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Preface

Reverse Engineering (RE) is an art of understanding any program

code when no source code is available. This book provides step-

by-step explanation of the essential concepts and practical

examples to understand and implement Reverse Engineering. It will

enable the readers to understand the application code flow to

identify vulnerabilities and bugs in the application.

This book is for the readers who want to start learning Reverse

Engineering from basics in a step-by-step manner. The book is

divided into three parts:

Exploring Reverse Engineering

Reverse Engineering Applications

Real World Examples with Solutions

The first part Exploring Reverse Engineering starts with the basic

concepts of Computing System and Data Building Blocks of the

Computing System. This part also enlists open-source tools

required for RE applications and the programming instructions of

RE. The second part Reverse Engineering Applications walks us

through the different applications/programs to understand the

implementation of RE. This part covers various practicals, which

give the users a hands-on experience. All the

applications/programs mentioned in this part are aligned in a



systematic manner; from reverse engineering of basic C/C++

programs to complex C/C++ programs. In the third part Real

World Examples and Solutions of this book, RE of well-known

Windows application along with different exercises are

demonstrated in a step-by-step manner. Over the 18 chapters in

this book, you will learn the following:

PART 1: Exploring Reverse Engineering

In this part, the readers will understand the impact of RE on

industry, building blocks of x86 computing system and the role of

each in the overall functioning of x86 system.

Chapter 1 talks about the impact of RE on IT industry and how it

originated as an area.

Chapter 2 talks about the building blocks of a computing system

and the role of each building block in the overall functioning of

the system. This chapter is important in order to understand the

core concept behind the working of x86 computing systems.

Chapter 3 focuses on the open-source tools used in RE and how

these tools are used for debugging and analysis. These tools will

be used in all illustrations shown in this book.

Chapter 4 explains about the major assembly instructions used

and also about how different instructions are segmented in

various sections for easy understanding along with examples.



Chapter 5 helps us understand the different calling conventions

along with practical illustrations.

PART 2: Reverse Engineering Applications

This is where the strategic way of learning RE

applications/programs is explained with different illustrations. Every

case is the outcome of research explained in a very simplified and

step-by-step manner.

Chapter 6 gives a step-by-step understanding of the assembly code

generated from basic C/C++ program.

Chapter 7 provides a step-by-step understanding of the assembly

code generated from printf() function in C/C++ program.

Chapter 8 gives a step-by-step understanding of the assembly code

generated from pointers in C/C++ program.

Chapter 9 provides a step-by-step understanding of the assembly

code generated from decision control structure in C/C++ program.

Chapter 10 gives a step-by-step understanding of the assembly

code generated from loop control structure in C/C++ program.

PART 3: Real World Examples and Solutions



In this part, understanding of whatever learned in the previous

chapters is explained with real world exercises with solutions and

also reversing of Windows well-known application is demonstrated.

Chapter 11 covers RE exercise of an array code along with the

solution used in the RE process.

Chapter 12 covers RE exercise of a structure code along with the

solution used in the RE process.

Chapter 13 explains RE exercise of a Scanf program along with the

solution used in the RE process.

Chapter 14 explains RE exercise of a strcpy program along with

the solution used in the RE process.

Chapter 15 covers RE exercise of a simple interest code along with

the solution used in the RE process.

Chapter 16 explains RE exercise of breaking Wannacry ransomware

with Ghidra.

Chapter 17 covers RE exercise using Cutter tool.

Chapter 18 demonstrates the process of RE of Windows Calculator

in a step-by-step manner.



This book is to educate the learners on the topic of Reverse

Engineering on x86 platform. This will be a good book for

beginners and computer graduates in the area of RE. Professionals

who want to switch their career to RE can also use this book.

Other readers can be from schools, universities or those who are

passionate to get into the area of cyber security.
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CHAPTER 1

Impact of Reverse Engineering

Before we start on the implementation of reverse engineering, it

will be interesting to understand what reverse engineering really is,

how it came into existence, and how it is beneficial in the

modern era. Reverse engineering, as the name suggests, is a

combination of two words: Reverse and Engineering. Engineering

is the science of designing and building something beneficial for

the human race. Engineering has provided us with both

advantages and disadvantages. Engineering equipped us with the

knowledge and means to build essential things for the human

race, including roads, buildings, bridges, cars, airplanes, software,

and more. However, gradually, we also started using engineering

to produce weapons of mass destruction like missiles, malware,

and other deadly products harmful for humans and nature itself.

When anything is engineered, it goes through many phases of

design, development, and testing. With reverse engineering, things

have really changed.

The concept behind reverse engineering is to break something to

understand its internal architecture to build a copy or for the

purpose of improvement or modification. In this chapter, we will

talk about some real-life examples to understand the importance

of reverse engineering and how it is changing the way the

software industry works.



Structure

In this chapter, we will cover the following topics:

Introduction to Reverse Engineering

Importance of Reverse Engineering

The Role of Reverse Engineering



Objective

After studying this chapter, you should be able to understand the

importance of reverse engineering and its impact on the software

industry. We will also talk about the opportunities associated with

reverse engineering and how malware writers are using it to

exploit the software systems of big companies.



Introduction to Reverse Engineering

In software terms, Reverse Engineering is the art of understanding

any program code when no source code is available. All of this

started in the late 1980s when the Disk Operating System was in

use. Most of us were not born at that time or might be in our

childhood time. During that time, people used to play DOS-based

video games. Most of the games were player-based video games,

where the game player had a lifeline and is equipped with the

weapons. This is where some group of computer geeks followed

reverse engineering techniques to increase the lifeline of the game

player and change the number of weapons a player could use.

This was done by simply modifying the values at the memory

location where the lifeline and the number of weapons of a player

were stored. This might sound like cheating, but in reality, it was

a way to breach the security of the video game.

To understand the importance of reverse engineering in the

present times, we will take an example. Imagine that three people

named Jitender, Shilpi, and Atul are working for a research and

development organization, the International Institute of Cyber

Security, having offices in India, Mexico, and the US. These three

employees are working from three different geographical locations.



Figure 1.1: An example of reverse engineering

They are all working on some research and development project

and so they share their research findings over the internet. They

use some secure software to share the data among themselves.

