the actual device 1/0 is
handled in the back end (in Domain 0). The only difference is that more effort
is required by the “back end” in the HVM case because it must translate from
some emulated-hardware specific interface into an abstract for and then back to
the concrete form used by the real hardware.

13.6 Device Models and Legacy 1/0 Emulation

For unmodified guests, there are two possible solutions to device support:

e Provide access to real devices to a specific domain. For example, a sound
card could be delegated to a Windows guest without affecting other Xen
guests.

e Emulate hardware for which existing drivers exist. This has to be a very
fine-grained emulation. The emulator must trap instructions which write
to the I/O registers, either using port or memory mapped I/O, and any
interrupts which would normally be handled by the BIOS.

Option one is fairly easy, but not very useful a lot of the time. It also generally
needs an IOMMU to work securely. An HVM guest sees memory in one way, and
a device without an IOMMU sees it in another way. When the guest specifies
a DMA transfer, the device reads from or writes to a completely different area
of memory to the one the guest expects. The DEV can be used to prevent this
from overwriting other domains, but it does not magically make the device behave
as the guest expects. An IOMMU can be used to set the same virtual memory
mappings for the devices as for the guest, allowing it to work as expected.

The other option, providing emulated devices, is typically easier. There are
two ways of doing this: The emulator can be run in Domain 0 and be mapped
into the I/O range, or the emulated devices can be run in an HVM stub domain
and communicate with Domain 0 via the normal split driver mechanism. The
first approach has the advantage that it is easy to implement, but it has a few
limitations. The first is that runtime for the emulated devices is accounted to
Domain 0, rather than the guest. The second is that it involves running more
code in a privileged domain, which gives more potential for security risks.

At the time of writing, Xen is in process of migrating from the first approach
to the second. HVM guests have the device emulators running in their own ad-
dress space, in a memory area reserved by the BIOS, and communicate with the
rest of the system as if they were normal split driver model front ends. This has
a significant advantage when it comes to porting guests, because it is possible to
move to paravirtualized drivers without the need to modify the domain. This can
even be done for closed-source operating systems; they can be booted with emu-
lated devices and then move to paravirtualized version after boot. This approach



246 Chapter 13. HVM Support

is quite common on a number of platforms; the OS boots using a lowest-common-
denominator set of drivers, then moves to better ones afterward. Several systems,
for example, boot using the BIOS or OpenFirmware to access the disk, then switch
to direct access drivers supporting higher-speed modes during the boot process.

The “native” device emulators can be found in the tools/ioemu part of the
tree.

13.7 Paravirtualized 1/0

O © 00~ UL &~ W N~

L e e
B W N =

On many full-virtualization systems, the biggest bottleneck is disk I/0O. An I/O-
intensive application can have the host machine spending 90% or more of its cycles
emulating the device, leaving only a small amount for actually doing the work.

The I/0 bottleneck is dramatically reduced by replacing the block device driver
for the emulated device with a front-end virtual block device driver. This is a
relatively simple procedure, after the hypercall page has been mapped. Most of
the device setup, however, depends on the XenStore, and so a XenStore driver
must be installed first.

The XenStore is usually set up using information in the start info page. On
HVM guests, however, there is no start info page, which presents something of a
bootstrapping problem. The solution is the HYPERVISOR_hvm_op hypercall, with
the HVYMOP _get_param command.

Listing 13.3 shows how the event channel and shared page number are deter-
mined. From here, the procedure for setting up the XenStore is exactly as it would
be for a paravirtualized guest. The same is true of other devices.

Listing 13.3: Setting up the XenStore for HVM guests

struct xen_hvm_param xhv;

xhv.domid = DOMID_SELF;

xhv.index = HVM_PARAM_STORE_EVTCHN;

if (HYPERVISOR_hvm_op(HVMOP _get_param, &xhv) < 0)

{
/* Handle error %/
}
xen_store_evtchn = xhv.value;

xhv.index = HVM_PARAM_STORE_PFN;
if (HYPERVISOR_hvm_op (HVMOP_get_param, &xhv) < 0)

/* Handle error %/
}

xen_store_mfn = xhv.value;

One other difference exists, typically below the PV driver layer. An HVM
guest does not register a callback for event delivery. Instead, there is a virtual



27
28
29
30
31

13.7. Paravirtualized I/O 247

PCI device provided that is used to communicate with the hypervisor. This device
raises an interrupt whenever an event is ready for delivery. The interrupt that
should be raised is defined by the guest.

Listing 13.4 shows how the platform PCI driver for Linux sets up this IRQ.
After the hypercall has been issued, events are delivered by raising the interrupt,
and can be de-multiplexed as before.

Listing 13.4: Setting up the event-delivery IRQ (rrom: unmodificd_drivers/linux-2.6/platform-
pei/platform-pei.h]

unsigned long alloc_xen_mmio (unsigned long len);
void platform_pci_-resume (void);

extern struct pci_dev xxen_platform_pdev;

32|#endif /x _XEN_PLATFORM_PCI_H x/

81
82
33
84

86

Masking events is done via the shared memory page. Again, this is accessed
slightly differently from an HVM guest. A PV guest has the shared info page in
its psuedo-physical address space at the start and simply needs to update its page
tables to include it. On HVM guests, the shared info page needs to be added to
the guest’s pseudo-physical address space. Listing 13.5 shows how Linux maps
the shared page.

Listing 13.5: Mapping the shared info page for HVM guests (rom: uwnmodi-
fied_drivers/linux-2.6 /platform-pci/platform-pci.c]

xatp .domid = DOMID_SELF;

xatp.idx = 0;

xatp.space = XENMAPSPACE shared_info;

xatp.gpfn = shared_info_frame;
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
BUG() ;

With the shared info page mapped, the XenStore driver working, and the event
handler configured, paravirtualized device drivers can be used on HVM guests. For
Linux, exactly the same source code is used for virtual device drivers in both pure
PV and PV-on-HVM kernels.



248 Chapter 13. HVM Support

13.8 HVM Supportin Xen

738
739
740
741
742
743
744
745
746
747
748

Support for different forms of hardware virtualization within Xen is done via an
abstract interface. The hvm_function_table structure contains a number of func-
tions for performing a number of hardware-assisted functions. A single instance
of this structure, hvm_funcs, is filled in by the hypervisor for the available features
during the boot process.

The first step in initializing this structure is to determine the kind of physical
CPU being used. The code in xen/arch/x86/cpu/common.c does this initializa-
tion for x86 chips. This code interrogates the running CPU and determines the
type, then calls the per-vendor initialization routines.

Currently, the only vendors supporting HVM extensions to the x86 instruction
set are Intel and AMD. Xen includes CPU-specific code for a number of other
manufacturers, including Cyrix (now VIA), Rise (now SiS), and Transmeta, but
these models do not provide any virtualization-specific features.

The last line in the init_.amd() and init_intel () functions, from the amd.c and
intel.c files in xen/arch/x86/cpu respectively, call start_svm () and start_vmx(),
respectively. These functions are defined in files under the xen/arch/x86/hvm
part of the tree, with a subdirectory for each form of HVM assistance.

These two functions have the same general structure. First, they detect the
presence of HVM support, and return early if it is not supported. If it is, they
fill in the hvm_funcs structure with CPU-specific functions, set the hvm_enabled
flag, and return. This flag is used later to determine if HVM is supported on the
current system.

One of the most obvious ways in which the two HVM implementations differ
is the way in which hypercalls are dispatched. Listings 13.6 and 13.7 show the
function used to set up the hypercall page for AMD and Intel HVM domains,
respectively.

Listing 13.6: AMD SVM hypercall page setup (irom: xen/arch/x86/hvm/svm/svm.c]
memset ( hypercall_page , 0, PAGE_SIZE);

for (i =0; i < (PAGESIZE / 32); i++ )
{
p = (char x)(hypercall_page + (i * 32));
x*(u8 x)(p + 0) = 0xb8; /x mov imm32, %eax */
«(u32 *x)(p + 1) = i;
x(u8 x)(p + 5) = 0x0f; /+« vmmcall */
x(u8 x)(p + 6) = 0x01;
*(u8 x)(p + 7) = 0xd9;
«(u8 x)(p + 8) = 0xc3; /* ret x/

The first thing to notice about these two listings is how similar they are. They
both iterate over the page writing a short sequence of instructions for each entry.



981
982
983
984
985
986
987
988
989
990
991
992

500
501
502
503
504
505
506

13.8. HVM Support in Xen 249

Listing 13.7: Intel VT-x hypercall page setup (from: xen/arch/x86/hvm/vmx/vmx.c]
memset ( hypercall_page , 0, PAGE_SIZE);

for (i = 0; i < (PAGESIZE / 32); i++ )
{
p = (char x)(hypercall_page + (i * 32));
«(u8 x)(p + 0) = 0xb8; /*x mov imm32, %eax x/
x(u32 x)(p + 1) = i;
x(u8 x)(p + 5) = 0x0f; /x vmcall x/
«(u8 x)(p + 6) = 0x01;
x(u8 x)(p + 7) = Oxcl;
*(u8 x)(p + 8) = 0xc3; /* ret x/

The first instruction moves the hypercall number to EAX. The 0xb8 value is the
opcode for the MOV instruction variant with the EAX register as the destination
and a 32-bit immediate value as the source. The next word is the hypercall value.
Skipping forward to the end of each entry, we get the 0xc3 value, indicating a RET
instruction, which returns to the call used to enter the page.

Between the MOV and RET, we get some CPU-specific code. On AMD CPUs,
the vmmcall instruction is used, whereas Intel CPUs use the vmcall instruction.
For reference, Listing 13.8 shows the equivalent code used when building a 32-bit
paravirtualized domain. Here, the transition is accomplished using the INT $0x82
instruction, which jumps to the hypervisor’s interrupt 82h handler.

Listing 13.8: Hypercall page for 32-bit paravirtualized guest ifom:

xen/arch/x86/x86_32/traps.c]

{
p = (char x)(hypercall_page + (i * 32));
x(u8 *)(p+ 0) = 0xb8; /x mov $<i> %eax x/
*(u32 x)(p+ 1) = i;
*(ul6 =)(p+ 5) = 0x82cd; /* int $0x82 x/
x(u8 x)(pt+ 7) = Oxc3; /x ret x/

}

Note that all of the hypercall mechanisms, so far, have been eight or nine
bytes. This means that almost three quarters of the space on the hypercall page
is “wasted.” Even the x86-64 implementation, which makes use of the syscall
instruction, is only 14 bytes long—Iless than half of the 32 bytes allowed. This
does not present much of a problem. Even with 32 bytes per entry, this allows



250 Chapter 13. HVM Support

Xen up to 128 hypercalls before a second page is required. The extra space allows
for future expansion. If in the future, a faster method of transitioning to the
hypervisor appears that requires more space, existing kernels can use it without
modification.

Most of the other functions in the HVM control structure relate to the op-
eration of the HVM domains. The store_cpu_guest_regs and load_cpu_guest_regs
functions are used to completely save the state of a CPU. These save and load the
state of the specified virtual CPU to the Virtual Machine Control Block (VMCB)
or Virtual Machine Control Structure (VMCS) on AMD and Intel machines, re-
spectively. For paravirtualized guests, Xen has to read each register in turn, and
store it in a data structure. This is not ideal, because some registers can’t be
accessed in this way. HVM-capable CPUs generally have a single instruction that
writes the entire CPU state to a pre-prepared area of memory. This region can
then be stored and loaded later after a machine has been suspended.

Some of the guest’s registers need to be accessed by other parts of Xen. These
must be returned by the function that saves the state of the CPU. Two arguments
are passed in, one for general registers and the other for control registers. If these
are not NULL, then the store function should populate them with some registers
that might be used externally (mainly the segment selector registers). The load
functions must do this in reverse—copy the values from the passed functions into
the control structure, from where they are then loaded en masse.

These functions both work on already extant VCPUs. For a paravirtualized
guest, a virtual CPU is an entirely abstract concept; it’s just a set of metadata
that the hypervisor keeps around that is used to present the illusion of a real CPU
to the guest. In an HVM environment, the VCPU is slightly more concrete; the
CPU is aware of the existence of multiple virtual CPUs.

Initializing and destroying virtual CPUs for paravirtualized guests just requires
creating the required structures within the hypervisor. For HVM guests, part of
this initialization process is defined by the host CPU. The difference is somewhat
analogous to the configuration of virtual memory on something like SPARC and
x86. In one case, the page tables are only used by the operating system to populate
the TLB. In the other, the hardware may read them directly without the operating
system’s intervention. The former case is similar to a pure PV guest’s VCPU—
the information is used to set the CPU state, but the CPU is not aware of the
existence of the VCPU—whereas the latter is closer to the case for HVM guests,
where the running CPU may directly access the VCPU’s information.

The distinction is even more important on HVM-aware CPUs that include a
tagged TLB (TTLB). In this case, contents of the TLB are not flushed between
VM switches, but the VCPU ID is updated in the processor and only the TLB
entries tagged with this ID are used when resolving virtual addresses. In this case,
the physical CPU must be directly aware of the VCPU that is running.

Although the HVM support functions are defined in their own part of the tree,



13.8. HVM Support in Xen 251

they are used in the standard architecture-specific code, which itself is called from
the platform independent part of the hypervisor. The domain. c file contains most
of the functions that are used for setting up and manipulating a domain, and so
is responsible for most calls to the HVM code.

When creating a new CPU, the vcpu_initialise () function is called. This,
in turn, calls the vcpu_initialise () function in the hvm_funcs structure for HVM
domains. The same delegation happens when destroying the VCPU or creating
and destroying a domain.

HVM and Non-x86 CPUs

The term HVM is only used by Xen in the context of x86 CPUs. Other plat-
forms supported by Xen may use the host platform’s virtualization instructions,
but they do not differentiate as strongly between hardware-assisted and soft-
ware virtualization. This is caused by two things. Firstly, the situation found
in the x86 world, where AMD and Intel both add incompatible extensions to
the base instruction set, is relatively uncommon, meaning that there is less of a
need for an abstraction layer to use chip-specific functions. The second reason
is that most other platforms are capable of performing full virtualization even
without extensions to the instructions set (although extensions may make it
more efficient), removing the need to strongly differentiate between HVM and
PV guests. When the Xen project began, HVM on x86 was not possible, so all
guests were PV. It became necessary to introduce a new term to differentiate
between the two categories.

At the time of writing, HVM technologies in x86 chips are still very young. The
only (widely deployed) CPU line that has had hypervisor support for a relatively
long time is IBM’s POWER line. The high-end POWER systems have had their
own hypervisor for some years, and are now supported by Xen.

The x86 HVM systems now allow unmodified systems to run, removing some
of the original problems with x86 virtualization. These extensions are not yet,
however, particularly fast. The current generation of HVM technologies from both
AMD and Intel can be used to run unmodified operating systems, but provide little
speed benefits. Existing pure-virtualization technologies, such as VMWare, have
shown that a lot of tasks can be performed faster using binary rewriting than
using the hardware assists.

Future generations of HVM-capable chips are expected to be significantly
faster, making HVM assistance of paravirtualized guests attractive.




This page intentionally left blank



Chapter 14

Future Directions

Xen is under constant development by the team at XenSource and a large num-
ber of external contributors. It has evolved from a Ph.D. project to a successful
commercial hypervisor supporting hardware assisted virtualization and paravir-
tualization on a number of platforms including x86, IA64, and PowerPC.

As a community-run open source project, the Xen project receives contribu-
tions from a large number of contributors—including research organizations and
vendors. XenSource hosts the code repository, and Ian Pratt is the project leader;
however, there are many submaintainers of different parts of the tree who take
responsibility for their particular areas of expertise. Intel manages the VT subtree
for example, and AMD manages the SVM code base. The project distinguishes
between hypervisor core extensions (maintained by Keir Fraser) drivers (various
maintainers), tools (Ewan Mellor) and the XenAPI, as well as the Linux kernel
patches (Red Hat) and the CIM provider stack (Novell). There are also separate
maintainers for each of TA64 (Alex Williamson HP) and PPC (Jimi Xenidis, IBM),
32-bit and 64-bit hypervisor support (Jan Beulich, Novell). The project leader ul-
timately reserves the right to admit any patches, but the shared maintainership
roles ensure that there is no possibility that any one organization could control
the code base.

14.1 Real to Virtual, and Back Again

One use for Xen is to run a legacy operating system “inside” a newer one. Al-
though Xen, in fact, runs underneath both, the illusion that one OS is running as
the guest of another is easy to maintain by exporting the user interface components
from one guest to another.

Legacy operating systems typically have a large number of custom configu-

253



254 Chapter 14. Future Directions

ration options set, and so reinstalling them in a virtualized environment is not
always possible. In these instances, it is highly beneficial to be able to move them
directly from their current location into a virtual domain. In some cases, it might
be useful to be able to dual boot the legacy operating system, and either run it in
native mode or in a virtual environment. A lot of work has been done with Xen
to allow this. Windows, for example, can be dual-booted with XenoLinux, and
either run natively or in an HVM guest. Because Xen does not currently support
3D acceleration of Windows guests, it can be used in a virtual environment for
most legacy applications and then run natively when 3D support is required.

This facility can be used in conjunction with HVM-assisted virtualization as
well, to allow an operating system to be installed as an HVM guest and then
have the kernel replaced with a paravirtualization-aware version. This allows an
operating system to be installed from original media without the need to reboot
the computer without Xen for the install process.

The biggest problem with this approach is that installers boot in real mode,
and often do some very messy things at the start. This is especially true of systems
that boot from CD. On AMD systems, which permit virtualization of real mode
guests, this is less of a problem; but on Intel systems, it requires emulation of
much of real mode. Currently, the emulation code in Xen is undergoing a lot of
work to make this process relatively painless.

14.2 Emulation and Virtualization

Virtualization can be seen as a special case of emulation, where the emulation
function for the majority of operations is the identity function. Because it is
already possible to migrate running machines from one Xen host to another, this
leads to the question of whether it is possible to migrate one to a full emulator
instead.

Conceptually, this is not difficult. During migration, the hypervisor is aware of
the entire virtual machine state—register and memory contents as well as device
states. This information can be used to set the emulator state and allow things
to continue.

Running a virtual machine in emulation provides much finer-grained control
over operations. An emulator can easily be run one instruction at a time, and in
some cases even run backward. Input and output are strictly controlled, and this
makes it an ideal platform for debugging.

Debugging is not limited to the software. If a virtual machine is experiencing
problems at a particular point, it is possible to compare the results of the emulator
to those of a real machine and see if there are discrepancies. Because it is often
easier to verify the implementation of an instruction, or set of instructions, in an
emulator than on a physical machine, this can be useful in debugging the hardware



14.3. Porting Efforts 255

as well. Of course, the bug may be in the emulator; again the capability to run
a machine from the same state on both real and emulated hardware can help
debugging here.

Beyond debugging, migration to emulated environments opens the door to
cross-platform migration of virtual machines. A virtual machine running on a
slow ARM chip in a mobile device could be migrated to a fast desktop or server
machine. Even allowing for the overhead of emulation, this is likely to give a speed
boost. If the guest kernel is aware of the migration, it can even take advantage
of it directly. Code running in abstract machines such as the JVM or .NET CLR
could have the JID cache invalidated and be recompiled from bytecode for the
new native platform.

Currently, virtual to emulated (V2E) and emulated to virtualized (E2V') migra-
tions using QEMU are still experimental. They are likely to become a significant
feature of Xen in the future, however.

14.3 Porting Efforts

Porting means two things in the context of Xen. It can refer to porting the
hypervisor to a new architecture, or porting other operating systems to run as
Xen guests. New platforms are constantly being added, with all of the major
CPU families now represented, either in the tree or by external porting efforts.

New operating systems are more interesting. Xen itself is more-or-less agnostic
with respect to guests. It specifies a number of functions and interfaces that a
Domain 0 guest must implement, but places very little constraint on unprivileged
guests. For much of its development, Linux has been treated as the “standard”
Domain 0 guest. This leads Xen to be regarded by many as a Linux virtualization
system. This is not the case, however. NetBSD and Solaris both support running
in Domain 0, and so there is no direct dependence on Linux.