As the data is very critical for the organization, the security of the

software used to share this data should also be very secure. Now,

this software can be open-source software or closed-source

software. If the software they are using is open-source, then they

can check the security of the software using code review. But

what if the software is closed-source? They will not have an

access to the source code of the software.

In this case, reverse engineering plays a big role in checking the

security of closed-source software. With the help of reverse

engineering, software security can be evaluated even if you do not



have the source code available. It will also help in finding

vulnerabilities in the software or application if any.

The process of reverse engineering was initially applied to

computer applications and hardware but now, reverse engineering

is applied everywhere, from software and machinery to even

human DNA. Reverse engineering is important especially when you

have closed-source software or software with malicious content.

Let us study another famous example of reverse engineering. A

company named Phoenix Technologies, based out in San Jose,

wanted to develop a BIOS compatible with IBM PCs. Rather than

developing a self-designed BIOS, they took the IBM proprietary

BIOS, reverse engineered it using the "clean room" or "Chinese

wall" approach. Under this approach, they took two teams of

engineers. The first team reverse engineered the IBM proprietary

BIOS to recreate the design of the IBM proprietary BIOS.

Everything was documented by the first team of engineers for the

second team to work on. Once this design was recreated, the

second team followed the documentation of the design

specifications along with the functional requirements created by

the first team to code the BIOS compatible with IBM PCs. The

second team was totally ignorant about the reverse engineering

work of the first team. The final product developed by Phoenix

Technologies was sold to other PC manufacturers. The product

developed by Phoenix Technologies was operationally identical but

with no copyright infringement.



Moreover, other companies like Advanced Micro Devices also

reverse engineered Intel corporation microprocessors to make less

expensive chips. Reverse engineering is not only used for unethical

purposes but also ethical purposes. One among them is malware

analysis. As malware’s are closed-source binaries, reverse

engineering helps malware researchers decode malware

functionality to break them.

To understand the real importance of reverse engineering, let’s talk

about a famous ransomware known as Wannacry ransomware.

Ransomwares are the kind of malwares that, when installed in a

victim’s computer, encrypts the victim’s files and demands a

ransom to decrypt those files. If the victim does not pay the

ransom within time, the victim’s computer data may be deleted or

the data may be left encrypted forever or there are chances that

this data might be sold in the black market. Wannacry targeted

Windows users by encrypting their data and then demanded a

ransom to decrypt the data. To escape the law enforcement

agencies, the ransom demanded in Bitcoin cryptocurrency. Bitcoin

is a digital currency that is also known as cryptocurrency. It allows

people to send and receive money on the internet without having

to disclose the real identity of the sender or the receiver. With the

efforts of a reverse engineer, Wannacry ransomware was made

ineffective. We will study this in detail in Chapter 16, Breaking

Wannacry Ransomware With Reverse



Importance of Reverse Engineering



Studying an existing design

Before designing anything, it is always a good approach to study

the existing products available in the market. A good

understanding of what a product does and how it works is

important for new insights, but identifying where it can be

improved can lead to several advantages.



Redeveloping an outdated or lost product

Every product in the market today is the outcome of hard work in

terms of time and money. Imagine a situation where a company’s

product is in great demand in the market, but due to some

unforeseen situation, the product is not getting any upgrades with

time. This can be due to some internal reasons or the company

that developed the product is no more in the market. With

reverse engineering, such outdated products can be studied to

recreate updated products.



Security auditing

Reverse engineering sometimes is a part of the security audit

done for organizations. This is to check the security of software

and the applications used within these organizations. It helps in

finding unknown vulnerabilities running inside the organizations.



Finding sensitive data

Sensitive data encoded or encrypted in the software code can be

extracted with the help of reverse engineering. This is done to

validate the security posture of the software.



Military espionage

This is done to learn the strength of the opponent or enemy by

capturing the high-level prototype of devices obtained by troops in

the field and dismantling it to develop something new.



Finding product vulnerabilities

For the well-being and safety of the customers using a given

product, reverse engineering is used to find defects or

vulnerabilities in such a product. Every organization spends a

substantial amount of time and money on efforts to find bugs or

vulnerabilities in their products. But as it is well known, "nothing

is secure". During the design, development, and testing, some

bugs don’t get caught. This is where reverse engineering plays a

vital role in aiding security researchers to uncover the issues that

couldn’t be detected earlier.



Bounty for cyber enthusiasts

Earlier, product-based companies had an internal quality assurance

team for security testing as well as functional testing for their

products. But with time, everything changes. Cybersecurity

requirements in the market changed drastically with an increase in

cybersecurity attacks. Companies started offering security

researchers a bounty to find vulnerabilities in their products. This

helped both the security researchers in terms of money and the

product companies in fixing uncaught bugs.



The Role of Reverse Engineering

Computer programs written in C/C++ are human-readable. When

these programs are compiled using a compiler, an object file is

created which is further passed through a linker to get a binary

file or an executable file or, we can say, the ones and zeros of

the machine language.

Figure 1.2: The role of reverse engineering

The ones and zeros are not human-readable. To convert the

machine code back to a human-readable format, a tool called the

decompiler is used. The role of a decompiler is to convert binary



code into a human readable format and regenerate the code out

of it. We will talk about such tools in Chapter 3, Up and Running

with Reverse Engineering Tools



Conclusion

In this chapter, we learned how reverse engineering all began and

how it is playing a big role in today’s era. We also studied the

importance of reverse engineering and its impact on the software

industry. We discussed opportunities associated with reverse

engineering and how malware writers are using it to exploit the

software of big companies. In the next chapter, we will study the

internals of a computing system in terms of reverse engineering.



CHAPTER 2

Understanding Architecture of x86 Machines

In the future, every device or machine will become ‘smart’. The

big difference between a normal device (or ‘the legacy device’, as

we call it) and a smart device is the presence of the internet

feature in a smart device. By smart, it means that the device is

programmed to function in a smart fashion and it can be

operated remotely using the internet feature. Today, most of the

devices we use in our households are internet enabled or we can

say, smart devices. Televisions are now smart televisions, washing

machines are now smart washing machines, refrigerators we use

are also now smart refrigerators, and many more. All this became

possible with the introduction of a small computer in the legacy

devices like televisions, washing machines, refrigerators, and

others. Now a big question is, what’s inside these small

computers and how do they work? These small computers are

made up of small components, where every component plays an

important role in the functioning of the overall system. Imagine

that these small computers are a smaller version of your personal

computer.