Although Domain 0 can, in theory, be any operating system, in practice it is
much easier to port UNIX-like operating systems. The existing management tools
expect to communicate with the hypervisor via the /dev/xen* family of devices.
A system that runs Python (the language in which the management tools are
written) and exports devices as files is going to be easier than others to use as
Domain 0.

These limitations are not present for unprivileged domains, however. These
can do more-or-less anything that a native operating system can do. Writing
device drivers for Xen is much easier than writing them for real hardware for two
reasons. Firstly, only a single device driver needs to be written for each class of
device. There is no requirement to write IDE drivers, SCSI drivers, SATA drivers,
and so on, nor to support the various quirks of each individual controller. Instead,
a domU guest simply needs to implement the block device driver. The same is



256 Chapter 14. Future Directions

true of network interfaces. The second advantage is that the Xen devices are
fairly abstract in design. The interface mirrors more the high-level description of
how the device category should behave. This isolates developers from a lot of the
low-level details of device driver design. As such, Xen makes an ideal platform for
prototyping operating systems. Unlike emulated environments, the new system
can run at near-native speeds, and still has access to a large variety of devices
without the effort of directly supporting them all. By supporting protocols such
as X11 and XGL, the guest can gain access to 3D acceleration without the need
to support any 3D accelerators natively.

Xen recently had Plan 9 and Minix ported to it. Plan 9 is a research operating
system, and so benefits greatly from having an abstraction layer between it and the
hardware, allowing developers to concentrate on the novel aspects of the operating
system, rather than supporting the wide range of commodity hardware available.
Minix is primarily intended as a teaching tool, and can do this much better if
students can run it concurrently with their other operating systems. Porting
effort in this direction are likely to slow as HVM-compatible hardware becomes
more common, as this allows guests to run without being aware of the hypervisor.

In terms of hardware support, Xen currently regards x86, PowerPC, and 1A64
as stable platforms. PowerPC support is being added by IBM. Hypervisor support
has been present in the POWER/! series for quite some time. IBM, as discussed
at the start of the book, was responsible for some of the earliest pioneers work
in virtualization, and this has continued. High-end IBM hardware has included
virtualization-aware devices for some time, and can be partitioned at the firmware
level. Xen makes use of the same interfaces, but allows a finer-grained control over
virtual machines.

Perhaps the most interesting platform under development is the ARM9 archi-
tecture. The port, by Samsung and others, is the most similar to the “original”
Xen ideas because, unlike modern x86 and PowerPC chips, ARM9 has no native
support for virtualization. It is a simple two-ring design, and an ideal target for
paravirtualization. More importantly, ARM9 is an incredibly widely deployed ar-
chitecture. A large number of PDAs and mobile phones use CPUs of this family,
giving a lot of potentially interesting uses. Xen could be used for sand-boxing on
these devices, allowing untrusted software to run in an unprivileged VM without
affecting the rest of the system in the same way as Java, for example.

The current work on the ARM port makes use of a slightly different device
model to “classic” Xen. Devices are divided into two categories—shared and
exclusive—depending on how they are used. Things like mass storage devices
(mass being a relative term in the context of a mobile device) and networks are

IModern IBM POWER CPUs implement the PowerPC specification, with a few extensions,
as do those branded as PowerPC. The difference between the two is now largely branding;
POWER is aimed at high-end workstations and big iron, whereas PowerPC is aimed at cheaper
workstations down to embedded devices.



14.4. The Desktop 257

viewed as shared devices, whereas the display and input devices are exclusive.
Only one domain has access to the exclusive devices at any given time. A button
on the device is typically used to switch between these. This provides an interface
similar to virtual desktops to the user, although in this case each desktop is backed
by a complete virtual machine.

14.4 The Desktop

Although Xen currently provides a very robust environment for server virtualiza-
tion, support for the desktop leaves something to be desired. On the desktop,
the market is largely owned by Microsoft Windows, and a large proportion of the
potential market wants to run “Windows and something else,” with the emphasis
being on Windows. One of the biggest requirements for desktop virtualization is
that Windows be able to run 3D applications, particularly games. 3D support
is not particularly important on the server, but a modern desktop environment
offloads a significant amount to the GPU even before you start running 3D appli-
cations.

With the inclusion of an IOMMU, this becomes quite simple, because Windows
can run as an HVM guest and have the 3D card assigned to it. This is more difficult
without an IOMMU, and unfortunately most desktops (and laptops) currently do
not have one. One possible solution is to rearrange the memory layout so that a
single HVM guest is at the bottom and top of the physical address space, with
space reserved in the middle for the hypervisor and paravirtualized guests.

The disadvantage of this approach is that the HVM guest (Windows) can
violate the protection mechanisms via DMA instructions sent to the hardware.
This is unlikely to happen, because the emulated BIOS calls tell the guest that
the portion of address space used by the hypervisor and other guests is reserved,
and should not be used. It is possible, however, for a malicious program that has
compromised ring 0 in the guest, or a buggy display driver, to break isolation.
This is completely unacceptable in a server context, but it is not such a problem
for a desktop, because a compromise to the Windows guest here is likely to be
sufficiently serious that the additional loss from compromising the hypervisor is
comparatively less important. This is not the case if the hypervisor is being
used to sand-box potentially unsafe windows applications, or if the user stores
important information on a non-Windows guest. In situations where full isolation
is required, the user can disable the pass-through to the physical device from the
HVM domain, or invest in a new system with an IOMMU.

A full IOMMU is not required to provide isolation here. The device exclusion
vector on modern AMD chips provides protection, but not translation, for DMA,
and so can be used in this context. The pseudo-physical to machine mapping for
the HVM guest is simply the identity function, so no translation is required. The



258 Chapter 14. Future Directions

DEV can be used to prevent the HVM guest from using the device’s DMA con-
troller to overwrite areas outside its own address space. This also has performance
advantages, because the DEV is faster than a full IOMMU implementation. The
main limitation of this approach is that it restricts a single HVM guest to the
hardware access. In the desktop setting, this is likely to be acceptable; a user
could run Windows for games and legacy applications and *NIX for real work,
and switch between the two without needing a reboot. Alternatively, privileged
domains could be used for security tools inspecting the HVM guest and verifying
the absence of rootkits or other tampering.

The requirements for desktop virtualization are somewhat different from server
virtualization. On the server, it is fairly common for virtual machines to be
“owned” by different users. On the desktop, there is typically a single user, who
wants to run multiple operating systems. The use may be security—running
untrusted programs in a separate domain—or compatibility.

Because a single user is in charge, and physically present, that user is likely
to be much more involved in management of the system. A wuser is likely to
want to change the assignment of hardware to guests relatively frequently on a
desktop. Although a server generally has a very static configuration, desktops (and
laptops) often have external peripherals, such as scanners, mass storage devices,
or even additional displays, plugged in and detached during operation. Beyond
attachment, they might be delegated to different virtual machines at different
times. One fairly common use case is to use the hypervisor as a substitute for a
KVM switch and multiple physical machines. In this way, the keyboard, pointing
device, and video would be switched between different domains by providing some
kind of interrupt to the hypervisor.

The single-user nature of most desktops also impacts the scheduler design. A
single user is likely to have her attention focused on a single virtual machine at any
given time. This domain changes over time, and should receive a scheduling bonus,
because any slowdown will be noticed a lot more than performance degradation
of other domains.

The security aspect makes virtualization very attractive to the corporate desk-
top market. In a number of organizations, it is common to physically isolate the
corporate network from the Internet, with the exception of a tightly controlled
bridge for email. Dedicated Internet machines are provided for users needing ex-
ternal access. This drives up administration, power, space, and hardware costs.
Virtualization provides a potential solution, where a second network card is in-
stalled in the secure machine, and delegated to an “insecure” virtual machine.
This second network is then connected to the outside world. Even if the insecure
VM is compromised, it can’t leak information outside.



14.5. Power Management 259

14.5 Power Management

One of the biggest limitations of Xen, to date, has been the lack of good support
for power management. Supporting power management within Xen is relatively
complicated. The simplest form of power management is the halt instruction,
issued by an operating system when no process needs to run, which allows the
CPU to enter a low-power state until the next interrupt is delivered. Even this is
not available to Xen guests; they are not allowed to pause the entire CPU, because
other guests are likely to need it. An equivalent operation, a “yield” scheduler
operation, is provided instead. When all guests are idle, the hypervisor can then
issue a halt instruction.

Power management is useful for all systems, but is essential for two categories
of user:

e Mobile systems, such as laptops and PDAs
e High-density servers

These are two of the biggest consumers of virtualization. For mobile users, only
needing to carry around a single laptop is a huge benefit. Going even smaller,
virtualization provides the potential for much better security for devices such
as mobile phones, a possibility being investigated actively by Samsung. Mobile
devices are typically powered by batteries with a finite capacity, and so their
usable time is inversely proportional to the amount of power consumed while in
use.

For data centers, the situation is much worse. Last year, over 10% of the
power consumption of the state of California was due to data center usage, and this
equates to a significant proportion of the running costs. Virtualization is attractive
for these installations, because it reduces the number of physical systems that are
required, but this becomes less interesting if the individual systems consume more
power.

Modern systems provide a much greater amount of flexibility in the realm of
power management. CPUs from both AMD and Intel support frequency scaling.
When the CPU load is below 100%, it is possible to reduce the clock frequency of
the processor, resulting in much lower power consumption. Going beyond that, it
is possible to suspend the entire system to disk or RAM or to shut off individual
peripherals.

On x86 systems, most power saving functions are exposed via the Advanced
Configuration and Power Interface (ACPI), an open standard published in 1996.
ACPI is a mature standard, more than a decade old, and is very flexible. Unfor-
tunately, although it is widely implemented and deployed, the standard of most
implementations leaves something to be desired. Many vendors only test their im-
plementations with Windows (and then, often only with a single version of Win-
dows) and so miss a lot of bugs that cause problems for different ACPI drivers.



260 Chapter 14. Future Directions

Much of the code in the Linux power management subsystem is there to try to
work around these bugs in specific systems.