All these devices are addressed as modern computing devices.

These computing devices are made up of several components for

processing, data storage, data transfer, and more. Modern

computing devices coupled with software are programmed to do

many tasks. To understand Reverse Engineering on modern



computing devices, we need to first understand what goes inside

these computing devices and how they work.



Structure

In this chapter, we will cover the following topics:

Architecture of a Computing System

Building Blocks of a Computing System

History of the Different Types of Processors

Registers, Types of Registers and their Roles

Concept of Stack



Objective

In this chapter, we will talk about computing systems and their

types. We will also talk about the components of modern

computing systems. Then we will cover the topics of processors

and the difference between processor variants along with their

numbering scheme. We will also take a look at the role of stack

in reverse engineering to understand the difference between caller

and callee.



Architecture of a Computing System

Any computing system we see around is made up of some basic

building blocks. When we say computing system, it can be your

computer, laptop, mobile, IoT devices, and other devices which are

capable of performing tasks. Basically, there are two types of

computing systems:

Fixed Program Computing These systems are architected to

perform a specific task. For example, a calculator.

Stored Program Computing On the other hand, these systems are

architected in such a way that they can be programmed as per

the requirements. They can run many tasks simultaneously and we

can store and run applications on them. For example, a computer.

The architecture of these systems was introduced by John von

Neumann in 1945.

The von Neumann architecture is based on the stored program

concept, where program data and instruction data are stored in

the same memory. This design is used by modern computing

systems, which are made up of the following building blocks:



Figure 2.1: Architecture of a Computing System



CPU

The Central Processing Unit controls the operations of our

computing device or system. In our computing system, the CPU

is also referred to as processor, which is the brain of our

computing system. The job of the CPU is to fetch instructions

from the memory, decode the instructions into a series of actions,

and carry out these steps in a sequence. Inside the CPU, we have

several components. Some of them are:

Control This is responsible for retrieving and decoding instructions

from the memory or RAM.

Execution This unit is responsible for the execution of instructions

with the help of registers.

To save time, the CPU does not access RAM every single time to

fetch instructions. So CPU has in itself basic storage units called

registers. There are many types of registers, which we will study

in the following sections. One among them is Instruction Pointer

register, which stores the memory address of the next instruction

to be executed.

These are registers only, but they record the state of CPU after

arithmetic calculations.



Memory

This can be Random Access Memory or Read Only Memory It can

also be an external storage device such as Hard Disk optical disk,

and others. The primary purpose of memory is to store the

sequence of instructions that our computer or computing system

executes. This is also called program code. The second purpose of

memory is to store data, on which our computer works.



Input/output Devices

All the devices which are interfaced with our computing system

are called I/O (Input/Output) devices. This can be our keyboard,

mouse, monitor, and others. These devices are interfaced using

ports and there are two types of ports, Input & Output ports.

Input ports are used for reading data from these peripheral

devices into the computing system. Output ports are used to

send data from the computing system to the peripheral devices

such as video display, printer, and others.



System Bus

The System Bus can be imagined as a group of wires that carry

information or data between different components in our

computing system. Depending on the type of information carried

between the components, buses are classified as Address Bus,

Data Bus, and Control Bus.

Address These are parallel signal lines which are used to send out

the address of the memory location that is to be read from or

written to. The number of memory locations that a CPU can

address is calculated by the number of signal lines or address

lines. Suppose a CPU has N address lines, so the total number

of memory locations the CPU can address is For example, a CPU

has 8 address lines. This CPU can address 256 memory locations.

If a CPU has 16 address lines, then the CPU can address 65,536

memory locations.

Data These are also parallel signal lines which are used to

transfer data between the CPU and memory.

Control A Control Bus contains parallel signal lines carrying

synchronizing signals to control various peripheral devices

connected to the CPU. These are used to transfer information

required to coordinate multiple tasks. This consists of 4-10 parallel

signal lines to send out signals on the control bus. Typical control



bus signals are I/O Read, I/O Write, Memory Read, and Memory

Write. Suppose a CPU needs to read a byte of data from the

memory location. In this process, the following activities will

happen:

The CPU will send the memory address of the desired byte on

the Address Bus.

The CPU will then send the Memory Read signal on the Control

Bus.

The Memory Read signal will enable the addressed memory device

to output data (or byte) on to the Data Bus.

The Data (or byte) travels from the desired memory address to

the CPU using the Data Bus.



Building blocks of a Computing System

To understand reverse engineering, knowledge of the basic data

building blocks is a must. These data building blocks include the

meaning of Bit, Nibble, Byte, Word, and DWORD. All of these can

be explained from the following figure:

Figure 2.2: Understanding Bit, Nibble, Byte

Humans can communicate with each other in different languages

based on the countries they reside in. But when we talk about a

computing system like computers, they can only understand binary,

which is 0 or 1. Computers communicate with each other by

sending or exchanging data. The smallest unit of data is called

bit, which can be 0 or 1.

1 Nibble means 4 bits. Similarly, we can refer to BYTE, WORD,

and DWORD as:

1 BYTE = 2 NIBBLES = 8 bits



1 WORD = 2 BYTES = 16 bits

1 DWORD = 4 BYTES = 32 bits



Microprocessor

As we know, the CPU is the brain of a computing system. The

CPU is surrounded by circuitry which in its whole is referred to

as the microprocessor. A microprocessor can have more than one

CPU, like graphics processor. So, the CPU is actually a part of the

microprocessor, but microprocessors can have more than one

CPU. There are many types of microprocessors. You must have

heard of companies like Intel, AMD, and many more. They are the

top manufacturers of microprocessors. Some of the most popular

models of the first generation microprocessors are:
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So collectively, all the processors are referred to as the x86 Intel

family.

Generally, we refer to the Intel processor as follows:

It means a 16-bit processor.

x86-32 (aka It means a 32-bit processor (IA means: Intel

Architecture), also referred to as x86 only.

It means a 64-bit processor, also referred to as x64.

Note: Throughout this book, we will focus on the Intel x86-32

processor.



Memory

The memory, which we call RAM, for a single process running on

the x86-32 architecture is divided into the following sections:

Figure 2.3: Process Address Space



The memory address is ranged from 0x00000000 – The prefix 0x

refers to hexadecimal numbers. Every hexadecimal number is 4 bit

in size, so any memory address of x86-32 architecture is referred

by a combination of 8 hexadecimal numbers, which make 4 x 8 =

32 bits in size. This is why, the memory address of x86-32

computer is 32 bits in size.

Kernel 1GB is reserved for the Operating System kernel.

This is the space reserved for the function local variables and

parameters. A stack grows up to a fixed memory size. It grows

from a higher memory address to a lower memory address.

This is where our Shared Libraries are loaded. The common

dialog box like save dialog box is stored in library which is shared

among many programs.

Heap grows down. When an image is loaded, depending on the

size of the image, dynamic memory is required to load an image

during the program execution. This memory is freed when the

program finishes. This heap memory dynamically changes during

program execution. It grows from a lower memory address to a

higher memory address.

This is the section of memory used to store static variables and

global variables in the code.

This section of memory holds the instruction or code to be

executed to perform some action.



Registers

To save time, a small amount of temporary storage is available

with the CPU called In the x86 processor, registers are divided

into the following categories:

Figure 2.4: Registers



General Purpose Register

X86 architecture has 8 general purpose registers:

EAX is used for arithmetic and logical operations. It is also used

to store the function return value.

EBX is used as a pointer to data.

ECX is used for loop operations.

EDX is used for I/O and arithmetic operations.

ESI is used as a pointer to the source in string operations.

EDI is used as a pointer to the destination in string operations.

ESP is a pointer to the top of the stack.

EBP is a pointer to the base of the stack frame.

All general purpose registers are 32 bits in size and they can also

be referred in the sizes of 16 bits and 8 bits. The smaller unit of

any register can be referred as shown below.



The size of the EAX is 4 byte (32 bits). The “E” in EAX stands

for Extended.

Figure 2.5: Smaller unit of register

AX is the lower half of the EAX register, which is of size 16 bits.

AX is further divided into AH (A-High) and AL (A-Low), each of 8

bits in size. The same goes for other general purpose registers.

32-bit version of general purpose registers: EAX, EBX, ECX, EDX,

ESI, EDI, EBP, ESP

16-bit version of general purpose registers: AX, BX, CX, DX, SI,

DI, BP, SP



8-bit version of general purpose registers: AH, AL, BH, BL, CH,

CL, DH, DL



Segment Registers

The segment registers CS, DS, SS, ES, FS and GS are 16 bits in

size. A segment register points at the start of a segment in

memory. Segments can be categorized based on the three types of

storage: Code, Data, and Stack.

Code This segment contains all the instructions to be executed

and the Code Segment register contains the pointer to the code.

Stack This segment holds the data, variables, and arguments of

the functions. Stack Segment register holds the pointer to the

stack.

Data For code efficiency and security, four separate Data Segments

are created. These are:

One for data structure of current loaded module

Data exported from other third-party modules

Dynamically created data structures

Data which is shared among different programs



To access the different types of data structures and additional data

segments, DS, ES, FS, GS registers are used.



Status Registers

The status register is EEFLAGS register. This register is also 4

byte in size. Each bit of this register represents some flag, which

can be either zero (0) or one (1). The status of each bit

represents some result of the CPU operation. Some of the

common flags used while performing reverse engineering are:

Zero Flag This flag is set to 1 when the result of the operation is

zero. Otherwise, it is cleared.

Carry Flag This flag is set to 1 when the result of the operation

is either too large or too small for the destination. Otherwise, it

is cleared.

Sign Flag This flag is set to 1 when the result of the operation is

negative. The flag is cleared, or we can say 0, when the result of

the operation is a positive value.

Trap Flag This flag is set to 1 when the processor executes one

instruction at a time and it is used for debugging.

Parity Flag It is set to 1 when Least Significant Bit of the result

contains an even number. Otherwise, it is cleared.

Overflow Flag This flag is set to 1 when the result of the

operation is too large to fit.





Instruction Pointer Register

Instruction Pointer is also known as EIP. This register contains the

memory address of the next instruction to be executed. EIP tells

the processor what to do next. From the security point of view,

EIP is very important. An attacker compromises any system by

taking control over the instruction pointer. Once the EIP is in

control of the attacker, a malware code can be executed to

perform any task.



Concept of Stack

This is the most important concept in Reverse Engineering.

Imagine a stack as a pile of lunch plates lying one above the

other at your local restaurant or cafeteria. To pick up a plate, we

take out the plate from the top and the same process is followed

to add more plates to the pile. The plate added to the pile will

be added on the top. If we have to take out the plate at the

bottom of the pile, we will have to take out every plate above it,

one by one. For the time being, assume that adding a plate to

the pile is called PUSH and taking out a plate from the pile is

called

A stack works the same way, Last In First Out This means that

the last thing added (pushed) will be the first thing to get pulled

off (popped). To understand the working of a stack, we will take a

pseudo code:

Figure 2.6: Pseudo code



In this pseudo code, there are two functions: one is the main

function from where our code execution starts and another is the

Foo function. Foo function has 3 arguments which are local to

main function and 2 local variables. During the code execution,

the Foo function is called from the main function. In this code,

the main function is the Caller and the Foo function is the Callee.

We are assuming that the 3 arguments and 2 local variables

mentioned in the code are of type The data type of int occupies

4 bytes in the memory, as sizeof(int) is 4 bytes.

When our execution reaches inside the Foo function, the typical

stack state will look like something as follows:



Figure 2.7: Stack

Every function has a stack frame. As we have two functions main

and we will have two stack frames. The highest address of the

stack frame is the EBP of that stack frame.

Let’s go step by step to understand how a stack frame is set up

and cleaned upon function return.



Caller Before Callee Call

In this section, we will look at the stack state when the main

function is just about to call the Foo function. Consider the Foo

function call as follows:

int main()

{

FooReturnValue = Foo(10, 20, 30);

}

Caller is our main function and is about to call the Foo function

which is Callee. The main function has its own stack frame, where

the ESP is pointing to the top of the stack and EBP is a base

pointer of the main function’s stack frame.