Adding ACPI support to the hypervisor causes a significant amount of code
bloat. The obvious solution is to cheat in the same way that Xen does for other
hardware support: delegate it to Domain 0. This is not trivial, however. Although
Linux does have reasonable ACPI support, most of the triggers for using it are not
applicable to Xen. Because virtual machines do not show up in the XenoLinux
process table, the Domain 0 system is likely to believe that the machine is idle
and put it into a low power state when another guest is busy.

To fully support power management, two things are required:

e A means for telling the Domain 0 guest to perform power saving actions

e A means for other guests to signal that power saving would not adversely
affect them

The first is relatively simple; an event channel could be allocated to this use
and set up by ACPI-aware Domain 0 guests when they boot. They could then be
notified to perform power saving actions.

The second is more tricky. There are a number of ways in which power saving
can affect a running guest. Frequency scaling is a problem already for some
systems. AMD machines automatically reduce their clock speed in response to
high temperatures, and this causes the TSC to advance at a slower rate. Because
the TSC is used by domains to find the current wall-clock time, this causes guest
clocks to get out of sync. To avoid this, the hypervisor must update the VCPU
timekeeping structures every time the clock speed changes.

Transitions between power saving states take longer the deeper the low power
state is. A pause-until-next-interrupt (C1 in ACPI terminology) state allows re-
turning to fully operational mode immediately. At the opposite extreme, a sus-
pend to disk mode can take several seconds to enter and return from. The hy-
pervisor can detect when a domain is idle, but it is much harder to detect when
a domain is going to suddenly de-idle. Entering a low power state just before a
domain needs to perform a large amount of processing is decidedly suboptimal.
A large amount of research is currently going on in this area outside the Xen
community, and hopefully some results will be applicable to Xen.

In keeping with the Xen philosophy, responsibility for determining the cor-
rect power state should be delegated to the running guests. A system should be
trusted to determine if entering a low power state would cause it problems. For
HVM guests, this can be done by providing an emulated ACPI implementation.
A guest can then set its suggested power state, and the hypervisor can use this to
implement a power saving policy—for example, ensuring that it is in the highest
power state requested by any guest, or a weighted average state. For paravirtual-
ized guests, new hypercalls need to be added, or a split device with the back end



14.6. The Domain 0 Question 261

in Domain 0, which handles the power management. The latter approach seems
more likely, because it keeps the hypervisor small.

Another concern when it comes to power management is akin to the scheduling
problem. Power, like disk, RAM, and CPU usage, can be seen as a finite resource.
In a mobile device, having a single domain able to flatten the battery would be a
problem. One common use for virtualization in the context of mobile devices is
security, and allowing a malicious program in a VM to flatten the battery, and thus
provide an effective denial of service attack, would reduce this use significantly.

It is possible that future implementations will need to treat power as just
another resource. The PowerTOP utility from Intel allows the power usage of
various processes on a Linux machine to be determined, and something similar
would be applicable to Xen. Each virtual machine could have a certain percentage
of the system’s power assigned to it, and have less runtime allotted to it as it
approached this threshold. Tracking power usage within Xen is much harder than
in Linux, however. CPU power is only a small part of the problem. When a
virtual machine writes to the disk, it communicates to the back-end driver, which
then performs the write. A naive approach would regard all of the power usage
from spinning the disk as the responsibility of the domain containing the back
end, and throttle it. This would slow performance of the entire system, without
actually addressing the problem.

It is worth noting that there are two potential ways of measuring power in this
context. For a mobile computing environment, it is energy, rather than power, that
is the finite resource. Each domain could be granted a certain number of Watt-
seconds, and be slowed and then stopped when it exceeds this. These allocations
would then be reset after the battery was charged, and ignored while on mains
power.

For fixed systems, there is no constraint on the total amount of energy avail-
able, but the power usage as a whole should be kept to a minimum. In a system
where virtual machines are owned by different individuals or organizations, one
user should not be allowed to use an unfair proportion of the power. In this case,
the power assignments would need to be continuous, rather than discrete.

Power management support in Xen is likely to see a lot of changes in the next
few years. XenEnterprise contains a full implementation of ACPI, which uses the
Windows ACPI HAL, but equivalent support is not available in the open source
version yet.

14.6 The Domain 0 Question

One of the biggest questions regarding the future of Xen is the place of Domain
0. A lot of functionality needs to be implemented by a guest wanting to exist
in Domain 0. Initially, this was beneficial to Xen, because it meant that a lot



262 Chapter 14. Future Directions

of code could be reused by Xen, without having to be directly imported into the
hypervisor.

There are two major limitations to this approach, however. The first is that,
as the responsibilities of Domain 0 grow, the difficulty of porting a new guest
to Domain 0 grows. This means that we start to lose some of the flexibility of
separating dom0 from the hypervisor; if it becomes too difficult to port other
guests to dom0, Xen starts to depend fully on Linux (currently NetBSD and
Solaris can also be run in Domain 0).

The other is that we start to lose out on security. A guest running in Domain 0
has a huge amount of access; it can map pages from other guests and poke around
in their memory relatively easily. A compromise to the Domain 0 guest is likely
to result in a compromise to the entire physical machine. This removes a lot of
the advantage of separating Domain 0 out from Xen.

Two solutions have been proposed to this. The first is to import the required
functionality from domO into Xen itself. This seems like a step backward, because
the first version of the hypervisor did include a lot of this functionality, and
eventually delegated it to Domain 0. This introduces some significant problems
with maintenance, because the code would have to be forked (probably from
Linux), and would need to be kept in sync with bug fixes from the source.

The second solution is to split the Domain 0 responsibilities. This is made
a lot easier by the new security policy work, which allows access to privileged
hypercalls to be restricted at a fine granularity. A lot of places in the Xen code
include segments like this:

if ( current—>domain—>domain_id != 0 )
return —EPERM;

If the caller of the hypercall is not Domain 0, they fail. These are all being
gradually replaced with hooks into the security framework, which allow a policy
to be loaded controlling which domains can access which hypercalls.

After this has been done, Xen begins to look more like a multiserver microker-
nel. The functionality of Domain 0 can be split roughly into two categories:

e Management, including creating and destroying virtual machines

e Hardware support, including providing the back-end drivers

The management component is currently quite dependent on Python. This is a
problem, because it means that the Domain 0 kernel must be complicated enough
to support Python, and that an extra 5MB of unaudited code (the Python run-
time) must be included in Domain 0. There is some experimental work underway
to reimplement these tools in OCaml, which can be compiled directly to native
code and run from a very small kernel that does nothing other than manage the
hypervisor.



14.7. Stub Domains 263

Drivers can already be partially isolated using driver domains. The vast ma-
jority of code in any modern kernel is device drivers, and eliminating these from
Domain 0 results in a much smaller amount of code to audit. For reliability, it is
possible to keep each driver in a separate domain. This also has the advantage
that different guests can be used to provide the drivers for different pieces of hard-
ware; you can have Linux and NetBSD providing drivers, and select the operating
system with the better support for each piece of hardware. If one crashes, it can
simply be restarted in some cases.

14.7 Stub Domains

The current implementation of HVM support involves running emulated drivers
in Domain 0. The most obvious problem with this is that it involves more code
running in Domain 0, where it could potentially cause security issues. The slightly
less obvious problem is that of scheduling.

Because the emulated devices are processes in Domain 0, their execution time
is accounted to Domain 0. An HVM guest performing a lot of I/O can cause
Domain 0 to use an inordinate amount of CPU time, preventing other guests from
getting their fair share of the CPU.

The proposed solution to this is to use stub domains. These are small domains
that run nothing other than the device emulators. Each HVM guest would have
its own stub domain, responsible for its I/O. Starting a new HVM domain would
involve creating two domains—the HVM domain itself and the stub domain—and
the pair would then communicate with Domain 0 in the same way as a paravir-
tualized guest.

Although conceptually this is simple, it makes scheduling slightly more tricky.
The current schedulers in Xen are based on the assumption that virtual machines
are, for the most part, independent. If domain 2 is underscheduled, this doesn’t
have a negative effect on domain 3. This is not always true in the current case.
Domains used to isolate servers in a producer-consumer relationship are one coun-
terexample, and underscheduling of Domain 0 can affect all domains. With HVM
and stub domain pairs, however, the situation is more pronounced. The HVM
guest is likely to be performance-limited by the amount of time allocated to the
stub domain. In cases where the stub domain is underscheduled, the HVM domain
sits around waiting for I/0.

There are two potential solutions to this. One is to implement a mechanism
similar to Doors, from the Spring operating system and later Solaris. Doors are
an IPC mechanism that allows a process to delegate the rest of its scheduling
quantum to another. If this mechanism were implemented for Xen, the HVM
domain could be configured so that it was never directly scheduled. The stub
domain would run whenever the pair needed to be scheduled. It would then



264 Chapter 14. Future Directions

perform pending I/O emulation and, instead of performing a “yield” scheduler
operation, it would perform a “delegate” operation on the HVM guest, which
would then run for the remainder of the quantum. This same mechanism could
be used for paravirtualized domains, to enable more accurate accounting of time
spent performing I/O by a driver domain (or Domain 0) on behalf of the guest.

Another solution, proposed by IBM, is to introduce scheduler domains, based
on work in the Nemesis Exokernel; these are similar conceptually to the N :
M threading model employed by some operating systems.? In this model, the
hypervisor is responsible for scheduling groups of virtual machines, rather than
individual ones. One domain would be defined as a scheduling domain. The
hypervisor’s scheduler would schedule this domain, and it would be responsible
for dividing time amongst the others in the group. In this way, the scheduler
domain fulfills the same role as the userspace component of an IV : M threading
library.

Whichever approach is taken, stub domains are likely to be a big part of future
versions of Xen.

14.8 New Devices

The current Xen release includes stable block and network devices, and newer
virtual framebuffer and TPM devices. The biggest change to these is going to be
the introduction of the new network device protocol (NetChannel2) described in
Chapter 9. This will allow Xen guests to take advantage of network interfaces
with hardware offloading capabilities better, and provide better performance for
all network-related activities.