Figure 2.8: Caller Before Callee Call

Before the Foo function is called, the main function pushes the

EAX, ECX and EDX registers onto the stack, only if the content of

these registers needs to be preserved. Next, the main function

pushes the Foo function arguments one by one onto the stack.

FooReturnValue = Foo(10, 20, 30); //Foo function arguments are

10, 20, 30

Arguments are pushed from the right to left order, so first 30

then 20 and then 10 is pushed onto the stack. The assembly

instructions for the same are:

PUSH 30

PUSH 20



PUSH 10

After pushing the Foo arguments on the stack, a call to Foo

function is made using the CALL instruction in the assembly

language:

CALL Foo

When the CALL instruction is executed, the content of the EIP

register is pushed onto the stack as EIP points to the next

instruction in the main after the CALL instruction. After pushing

the EIP onto the stack, we will have the return address on the

top of the stack. This return address will help the instruction

pointer to resume execution in the main once the execution of

the Foo function is over.



Callee After Function Call

When the Foo function gets the control, it will perform the

following three tasks:

Set up the Foo function stack frame.

Allocate space for the Foo function local variables.

If required, preserve the contents of EBX, ESI and EDI.

The Foo function stack frame is set up using the following

assembly instructions:

PUSH EBP

MOV EBP, ESP

To set up the stack frame for the Foo function, we will first

preserve the main’s EBP (which is the base pointer of the main

function) by pushing it onto the stack.



Figure 2.9: Callee after function call

After pushing the main’s EBP on the stack, ESP (which is

pointing to the top of the stack) will become the new EBP (base

pointer of the Foo function). This EBP, along with the offset, will

be used to refer to the variables on the stack. As we can notice

in the preceding figure, the first argument can be accessed using

EBP plus 8 bytes (4 bytes for main’s EBP + 4 bytes for the

Return Address).

Now we need to allocate space for the Foo function local

variables onto the stack. This is done by subtracting 20 bytes

from the stack pointer, where 20 bytes include 8 bytes (4 bytes +

4 bytes space for 2 variables) and 12 bytes for temporary storage.

This will be done using:



SUB ESP, 20

Local variables and temporary variables can be accessed using the

offset from EBP. After allocating room for the local variables on

the stack, EBX, ESI and EDI registers are preserved by pushing on

the stack.

The stack state after preserving the contents of ESI and EDI will

be as follows:



Figure 2.10: Stack Frames of Foo and Main

During the Foo function execution, there can be many pushing

and popping on the stack. In this case, ESP will move up and

down, but the EBP will remain unchanged. With the help of

variables can be accessed using the offset from



Callee Before Returning

Now suppose we are done with the Foo function execution. Before

returning, the callee will make arrangements to save the Foo

function return value in the EAX register. Secondly, the values of

EBX, EDI and ESI are restored back. The Foo function stack frame

will be taken down by the following assembly instructions:

MOV ESP, EBP

POP EBP

RET

These instructions will bring the stack to the following state by

moving the stack pointer ESP back to the EBP (base pointer of

the Foo function) and the old EBP EBP) is restored by popping

EBP from the stack.



Figure 2.11: Callee before returning

RET, return instruction will pop return address from the stack and

move it to EIP. This will point the Instruction pointer back to the

main function, to resume execution of main function.



Caller After Returning

As the instruction pointer is back in the main function, now we

do not require arguments on the stack anymore.

Figure 2.12: Caller after returning

All the arguments on the stack are cleaned by adding ESP by 12

bytes (4 bytes for each argument and multiplied by the number of

arguments, which is 3).

ADD ESP, 12

As the EAX register is holding the return value of the Foo

function, the content of the EAX register could be moved to some



other register. Finally, the preserved registers and EDX are popped

from the stack and ESP is pointed back to the same location on

the stack where it started.



Conclusion

We covered the architecture of modern computing devices and the

different components that make up a computing device. We also

covered the functioning of different components used in a

computing device. This covered the basics about microprocessors,

memory, and the different types of registers. The different

processor variants were also discussed along with the relevance of

the x86 numbering convention.

We covered an important aspect of stack. With the help of

pseudo code, we understood the difference between caller and

callee. Understanding of stack plays an important role in the

reverse engineering of any application. So don’t skip the stack

part. In the next chapter, we will talk about the different reverse

engineering tools used by professionals in the industry.



CHAPTER 3

Up and Running with Reverse Engineering Tools

Tools play a vital role in every aspect of life. We often use mobile

calculators to perform basic math in our day-to-day life. Before

mobile calculators, we used hardware calculator to perform math

calculations. This calculator is a simple example of a tool we use

to perform certain tasks. Simple calculations can be done verbally

but when it comes to complex ones, it becomes necessary to use

a tool. Similarly, for reverse engineering there are plenty of tools

available in the market. Some are commercial and some are free

to use or open source. For selection of the correct tools,

conceptual knowledge of the topic becomes essential.

If you search the internet for reverse engineering tools, you will

find several. It is always important to have the right selection of

tools based on your requirements. In this chapter, we will first

learn about the concept of tools in reverse engineering and then

understand the importance of these tools in the process of

reverse engineering. We will talk about the tools that are easily

and freely accessible.



Structure

In this chapter, we will cover the following topics:

Importance of tools in reverse engineering

Reverse engineering tools

Portable executable editors

Disassemblers

Debuggers



Objective

The objective of this chapter is to understand the basic concept

behind tools and why they are required in the process of reverse

engineering. Then we will talk about some tools required to read

the binary format. We will also cover some concepts related to

Portable Executable (PE) editors, disassemblers, and debuggers.



Importance of tools in reverse engineering

When we compile a program using a high-level language like

C/C++, it gets converted to a series of bytes that a CPU can

understand. This is a machine code, which is difficult to

understand by humans. To make this code easier to understand,

we use a tool called disassembler. This disassembler translates

machine code to human-readable format. This format is called

assembly code which uses the syntax of assembly language. The

following figure will help you understand the concept throughout

your life:

Figure 3.1: Importance of RE tools



Reverse engineering helps to regenerate the application logic

without having the source code of an application or a program.

Malware researchers follow this concept to perform reverse

engineering tasks.

Now we will discuss a few tools required for reverse engineering.

We will also use these tools throughout this book.



Reverse engineering tools

For easy understanding, reverse engineering tools are divided in

different categories like PE editors, disassemblers, and debuggers.