Support for sound devices is a logical next step for Xen, because they are found
on most desktop and laptop systems and are still not supported. HVM guests can
use sound via an emulated device that integrates with the mixer device in Domain
0. A paravirtualized sound device is currently under development. This will allow
guests to read and write audio streams to an I/O ring and have them added to the
mixer in Domain 0. Sound devices are quite interesting from the perspective of
virtualization, because even relatively cheap ones have multiple hardware channels
supported. This gives the potential for a virtualization-aware driver to give access
to the ring buffers used by the hardware directly and only use “safe” mechanisms
for controlling. This approach could allow very low-jitter audio output.

Although not, technically, a device, the XenSocket work provides the poten-
tial for very fast interdomain communication. XenSocket uses a shared memory
transport between two domains to provide a faster means of connecting streams
between domains than the network interface. Because XenSocket is purely for

2Formerly Solaris and FreeBSD, now NetBSD.



14.9. Unusual Architectures 265

point-to-point connections between domains on the same machine, it can avoid all
of the overhead of the protocol stack.

Performance of the XenSocket is closer to that of a pipe, or UNIX domain
socket, than a network connection. This is likely to become more important,
as a number of protocols already exist for sharing access to devices over a net-
work and having a very fast and efficient network for interdomain communication
would make it possible to use these from userspace in a lot of cases, rather than
implementing a new device category at the kernel level.

Finally, better delegation of real hardware to guest domains is likely to become
a priority for Xen as it aims more for the desktop, as is better support for hot-
plugging. The latter is very important for external peripherals, which are likely
to be added and removed during a VM’s lifecycle, and may want to be assigned
to different domains on each insertion.

USB device support only works for guest domains by delegating the entire
(PCI) USB controller to the domain, or by using a USB-over-IP protocol via
the virtual network interface. This approach has a couple of problems. Linux is
currently the only operating system with USB-over-IP support, restricting delega-
tion of USB devices to systems with Linux in both Domain 0 and the unprivileged
guest. The other problem is that encapsulating the USB protocol in Ethernet or
IP involves an extra layer of overhead, at both encoding and decoding ends, that
could be eliminated with a lighter protocol.

14.9 Unusual Architectures

The main focus for Xen is one-to-four socket machines. A couple of years ago,
this meant one to four processors. Now, it generally means one to 16 cores, and
is likely to increase to 32 cores at the top end fairly soon.

The original target for virtualization was big iron, which may have had a signifi-
cantly larger number of processing units. These machines were used to consolidate
independent minicomputers, with virtualization presenting virtual minicomputers
to the users. Some people still want to use virtualization in this way.

With live migration and a storage area network, it is possible to run Xen on
a cluster and do dynamic load balancing between the different machines, giving a
similar effect. There is a class of machines, however, that fits somewhere between
a cluster and a scaled-up desktop. The large scale Non-Uniform Memory Architec-
ture (NUMA) machines sold by companies such as SGI fall into this group. Like
low-end machines, they have a single address space, and can migrate processes
between processors. Like clusters, the cost of accessing memory depends on the
location.

These machines typically use a 64-bit physical address space, with a portion
reserved for specifying which node owns the memory. This requires some extra



266 Chapter 14. Future Directions

work on the memory allocator for the hypervisor. Domains should be allocated
memory from the node on which they are running, in order to maintain the illusion
of a uniform memory space to the running guests, and to allow sensible TLB
interaction. Similarly, the scheduler needs to be aware of nodes, so that it doesn’t
attempt to run two VCPUs owned by a single domain on two different nodes.

The other big change comes from I/O device support. Although memory is
shared between nodes, I/O space is not. A driver domain must be pinned to a
single node, or it will suddenly find itself unable to access the hardware for which
it is responsible. Even for fully paravirtualized guests, there can be problems
caused by the fact that there some devices, such as the console, that exist on all
nodes. If a guest is accessing the console on one node and is moved to another,
problems are likely to arise.

This kind of issue is not likely to remain specific to big iron for very much
longer. The current AMD designs have a memory controller on each core. Access-
ing memory that is controlled directly by the local core is cheaper than accessing
memory owned by another one. The difference is much smaller than the difference
between memory and in local and remote machines in a large NUMA system such
as an Altix, but it does exist.

Current Intel chips also exhibit some of these properties, because the level two
cache is shared between cores on the same die, but not cores in different sockets.
This means that sharing memory between VCPUs scheduled on cores in the same
socket is going to be cheaper.

As this trend continues, it is likely that operating systems will begin to be
aware of the NUMA nature of their underlying platforms and take advantage of
it for performance. The hypervisor, if it wants to remain competitive, will need
to support these NUMA-aware guests as well as ones that prefer to pretend that
memory is uniform.

While large NUMA systems are relatively rare, they are still fairly similar to
existing configurations that are well supported by Xen. The biggest change that
is likely to alter this is heterogeneous multicore systems.

A modern PC can be seen as a heterogeneous multicore system already, because
it includes one or more general purpose processors and a dedicated parallel stream
processor in the form of the GPU. Typically, the GPU is controlled via a special-
purpose API, such as OpenGL or DirectX. This API is responsible for multiplexing
access to the device, typically with some input from the windowing system.

In the past, the trend has been a cycle between general and special purpose
hardware. Special purpose hardware has been popular for a little while, until the
general purpose CPU becomes “fast enough,” at which point it becomes cheaper
to just use the general purpose execution units. Examples of this include modems
and sound processors.

This cycle is likely to change somewhat, because power is becoming increas-
ingly important. Although it is cheaper to use the CPU for everything (because



14.10. The Big Picture 267

you need fewer processors), it is not more power-efficient to use general purpose
processors for everything. Although GPU functions are likely to be subsumed
by CPUs in the next few years, this will only happen by making the CPU more
GPU-like—adding stream-processing extensions to existing instruction sets. Both
AMD and Intel appear to be heading in this direction.

Beyond the GPU, other special purpose processors that are exposed to
userspace programs include cryptographic coprocessors. These are also typically
interacted with via a library, such as OpenSSL. As with GPUs, CPUs are begin-
ning to absorb some of these functions. Chips from manufacturers such as PA
Semi and VIA include cryptographic acceleration.

The best example of a heterogeneous multicore system at the moment is the
Cell processor. This includes a single PowerPC core, which could potentially
run the existing PowerPC Xen port when support for PowerPC systems without
hypervisor extensions is finished. The remaining seven or eight cores,® known as
Synergistic Processing Units (SPUs) are highly specialized vector processors with
their own local memory and DMA capabilities. Embedded processors are also
tending toward a heterogeneous model, with many containing a general purpose
ARM core and a number of specialized units, such as DSPs.

How these are to be exposed to guest domains is an open question. Highly
specialized execution units could be exposed as simple devices. More general ones
are likely to be exposed in a manner closer to current CPUs. Future versions
of Xen may need to associate an instruction set with each VCPU, and allow
guests to schedule tasks on VCPUs of different types, which are then scheduled on
heterogeneous cores. Scheduling for these would have to happen in a different way
to existing systems, because context switching is typically much more expensive,
resulting in a need for scheduler with different-sized quanta for different VCPU
types. Dependencies between components running on different processor types
further complicates scheduling.

This ties in with the work being performed by Samsung on partial relocation,
where only some of the VCPUs of a running guest are migrated. Potentially, this
could be extended to allow a VM to own VCPUs running on CPUs on machines
with different architectures. A guest that ran on an ARM system might bring up
an x86 or PowerPC VCPU on a different machine to handle a task involving a
number of floating point operations.

14.10 The Big Picture

The current hypervisor is close to the Xen vision of a thin abstraction layer for
virtual machines. The biggest change to the Xen landscape recently has come

3The Cell is designed with eight, but the mass-market version only uses four to enable chips
with flaws to be used.



268 Chapter 14. Future Directions

from HVM support in modern x86 hardware. This reduces the need for paravir-
tualization, to a degree, and is likely to be used to improve the performance of
even PV guests. The changes between versions 2 and 3 of Xen were much smaller
than the changes between versions 1 and 2. Version 2 moved a lot of functionality
from the hypervisor into Domain 0, whereas the biggest change moving to Xen
3 was the addition of the XenStore. Most other changes were only visible from
Domain 0, such as interrupt routing.

Future changes for Xen are likely to be incremental, for a while. Support for
more devices is an obvious improvement, both by adding new categories of virtual
device and better support for delegating physical devices to guests. The latter is
expected to improve dramatically as IOMMUSs become mainstream.

HVM support is still relatively young, and will continue to evolve as the hard-
ware develops and is better understood. The distinction between HVM and PV
guests is likely to blur from both directions. The domU XenoLinux prototypes
from Intel show how an HVM guest can move toward paravirtualization by booting
in HVM mode and gradually replacing its own code with hypervisor-aware ver-
sions. In the other direction, PV domains are likely to become hardware assisted
to a greater degree. Which approach a guest operating system favors is likely to be
defined by its age. A new operating system can use Xen as a hardware abstraction
layer better by using the PV interfaces and using the hardware acceleration if the
CPU and hypervisor support it. An existing operating system that already works
on x86 can take advantage of PV-on-HVM capabilities to gradually support Xen.

The hypervisor has had a lot of change in its schedulers over the last few
releases, with a scheduling algorithm generally not lasting longer than a major
release. The Credit Scheduler overcomes most of the limitations of earlier ap-
proaches, and is likely to see minor improvements to address new challenges, such
as NUMA systems and heterogeneous cores.

Domain 0 is likely to be reduced in importance, being replaced by individual
driver domains and a management domain. The management domain will either
be an existing Domain 0 operating system, or possible something new, designed
for Xen. The functionality of the management domain may even be split further,
giving a small cluster of domains with responsibility for different management
tasks.

This devolution from Domain 0 is made possible by the new security framework
being added to Xen. This also provides a means of restricting the activities of
unprivileged domains. The construction of policies that provide good security
without providing too much of a barrier to usability is likely to be a significant
research area within Xen in the near future.

A lot of effort has recently gone into the administration tools for Xen. One
of the biggest differences between Open Source Xen and the commercial offerings
from XenSource is the ease of administration. The hooks required for more ad-
vanced tools are gradually making their way into the Open Source code base, in



14.10. The Big Picture 269

the form of the Xen API. A number of tools are being built on top of these by the
community.

The typical software development cycle can be categorized as “make it work,
then make it fast.” Xen is coming to the end of a “make it work” phase, and is
likely to enter a period of stabilization and optimization for a little while. This
is not to say new features will not be added; they will, but the primary focus is
likely to be on filling in gaps rather than on major new additions. By virtue of
the approach used, Xen had a significant performance advantage over competing
virtualization systems from the start. The comparison now is not between Xen
and other hypervisors, but between Xen and native hardware. Any area in which
performance lags significantly behind native speeds needs addressing.



This page intentionally left blank



Part IV

Appendix



This page intentionally left blank



A1

Appendix

PV Guest Porting Cheat
Sheet

Porting an operating system to Xen is very similar to porting it to any other new
platform. If the system already runs on x86, the number of required changes is
relatively small compared to porting to a completely new architecture. At the
simplest level, you do not need to switch to a new compiler, because your current
one must already be able to generate x86 binaries. You also do not need to worry
about alignment or endian issues, because these are exactly the same for native
and paravirtualized x86.

Most of the changes are likely to be at the lowest level. If, like NetBSD, you
already have an abstraction layer for things like interrupts and memory manage-
ment, you only need to modify the abstraction layer to support running in an
unprivileged domain. The biggest change is likely to come from timekeeping. A
paravirtualized guest system has to understand that it is sharing the CPU, and
so CPU time and wall clock time are not necessarily interchangeable. This might
require some significant changes, because most operating systems that were not
designed to be run in virtualization are unlikely to already support this abstrac-
tion. This chapter will provide a quick recap of all of the changes that need to be
made when porting an operating system to Xen.

Domain Builder
The domain builder is responsible for configuring the initial layout of a new do-
main. If your boot process is similar to Linux—an ELF kernel binary in a flat,

paged, address space—you can likely use the Linux builder. If not, you may need
to write your own.

273



A.2

A3

274 Appendix. PV Guest Porting Cheat Sheet

Minix 3 is an example of an operating system that required a new domain
builder. Unlike Linux and modern BSDs, the Minix kernel binary is in a.out
format, not ELF. Plan 9 and Minix both run on Xen and use a.out format kernels,
so either of their domain builders could be used as a starting point when writing
one.

Another key difference is that Minix uses segmentation, rather than paging,
for memory protection. By default, Xen assumes that guest kernels want to have
a flat memory layout and use paging for memory protection. To facilitate this,
it installs a GDT, which provides entries for flat kernel and userspace address
spaces. If you use segmentation, you need to configure your own GDT, either in
the domain builder of at the start of the kernel boot process.

Adding a new domain builder involves modifying the Xen code. This is a
problem, because it means that you cannot boot your guest on unmodified Xen.
Although this may be an acceptable solution in some situations, such as for testing
or limited deployment, it is not ideal. A better solution is to create a boot loader
that can use an existing domain builder, and then bootstrap the kernel.

Boot Environment

After booting, a guest kernel may not call the BIOS. Instead, it needs to inspect
the start and shared info pages to get the amount of free memory and the available
processors.

One of the first things that needs to be written is a driver for the XenStore.
Only the console and XenStore devices can be constructed from information in
the start info page. The remainder need to be bootstrapped using the store.

The XenStore is a fairly simple device, which closely mirrors the console in
design. After a driver for one is written, adding a driver for the other is relatively
simple. A console driver allows some basic user interaction, and so it makes
development much easier, although later in the boot process something like the
virtual framebuffer device should replace it if more involved user interaction is
required.

Setting Up the Virtual IDT

Setting up the IDT is slightly different on Xen to native x86, because the way
interrupts are delivered depends on their type. Exceptions can be delivered to
a function specified by the interrupt vector as per usual. These handlers are
installed via the trap table hypercall. Setting these up is fairly simple, and mirrors
the installation of the IDT, although the structure of the trap table is slightly
different.



A4

Appendix. PV Guest Porting Cheat Sheet 275

Other interrupts caused by physical devices are less important when porting
to domU, but become more so when you begin to add Domain 0 support. Because
these can occur when the VM is not scheduled, and thus another guest’s IDT is
installed, they must be mapped to event channels. Installing the callback for event
delivery is one of the first things a guest must do on boot. After this, it should
individually mask all event channels and then enable event delivery. The channels
for the XenStore and console devices are likely to need to be unmasked shortly
after, and then others as the associated drivers are brought online.

If you intend to do preemptive multitasking, or offer any clock-based services,
you are likely to want to set up the clock virtual device as well. This raises a
virtual IRQ, which must be mapped to an event channel. The clock VIRQ is
raised periodically in domain virtual time, and so it is important for the kernel to
have a mechanism for differentiating between this and real (wall clock) time. A
new kernel, designed with virtualization in mind, is likely to have this abstraction
from the start, but a ported kernel is likely to be built on the assumption that
the two are the same and so some major modification might be needed.

Page Table Management

When porting a guest to Xen, it is a good idea to start by using writable page
tables. In this mode, only the page directory must be manipulated via hypercalls;
the rest of the page tables can be modified directly. This makes it much easier to
port operating systems that use paging.

After the new guest is working in this mode, it is likely that a performance
increase can be gained by moving to using fully paravirtualized memory manage-
ment. To begin with, you should stop directly manipulating the page tables and
use the MMU update family of hypercalls. These can be used even when page
tables are writable. This allows you to gradually replace parts of the memory
management code, and check that things still work. After these are all replaced,
you can turn off the writable page table assist, and hope you didn’t miss anything.
At this stage, attempting to write to the page tables causes a fault, which you can
catch and use to track down the offending code.

Because most modern processors don’t support segmentation, it is relatively
uncommon for an operating system to use it. Some, which are not intended
to be portable to non-x86 architectures, do; these need some additional work
in porting. As mentioned earlier, the boot loader or domain builder typically
needs to be modified to present an initial environment. The initial GDT for
such systems is usually created before the kernel starts. This is problematic,
because the bootloader that does this expects to start in real mode, and requires
extensive modification to start in protected mode. The LDT on such operating
systems can be installed as on native hardware, but the GDT must be installed



A5

A.6

276 Appendix. PV Guest Porting Cheat Sheet

using the HYPERVISOR set_gdt() hypercall. This takes two arguments, a list of
up to 14 page frames containing the GDT and a count of the number of entries
in the new GDT. The hypervisor validates these before installing them. Note
that a paravirtualized guest has fewer available GDT entries than a native kernel,
because the hypervisor uses some of these entries.

Drivers

At a minimum, it is likely that a newly ported guest needs to support the con-
sole, XenStore, and block devices. The first two of these have similar interfaces,
described in earlier chapters.

For debugging, the emergency console can be used. This is enabled for Do-
main 0 at all times, and for other domains if the hypervisor was built in verbose
mode (currently, this is set when it is built with make debug=y). The console is
connected to the first serial port in the system by default, but can be redirected
passing the console= argument to the hypervisor at boot time. Setting it to vga
will cause debugging output to be sent to the screen.

Because the debugging console is not usually available, and the standard con-
sole is, it is a good idea to switch as soon as you have mapped the page containing
the console ring device, and only return to it if you have memory errors that are
damaging this mapping.

The block and network interfaces have similar designs, and so are likely to be
added as a pair, as long as the kernel has a network stack. These devices use
the standard request-response ring mechanism in shared memory and an event
channel to notify the two ends of activity on the ring.

A guest may want to implement other device categories later, such as the
virtual TPM or framebuffer. These are likely to come much later in the boot
process, because on most systems they are not prerequisites for a successful boot.

Domain 0 Responsibilities

The existing Xen tools are all written in Python, and expect a UNIX-like envi-
ronment. This makes it very easy to allow other UNIX-like systems to run as
Domain 0, but much harder for other systems. If your platform already supports
Python, it is likely to be relatively easy to add Domain 0 support to an operating
system that already runs in domain U. If not, you also need to create your own
management interface, which is likely to be a lot of effort. The addition of the
Xen API makes this slightly easier, because a platform that has some mechanism
for providing an XML-RPC server could implement a xend replacement and run
xm remotely (or in a domU guest).



A.7

Tk W N =

Appendix. PV Guest Porting Cheat Sheet 277

Domain 0 is expected to provide the back ends for paravirtualized devices and
the XenStore, as well as perform system management tasks such as creating and
destroying domains. The minimalist design of the hypervisor adds a significant
burden to guests running in Domain 0. This is intentional, because it reduces the
code running in ring 0, but makes adding Domain 0 support a significant task.
It is recommended that an operating system be first ported to run as domain U,
and thoroughly tested in this setting, before Domain 0 support is considered. In
addition to simply hosting the back end devices, the Domain 0 guest is responsible
for handling all of the multiplexing of device I/O from multiple virtual devices
into a single physical one.

In future versions of Xen, it is likely that the responsibilities of Domain 0 will be
decomposed, allowing Domain 0 support to be added piecemeal. Driver domains
currently provide an example of this. A domain U kernel can be modified to run as
a driver domain, accessing hardware directly, but not providing any management
facilities. In the future, individual management functions are likely to be used
to split between multiple domains, for added security, and then a domain will be
able to start adding support for traditional Domain 0 features one at a time.

Efficiency

The main reason to use paravirtualization over full virtualization is performance.
If this is your goal, you should try to ensure that your kernel is as efficient as
possible. When writing userspace programs, it is often possible to get a speed
improvement by using things like readv and lio_listio instead of large numbers
of simple calls. This is because system calls are relatively expensive operations.
The same is true of hypercalls.

If you are updating the page tables, you can group a number of updates to-
gether and issue a single hypercall. Something similar can be done in the general
case. The HYPERVISOR _multicall hypercall can be used to issue a group of un-
related hypercalls. Using this means that the CPU performs the transition from
guest to hypervisor (ring 1 or 3 to 0) only once for the complete set of hypercalls.