Within each category, we have free or open-source tools available,

and all tools within a given category serve the same purpose with

some slight feature differences. We will focus on free and open-

source tools with graphical user interface. All these tools are used

throughout this book.



Portable Executable Editors

PE stands for Portable Portable Executable is the standard

Windows file format. Every Windows executable uses this file

format. Dynamic Link Library Component Object Model files, and

.NET executable use the PE file format. The following figure shows

the basic structure of PE:

Figure 3.2: PE structure



All the PE files start with the DOS header then PE header also

called NT header and sections that are common in executable.

These common sections are as follows:

This section contains the actual binary executable code.

This section represents uninitialized data.

This section contains read only data, such as constants, strings.

This section is the resource section where resource information is

stored.

This is the export data section containing information about

exported functions.

This is import data section which contains information about

imported functions along with the import directory and import

address table.

Initially, debug information was placed in this debug information

section. PE files also support a separate debug file with .dbg

extension.

To view and edit all these details, we can use the following tools.



CFF Explorer

This tool is designed to view and edit PE files without losing the

internal structure of PE files. This tool is not only used by reverse

engineers but also the developer of applications.

Figure 3.3: CFF Explorer

We will be using this CFF explorer to edit PE files in our

subsequent chapters.



Disassembler

As we discussed in the earlier section that a machine code is not

human readable, we need some tools to convert machine code

into a human-readable format. This is where disassemblers come

into picture. Disassemblers are used to convert a machine code

into a human-readable assembly code. The following are some

disassemblers used in this book.



Ghidra

This is an open-source tool developed by the National Security

Agency It is free and used for reverse engineering. Its source

code was released on April 4, 2019. This tool is used by malware

researchers and reverse engineers to analyze malwares and find

vulnerabilities in applications.

Figure 3.4: Ghidra



Cutter

Cutter is an open-source interface to the Radare2 reverse

engineering framework. Radare2 is the command line tool for

reverse engineering and is used for static and dynamic analysis of

binary formats on different platforms and architectures. Cutter is

the graphical user interface of Radare2.

Figure 3.5: Cutter



Debuggers

When we run an application or a binary, we check the state of a

running program. A debugger gives the dynamic state of a binary

when it is executed in the memory. Some vulnerabilities are not

captured by the developer while writing or executing a code. This

is where we use debuggers to run the code and monitor the

registers, memory locations, and other parameters. We will be

heavily using the following debugger in this book.



x32dbg

A debugger comes in two flavors: 32 bit and 64 bit. x32dbg is

used for x86 (32 bit) binaries. Another version is x64dbg, which is

used for x64 (64 bit) binaries. As shown in the following figure,

x32dbg is divided into 4 sections:

Figure 3.6: x32dbg

As shown in the preceding figure, these four sections are as

follows:

Disassembly or CPU This is where a machine code converted into

an assembly code is shown. The first column is the memory



address of the instruction. The second column is the opcode, also

called the operation The third column is the assembly instructions.

The forth column shows the comment about instructions.

Registers and This section shows the registers and their values

during a dynamic analysis of the binary. It also shows the value

of a flag to display the current state of the processor.

As discussed in the earlier chapter, a stack is Last In First Out

This means the last thing added (pushed) will be the first thing

to get pulled off (popped). A stack grows from a higher memory

address to a lower memory address.

Memory It is like hex editor which shows the hexadecimal code of

a binary in the memory. It shows raw data in the hexadecimal

and ASCII formats. The value on a particular memory address can

be changed by double clicking on the respective memory location.



Conclusion

In this chapter, we covered different reverse engineering tools used

throughout this book. We also discussed the difference between a

disassembler and a debugger. The importance of tools in reverse

engineering was also discussed and then we listed some PE

editors, disassemblers, and debuggers. In the next chapter, we will

walk through the assembly instructions that will help us read and

understand a disassembled assembly code.



CHAPTER 4

Walk Through on Assembly Instructions

In the last chapter, we introduced some assembly language

instructions. There are many types of instructions in the assembly

language which can be grouped together to get a clear

understanding and objective of a specific set of assembly

instructions. To understand the relevance of walking over the basic

assembly instructions in reverse engineering, we will take up a

real-life example.

Have you ever opened a toy in your childhood? It was always fun

to open a toy and check its internal components. Today, if you

had to understand the internal working of a toy, you need to first

understand the different components installed internally in the

hardware design of the toy. Now, to uncover the internal working

of the toy, we have to understand the working of each component

installed in it. This whole process can be somewhat compared to

the reverse engineering of the toy.

On similar lines, for reverse engineer of any software or

application, we need to disassemble it into different instructions

and the understanding of the disassembled assembly instructions

becomes a must. So, to understand the working of any software

or application, we need to have a clear understanding of the

instructions and their execution path. This is where understanding

of different instructions in assembly language is needed.



Structure

In this chapter, we will cover the following topics:

Different assembly language instructions

Syntax of the assembly instructions

Grouping of assembly instructions



Objective

After going through this chapter, you will be able to understand

the important assembly instructions used in reverse engineering

and how these instructions are grouped in various sections for

easy understanding along with some examples. We will also learn

the syntax of the instructions, their internal working, and the basic

concept behind the different types of instructions.



Different assembly language instructions

Instructions are the basic building blocks of Assembly Code.

Instructions are a combination of the operation code and zero or

more operands.

Figure 4.1: Assembly instruction syntax

Operation code is often referred to as opcode. Operands can be

of three types:

Intermediate These are fixed hexadecimal value, like 0x0A.

Register They can be any register, such as ECX, EAX, etc.

Memory address These are memory addresses and are represented

between square brackets, like [EAX].

The program code is saved in the memory in a sequence of

operation code (or opcode) and operands. They are saved in

consecutive memory locations. As shown in the following image,

instruction 1 occupies two memory locations, instruction 2

occupies the same two memory locations, and instruction 3

occupies only one memory location.