Listing A.1: Multicall argument structure (irom: xen/include/public/xen.h]
*/
struct multicall_entry {
unsigned long op, result;
unsigned long args[6];

Listing A.1 shows the format for elements of the array pointed to by the
first argument to this hypercall. The second is the number of elements in the
array. The op field contains the hypercall number; the value that would go in



A.8

278 Appendix. PV Guest Porting Cheat Sheet

EAX for a single call. The arguments, likewise, are moved from abx and so on
to the corresponding fields in the structure. One thing to note is that the result
is stored in a separate field, rather than clobbering the hypercall number. It is
also important to remember that, unlike individual hypercalls, a guest can be
preempted in the middle of a multicall, and may need to manually restart it.

Summary

Porting an x86 kernel to Xen is a simpler task than porting it to something like
PowerPC, but it should still be viewed as a porting effort. Memory management
is different, as is hardware support. Even the equivalent of the boot firmware is
different to a native x86 host.

A lot of code can be reused. Building the page tables is almost the same on
Xen/x86 as it is on native x86, with the only difference being the way in that they
are installed (via a hypercall, rather than directly). A lot of the required changes
can be implemented as macros, allowing the Xen port to be compiled from the
same source files as the original.

Hardware support on Xen is very easy for domain U guests. Xen acts as a
hardware abstraction layer, so only one driver is required for each category of
device. This abstraction makes Xen an attractive target for operating systems
with limited developer resources, including new and experimental systems which
have never run on real hardware.



Index

3D support, 257
8086, 27

ACPI, see Advanced Configuration and
Power Interface

Adding new devices, 187

Address Space ID, 238

Administration tools, 200

Advanced Configuration and Power In-
terface, 259

Advertising devices, 187

AMD-V, 13

ASID, see Address Space 1D

Asynchronous notification, 119

Atropos scheduler, 219

Behavior sensitive instructions, 4
Binary rewriting, 10
BIOS, 47, 244
blkif, see Virtual block device
blkif front_ring_t, 163
blkif_request_segment, 165
blkif_request_t, 165
blkif_sring_t, 163
Block cache, 166
Block device, 36
connecting, 163
initializing, 162
loading data, 167
storing data, 165
supporting CDs, 177
XenStore nodes, 162

Boot firmware, 47

Boot trampoline, 40

Booting, 27

Borrowed virtual time scheduler, 219
Breakpoints, 10

C bindings, 200

Cache flushing, 92

Calling convention, 30

Calling convention, hypercall, 12
CD drives, 177

CIM, see Common Information Model
CIM-XML, 210

Common Information Model, 209
Compartmentalization, 7
Console, 49

Console device driver, 112
Console driver, 133

Console interrupt, 123

Context switch, 4

Control sensitive instructions, 4
Core devices, 161

CPU architectures, 256

CPU Virtualization, 4

CPUID in HVM mode, 236
Credit scheduler, 219, 222
Cryptographic coprocessors, 267

DEC Alpha, 4
Desktop Xen, 257
DEV, see Device Exclusion Vector
Device drivers, 99
block device, 161

279



280

Index

console, 112

framebuffer, 178

network interface, 169

PCI, 184

TPM, 183

USB, 186

XenStore, 150
Device Exclusion Vector, 14, 239
Device multiplexing, 100
Device scheduling, 224
Direct Memory Access, 6
Distributed Management Task Force,

209

DMA, 6

DMTF, see Distributed Management
Task Force

domO0, see Domain 0

Domain, 19

Domain 0, 19

Domain 0 devolution, 262

Domain builder, 273

Domain U, 19

Domain virtual time, 53

domctl hypercall, 228

domU, see Domain U, see unprivileged
domain

DOS, 9

Driver domains, 102

E2V, see Emulated to virtual
Earliest deadline first, 221
EDF, see Earliest deadline first
EFI, see Extended Firmware Interface
Emulated devices, 245
Emulated to virtual, 255
Emulation, 3
Event channel

bitfields, 51
Event channels

assigning to a VCPU, 127

binding, 125

closing, 129

masking, 130
polling, 133
querying status, 129
signalling, 128
Event ports, 33
Event trampoline, 134
Event types, 123
Event upcall, 137
event_channel_op hypercall, 124
Events, 111, 119
Extended Firmware Interface, 18

Firmware, boot, 47
Flush TLB, 92
Flushing cache, 92

GART, see Graphics Address Remap-
ping Table

GDT, see Global descriptor table

gettimeofday(), 54

Global descriptor table, 76

GMFN, see Guest machine frame num-
ber

gnttab_copy_t, 64

gnttab_map_grant_ref_t, 62

gnttab_transfer_t, 64

GPFN, see Guest page frame number

Grant reference, 35, 61

Grant table operations, 66

Grant tables, 34

grant_entry_t, 68

grant_table_op hypercall, 61

Graphics Address Remapping Table, 7

Guest loader, 39

Guest machine frame number, 79

Guest page frame number, 79

Handling events, 134
Hardware assisted
device pass-through, 239
DMA safety, 239
page tables, 238



Index

281

real mode, 239
virtual CPUs, 238
virtual interrupt routing, 240
Hardware page tables, 75
Hardware virtual machine, 22, 23, 29,
235
Heterogeneous multicore, 266
Hibernate, 260
HVM, see Hardware virtual machine,
see Hardware virtual machine
HVM hypercalls, 236
hvm_function_table, 248
hvm_op hypercall, 246
Hybrid virtualization, 14, 240
Hypcall calling convention, 12
Hypercall, 11, 30
Hypercall API, 197
Hypercall macro, 30
Hypercall page, 12, 30
Hypercall page setup, 248
Hypercalls
domctl, 228
event_channel op, 124
grant_table_op, 61
hvm_op, 246
memory-op, 84, 93
mmu-update, 89
mmuext_op, 91
multicall, 277
sched _op, 132
set_gdt, 93
update_va_mapping, 90
update_va_mapping_otherdomain,
90
vm_assist, 83
Hypercalls, HVM, 236, 243
Hypervisor-based copy, 64

I/0O rings, 65, 103, 164, 188

I/0O virtualization, 36

IDT, see Interrupt descriptor table
Infiniband, 175

Input/Output Memory Management
Unit, 6, 102, 239

Interdomain communication, 59

Interdomain events, 123

Interprocess communication, 34, 59

Interprocessor interrupts, 124

Interrupt 80h, 11, 120

Interrupt 82h, 30

Interrupt descriptor table, 94, 120

Interrupt handlers, 274

Interrupt vector, 28

Interrupts, 111, 119

Intradomain events, 124

Invalidate TLB entry, 92

IOMMU, see Input/Output Memory
Management Unit

IPC, see interprocess communication

IPIs, see Interprocessor interrupts

IVT, see Virtualization Technology for
x86

Jumbo frames, 173

Kernel header, 39
KQEMU, 236

Laptops, 259

LDT, see Local descriptor table
libcurl, 205

libvirt, 200

libxen, 201

libxml, 206

Local descriptor table, 76
Lockless ring buffer, 103

Mach ports, 33

Machine frame number, 79
Mapping memory, 61
Mapping the XenStore, 150
Masking events, 130
memory, 59

Memory assists, 82
Memory barriers, 107



282

Index

Memory Management Unit, 5, 75, 238
Memory model, 75
Memory model, Xen, 78
Memory pages

copying, 34, 64, 174

exchanging, 86

granting access, 66

mapping, 61

protecting, 77

sharing, 34

transferring, 34, 63, 174
Memory protection, 77
memory_op hypercall, 84, 93
Message passing, 34
MFN, see Machine frame number
Migration, 94
Minix, 256
mmap(), 60
MMU, see Memory Management Unit
mmu_update hypercall, 89
mmuext_op, 91
mmuext_op hypercall, 91
Mobile systems, 259
Model-specific register, 243
Mouse tracking, 181
MSR, see model-specific register
multicall hypercall, 277
multicall_entry, 277
MULTICS, 28
Multitasking, 7, 217

Native device drivers, 184
Nemesis Exokernel, 264
Nested Page Tables, 14, 238
NetBSD, 69
NetChannel2, 174
netif, see Virtual network interface
netif_extra_info, 172
netif_rx_response_t, 173
netif_tx_request_t, 171
Network device

initializing, 169

Network interface
receiving, 173
transmitting, 171
New devices, adding, 187
Non-Uniform Memory Architecture,
265
Nonlocal I/0, 266
NPT, see Nested Page Tables
NUMA, see Non-Uniform Memory Ar-
chitecture

Operating system support, 255

P2V, see Physical to virtual
Pacifica, 13

Page directory, 78

Page directory base register, 78
Page directory entry, 78

Page fault handling, 94

Page faults, 241

Page frame number, 79

Page table entry, 78

Page table management, 275
Page table updates, 89

Page tables, 78

Page tables, nested, 14

Page tables, shadow, 14, 82
Page tables, writable, 82
Paged real mode, 239
PALCode, 4

Paravirtual I/O on HVM, 246
Paravirtualization, 10

Partial relocation, 267

PCI devices, 184

PDAs, 259

PDE, see Page directory entry
Physical IRQs, 123

Physical to virtual, 253

Pin page table entry, 92

Plan 9, 256

Platform PCI device, 23
Popek and Goldberg, 4



Index

283

Porting to Xen, 273
Porting Xen, 255

Power management, 259
PowerTOP, 261

Privilege rings, 28
Privileged instructions, 4, 28
Privileged operation, 30
Protected memory, 78
Protected mode, 17

PTE, see Page table entry
Python bindings, 200
Python tools, 207

pyxen, 201

QEMU, 236
QEMU Accelerator, 236

RDP, 178, see Remote Display Protocol
Real mode, 17, 27

Realtime scheduling, 220

Remote attestation, 183

Remote Display Protocol, 182
Requesting events, 124

Resume, 94
Ring buffers, 36, 65, 103, 164, 188
ring.h, 65
Round robin scheduler, 219
S/360, 8
sched_op hypercall, 132
Scheduler
adding, 229

adding domains, 225
adding virtual CPUs, 225
API, 218

Atropos, 220

borrowed virtual time, 219
configuring, 228

credit scheduler, 222
defining, 224

hypercall interaction, 228
initialising CPUs, 225

interface, 218

realtime, 220

running, 225

Simple EDF, 221

SMP support, 225

stub domains, 263

work conserving, 221
scheduler, 218
Scheduler domains, 264
Scheduler operations, 132
Secure Virtual Machine, 237
SEDF, see Simple EDF scheduler
Segment registers, 76
Segmentation offload, 171
Segmented memory, 80
Sending events, 128
Sensitive instructions, 4
set_gdt hypercall, 93
Shadow page tables, 14, 82, 238
Shared info page, 95
Shared memory, 34, 59
Shared memory buffers, 103
shared_info_t, 51
shmget(), 60
Signals, 33
Simple EDF scheduler, 219
SimpleKernel, 157
Simplest kernel, 38
Single user virtualization, 258
Sleep, 260
Solarflare, 175
SPARC, 6
Split driver model, 35
Split drivers, 100
SPUs, see Synergistic Processing Units
Start info page, 47
start_info_t, 48
Strongly ordered CPU, 107
Stub domain scheduling, 263
Stub domains, 245, 263
Suspend, 94, 260
SVM, see Secure Virtual Machine



284

Index

SVPC WG, see System Virtualization,
Partitioning, and Clustering
Working Group

Synergistic Processing Units, 267

System call, 11, 30, 120

System Virtualization, Partitioning,
and  Clustering  Working
Group, 209

System /360, 8

Tagged translation lookaside buffer, 238

task_slice, 224

Threading models, 217

Time keeping, 53

Time-Stamp Counter, 53

Timer device, 123

Timer interrupt, 123

TLB, see translation lookaside buffer

TPM, see Trusted Platform Module

Transferring memory, 63

Translation lookaside buffer, 75, 90, 238

Trap table, 94, 120

trap_infoi_t, 121

Traps, 120

Trusted Platform Module, 177, 183

TSC, see Time-Stamp Counter

TTLB, see tagged translation lookaside
buffer

Unmodified guests, 235

Unprivileged domain, 22

update_va_mapping hypercall, 90

update_va_mapping_otherdomain
percall, 90

Updating the virtual framebuffer, 180

USB, 186

USB-over-1P, 187

Userspace network drivers, 175

Userspace tools, 200

hy-

V2E, see Virtual to emulated
V2P, see Virtual to physical

VCPU, see Virtual CPU
VGA BIOS, 244
VIRQ, see Virtual IRQs
Virtual 8086, 9
Virtual appliances, 8
Virtual block device, 161
Virtual CPU, 51, 119, 220
Virtual device bus, 109
Virtual devices, 99, 100
Virtual disk, 161
Virtual framebuffer
updating, 180
Virtual IRQs, 123
Virtual keyboard, 180
Virtual Machine Control Block, 250
Virtual Machine Control Structure, 250
Virtual machine lifecycle, 37
Virtual memory, 78
Virtual network interface, 169
Virtual pointing device, 180
Virtual servers, 7
Virtual sound devices, 264
Virtual time, 53
Virtual to emulated, 255
Virtual to Physical, 253
Virtual-Processor Identifier, 238
Virtualization
CPU, 4, 217, 220
full, 235
hardware-assisted, 235
hybrid, 240
1/0, 5, 36, 99, 224, 235, 239
RAM, 4, 78
Virtualization Technology for devices,
240
Virtualization Technology for x86, 237
Virtualization, hybrid, 14
VM/370, 8
vm_assist hypercall, 83
VMCB, see Virtual Machine Control
Block



Index

285

VMCS, see Virtual Machine Control
Structure

VMS, 28

VMWare, 10

VMX, 13

VNC, 178

VPID, 238

VT, see Virtualization Technology for
x86

VT-d, see Virtualization Technology for
devices

VT-x, see Virtualization Technology for
x86

Wall clock time, 53

Weakly ordered CPU, 108
Windows guests, 235

Work conserving schedulers, 221
Writable page tables, 82
WS-Management, 210

X11, 178

x86 memory model, 75

x86 page directory, 78

x86 privilege rings, 28

x86 segmentation, 80

Xen API
C bindings, 203
console, 203
host, 201
host CPU, 202
metrics, 202
physical block device, 202
physical network interface, 202
session, 201
virtual block device, 203
virtual machine, 202
virtual network interface, 203
virtual TPM, 203

Xen API, 197

Xen API classes, 201

Xen deemon, 197, 206

Xen device drivers, 100
Xen driver model, 35
Xen event model, 33
Xen interface hierarchy, 200
Xen maintainers, 253
Xen management API, 197
Xen master, 208
Xen master (command line tool), 197
Xen memory layout, 80
Xen memory model, 78
Xen networking, 169
Xen security, 262
xen_domctl_scheduler_op, 228
xen_machphys_mapping_t, 87
xen_machphys_mfn_list_t, 86
xen_memory_exchange_t, 86
xen_memory._reservation_t, 84
xen_pci-op, 185
xen_pci_sharedinfo, 184
xen_translate_gpfn_list_t, 88
XenBus, 109, 142, 163
xenbus_device, 109
xencons_interface, 113
xenfb, see Virtual framebuffer
xenfb_page, 178
xenfb_update, 180
xenkbd _key, 181
xenkbd_page, 181
xenkbd_position, 183
XenSocket, 264
XenStore, 36, 187
device structure, 145
mapping, 150
message structure, 146
message types, 147
reading a response, 153
userspace tools, 148
writing a message, 152
XenStore device, 145
XenStore hierarchy, 142
XenStore interface, 141
xenstore_domain_interface, 145



286 Index

xm, see Xen master
XML-RPC, 198

XML-RPC Data Types, 198
xsd_sockmsg, 146, 151

z/VM, 8



	The Definitive Guide to the Xen Hypervisor
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	I: The Xen Virtual Machine
	1 The State of Virtualization
	1.1 What Is Virtualization?
	1.2 Why Virtualize?
	1.3 The First Virtual Machine
	1.4 The Problem of x86
	1.5 Some Solutions
	1.6 The Xen Philosophy
	1.7 The Xen Architecture

	2 Exploring the Xen Virtual Architecture
	2.1 Booting as a Paravirtualized Guest
	2.2 Restricting Operations with Privilege Rings
	2.3 Replacing Privileged Instructions with Hypercalls
	2.4 Exploring the Xen Event Model
	2.5 Communicating with Shared Memory
	2.6 Split Device Driver Model
	2.7 The VM Lifecycle
	2.8 Exercise: The Simplest Xen Kernel

	3 Understanding Shared Info Pages
	3.1 Retrieving Boot Time Info
	3.2 The Shared Info Page
	3.3 Time Keeping in Xen
	3.4 Exercise: Implementing gettimeofday()

	4 Using Grant Tables
	4.1 Sharing Memory
	4.2 Device I/O Rings
	4.3 Granting and Revoking Permissions
	4.4 Exercise: Mapping a Granted Page
	4.5 Exercise: Sharing Memory between VMs

	5 Understanding Xen Memory Management
	5.1 Managing Memory with x86
	5.2 Pseudo-Physical Memory Model
	5.3 Segmenting on 32-bit x86
	5.4 Using Xen Memory Assists
	5.5 Controlling Memory Usage with the Balloon Driver
	5.6 Other Memory Operations
	5.7 Updating the Page Tables
	5.8 Exercise: Mapping the Shared Info Page


	II: Device I/O
	6 Understanding Device Drivers
	6.1 The Split Driver Model
	6.2 Moving Drivers out of Domain 0
	6.3 Understanding Shared Memory Ring Buffers
	6.4 Connecting Devices with XenBus
	6.5 Handling Notifications from Events
	6.6 Configuring via the XenStore
	6.7 Exercise: The Console Device

	7 Using Event Channels
	7.1 Events and Interrupts
	7.2 Handling Traps
	7.3 Event Types
	7.4 Requesting Events
	7.5 Binding an Event Channel to a VCPU
	7.6 Operations on Bound Channels
	7.7 Getting a Channel’s Status
	7.8 Masking Events
	7.9 Events and Scheduling
	7.10 Exercise: A Full Console Driver

	8 Looking through the XenStore
	8.1 The XenStore Interface
	8.2 Navigating the XenStore
	8.3 The XenStore Device
	8.4 Reading and Writing a Key
	8.5 Other Operations

	9 Supporting the Core Devices
	9.1 The Virtual Block Device Driver
	9.2 Using Xen Networking

	10 Other Xen Devices
	10.1 CD Support
	10.2 Virtual Frame Buffer
	10.3 The TPM Driver
	10.4 Native Hardware
	10.5 Adding a New Device Type


	III: Xen Internals
	11 The Xen API
	11.1 XML-RPC
	11.2 Exploring the Xen Interface Hierarchy
	11.3 The Xen API Classes
	11.4 The Function of Xend
	11.5 Xm Command Line
	11.6 Xen CIM Providers
	11.7 Exercise: Enumerating Running VMs
	11.8 Summary

	12 Virtual Machine Scheduling
	12.1 Overview of the Scheduler Interface
	12.2 Historical Schedulers
	12.3 Using the Scheduler API
	12.4 Exercise: Adding a New Scheduler
	12.5 Summary

	13 HVM Support
	13.1 Running Unmodified Operating Systems
	13.2 Intel VT-x and AMD SVM
	13.3 HVM Device Support
	13.4 Hybrid Virtualization
	13.5 Emulated BIOS
	13.6 Device Models and Legacy I/O Emulation
	13.7 Paravirtualized I/O
	13.8 HVM Support in Xen

	14 Future Directions
	14.1 Real to Virtual, and Back Again
	14.2 Emulation and Virtualization
	14.3 Porting Efforts
	14.4 The Desktop
	14.5 Power Management
	14.6 The Domain 0 Question
	14.7 Stub Domains
	14.8 New Devices
	14.9 Unusual Architectures
	14.10 The Big Picture


	IV: Appendix
	PV Guest Porting Cheat Sheet
	A.1 Domain Builder
	A.2 Boot Environment
	A.3 Setting Up the Virtual IDT
	A.4 Page Table Management
	A.5 Drivers
	A.6 Domain 0 Responsibilities
	A.7 Efficiency
	A.8 Summary


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z