Figure 4.2: Program code in memory

Look at the following example of an assembly instruction with

register operands:

Instruction Format:

OPERATION_CODE DESTINATION_OPERAND SOURCE_OPERAND

Example

MOV EAX, ECX

OPERATION_CODE = MOV, stands for move

DESTINATION_OPERAND = EAX, is a destination register

SOURCE_OPERAND = ECX, is a source register

This instruction moves data from the ECX register to the EAX

register. Now each instruction represented by the opcodes is also

called the operation code. These opcodes tell the CPU what

operation the program wants to perform. So, the opcodes for the

preceding instruction is 89 C8, which is the hexadecimal



representation of the instruction. The disassembler converts these

opcodes into a human readable format. So, 89 C8 will be

converted to MOV EAX,

Now that we are clear with the concept of assembly instructions,

we will move on to the explanation of major assembly instructions

that come on the way to understand reverse engineering. These

assembly instructions can be segmented or grouped in various

sections for easy understanding. Grouping of assembly instructions

can be broadly classified into the following categories:

Stack Instructions

Data Transfer Instructions

Arithmetic Instructions

Program Execution Instructions

Branching Instructions

Bit Manipulation Instructions

Processor Control Instructions

String Instructions



Let’s walk through each section one by one and understand

assembly instructions that fall under each category.



Stack Instructions

These are general purpose instructions used for transfer operations

across the stack.



PUSH

Instruction Format:

PUSH SOURCE_OPERAND

Meaning:

Push copies the value from the source operand onto the top of

the stack and decrements the ESP register.

Flags Affected: None



PUSHAD

Instruction Format:

PUSHAD

Meaning:

Pushes the values of all the registers onto the stack. Registers are

pushed in the order of EAX, ECX, EDX, EBX, ESP, EBP, ESI, and

EDI.

Flags Affected: None



PUSHFD

Instruction Format:

PUSHFD

Meaning:

This instruction pushes the flags register onto the stack.

Flags Affected: None



POP

Instruction Format:

POP DESTINATION_OPERAND

Meaning:

POP retrieves the value from the top of the stack and copies it

to the destination operand. It increments the ESP register.

Flags Affected: None



POPAD

Instruction Format:

POPAD

Meaning:

This instruction pops the values of the stack and copies them to

all the registers. Registers are popped in the order of EDI, ESI,

EBP, ESP, EDX, ECX, and EAX. The ESP value is ignored in

POPAD.

Flags Affected: None



POPFD

Instruction Format:

POPFD

Meaning:

This instruction pops the DWORD from the stack into the flags

register.

Flags Affected: None



RET

Instruction Format:

RET [nBytes]

Meaning:

When a function calls another function, the function that calls

another function is called ‘caller’ and the function that is called is

named ‘callee’. RET transfers control from the callee to the caller,

to the return address saved on the stack. nBytes are optional;

when nBytes are mentioned, it means that n bytes are released to

clean up the stack.



Data Transfer Instructions

These are general purpose instructions used for data transfer

operations.



MOV

Instruction Format:

MOV DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Moves data from the source operand to the destination operand

and the result is stored in the destination operand.

Flags Affected: None



LEA

Instruction Format:

LEA REGISTER OPERAND

Meaning:

LEA stands for Load Effective Address and it loads the register

with the memory address of the operand.

Flags Affected: None



XCHG

Instruction Format:

XCHG DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

XCHG instruction exchanges the values between the source

operand and the destination operand.

Flags Affected: None



CMPXCHG

Instruction Format:

CMPXCHG DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

This instruction is used for comparing and exchanging. EAX is

compared with the

If EAX is equal to DESTINATION_OPERAND then

DESTINATION_OPERAND is loaded with

If EAX is not equal to DESTINATION_OPERAND then EAX is

loaded with

Flags Affected: CF ZF SF AF PF OF



LAHF

Instruction Format:

LAHF

Meaning:

This instruction loads AH from the flags. It copies the status to

the AH register and only 5 flags are copied to bits 7, 6, 4, 2, and

0 of the AH register; bits 5, 3 and 1 of the AH register will be

unaffected.

AH register after running this instruction:

Figure 4.3: Load AH from Flags

Flags Affected: None



SAHF

Instruction Format:

SAHF

Meaning:

It stores the AH into the flags. This instruction copies the bits of

the AH register (bits 7, 6, 4, 2, and 0) to SF, ZF, AF, PF, and CF

flags.

Flags Affected: SF, ZF, AF, PF, and CF



LAR

Instruction Format:

LAR DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Loads the effective right from the segment descriptor specified by

the SOURCE_OPERAND into the DESTINATION_OPERAND.

Flags Affected: ZF



MOVSX

Instruction Format:

MOVSX DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Move with Sign Extension. Suppose you have a smaller value and

want to copy it to a big register. In that case, we will use it

copies SOURCE_OPERAND to DESTINATION_OPERAND and fills

the bits not provided by SOURCE_OPERAND with sign bits.

Flags Affected: None



MOVZX

Instruction Format:

MOVZX DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Move with Zero Extension. Suppose you have a smaller value and

want to copy it to a big register. In that case, we will use it

copies SOURCE_OPERAND to DESTINATION_OPERAND and fills

the bits not provided by SOURCE_OPERAND with zero.

Flags Affected: None



XLAT

Instruction Format:

XLAT

Meaning:

The XLAT instruction replaces the AL register from the table index

to the table entry. It sets the AL to DS:[EBX + unsigned AL]. The

value of AL is treated as an unsigned index, which is added to

the EBX register to get the table entry. EBX contains the base

address of the table.



MOVS

Instruction Format:

MOVS DESTINATION_STRING SOURCE_STRING

Meaning:

This instruction copies data (Byte, WORD, DWORD) from

SOURCE_STRING to where:

SOURCE_STRING is pointed by DS:SI (or ESI)

DESTINATION_STRING is pointed by ES:DI (or EDI)

SI is the offset address in Data Segment

DI is the offset address in Extra Segment

Flags Affected: None



Arithmetic Instructions

These instructions are used for arithmetic operations in the

assembly language.



AAA

Instruction Format:

AAA

Meaning:

This instruction adjusts the ASCII after addition. The AAA

instruction is used after the addition (ADD instruction) of two

unpacked BCD numbers. Unpacked BCD numbers are ASCII

single-digit numbers from 0 to 9 or 0x30 to 0x39. When the AAA

instruction is used after the ADD instruction, it converts the result

to a two-digit BCD number. For ASCII codes, refer to the

When two ASCII coded numbers are added, the result is not

ASCII. To convert this to ASCII, AAA is used after ADD.

Flags Affected: AF CF (SF,ZF,OF,PF undefined)

Example

XOR AH, AH        ;clear AH register

MOV AL, 32H      ;move ASCII 2 in AL



ADD AL, 39H      ;add ASCII 9, the result should be ASCII 11,

but we get 6B in AL

AAA                     ;AH=0x01, AL=0x01 and AX=0x0101



AAS

Instruction Format:

AAS

Meaning:

The instruction adjusts the ASCII after subtraction. The AAS

instruction is used after the subtraction (SUB instruction) of two

unpacked BCD numbers. Unpacked BCD numbers are ASCII

single-digit numbers from 0 to 9 or 0x30 to 0x39. When the AAS

instruction is used after the SUB instruction, it converts the result

to a two-digit BCD number.

Flags Affected: AF CF (SF,ZF,OF,PF undefined)



AAD

Instruction Format:

AAD

Meaning:

The ASCII is adjusted before division. This instruction is used

before the division instruction to convert the unpacked BCD

number in AH and AL to the binary equivalent. The quotient will

be saved in AL and the remainder will be saved in AH; both are

unpacked BCD.

Flags Affected: PF, SF, ZF

Example

Divide 68 by 8.

MOV AX, 0608H      ;AH=0x06, AL=0x08 and AX=0x0608

MOV CH, 08H          ;divide ASCII 8, the result should be 8

in quotient and 4 in remainder

AAD                          ;AX = 0044 = 44H = 68



DIV CH                     ;Divide AX by in CH, result: AL =

08, AH = 04 unpacked BCD



AAM

Instruction Format:

AAM

Meaning:

The ASCII is adjusted for multiplication. This instruction is used

in the multiplication of two ASCII numbers. When the unpacked

BCD digits are multiplied, the result stored in AX is converted to

the unpacked BCD number in AH and AL.

Flags Affected: PF, SF, ZF

Example

MOV AL, 00000111      ;move 7 in AL, masking upper 4 bits

MOV BH, 00000101     ;move 5 in BH, masking upper 4 bits

MUL BH                        ;AX = 23H, 35 in decimal

AAM                              ;result: AX = 0203H, AH =

02H, AL = 03H unpacked BCD



ADC

Instruction Format:

ADC DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Adds two operands, source operand and destination operand. The

result is stored in the destination operand. If CF flag is set to 1,

then 1 is added to the destination.

Flags Affected: AF CF OF PF SF ZF



ADD

Instruction Format:

ADD DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

The instruction adds two operands, source operand and

destination operand. The result is stored in the destination

operand.

Flags Affected: AF CF OF PF SF ZF



CMP

Instruction Format:

CMP DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

It subtracts two operands, source operand and destination

operand. The result is not stored, but the flags are updated. The

flags are subsequently checked in the instructions.

Flags Affected: AF CF OF PF SF ZF



DAA

Instruction Format:

DAA

Meaning:

The decimal is adjusted after addition. This instruction comes

after the ADD or ADC instruction to adjust the final result in

BCD. This only works with the AL registers.

Flags Affected: AF CF (OF, PF, SF, ZF undefined)

Example

MOV DX, 1122H     ;load 1122H BCD

MOV BX, 3088H     ;load 3088H BCD

MOV AL, BL           ;only AL register works for DAA

ADD AL, DL           ;



DAA                         ; BCD adjusted result, answer

saved in AL



DAS

Instruction Format:

DAS

Meaning:

The decimal is adjusted after subtraction. This instruction comes

after the SUB or SBB instruction to adjust the final result in BCD.

This only works with the AL registers.

Flags Affected: AF CF (OF, PF, SF, ZF undefined)

Example:

MOV DX, 1122H     ;load 1122H BCD

MOV BX, 3088H     ;load 3088H BCD

MOV AL, BL           ;only AL register works for DAA

SUB AL, DL            ;



DAS                         ; BCD adjusted result, answer

saved in AL



DEC

Instruction Format:

DEC DESTINATION_OPERAND

Meaning:

The instruction decrements one from the destination operand

which can be register or a memory location. The result is saved

back in the register or memory location.

Flags Affected: AF OF PF SF ZF

Example:

MOV EAX, 02H      ;load EAX with 02H

DEC EAX                ;EAX will be 01H



DIV

Instruction Format:

DIV SOURCE_OPERAND

Meaning:

The DIV instruction is used to divide the unsigned

QWORD/DWORD/WORD by DWORD/WORD/BYTE.

When a WORD is divided by byte, the number to be divided, that

is WORD, must be in the AX register and the divisor, which is

source operand, can be in register or memory location. After

division, the quotient will be saved in AL and the remainder will

be in AH.

When a DWORD is divided by WORD, the number to be divided,

that is DWORD, must be in DX:AX (most significant WORD in

DX and least significant WORD in AX). The divisor, which is the

source operand, can be in register or memory location. After

division, the quotient will be saved in AX and the remainder will

be saved in DX.

When a Double DWORD (QWORD) is divided by DWORD, the

number to be divided, that is Double DWORD (QWORD), must

be in EDX:EAX (higher order DWORD in EDX and lower order



DWORD in EAX). The divisor, which is the source operand, can

be in register or memory location. After division, the quotient will

be saved in EAX and remainder in EDX.

Flags Affected: None

Example

MOX DX, 0                 ;load DX with 00H

MOV AX, 0x8003       ;load AX with 8003H

MOV CX, 0x100         ;load CX with 100H

DIV CX                       ;AX=80H, DX=03H



IDIV

Instruction Format:

IDIV SOURCE_OPERAND

Meaning:

The DIV instruction (Integer Divide) is used in division of signed

data. The rest is the same with respect to the dividend, divisor,

quotient, and remainder as in DIV instruction.

Flags Affected: None



MUL

Instruction Format:

MUL SOURCE_OPERAND

Meaning:

The MUL instruction is used to multiple the unsigned

DWORD/WORD/BYTE by DWORD/WORD/BYTE.

When a BYTE is multiplied by BYTE, the multiplicand, that is

BYTE, must be in the AL register and the multiplier, which is the

source operand, can be in the register or memory location. After

multiplication, the result will be saved in AX. Higher order 8 bits

are stored in AH and lower order 8 bits are stored in AL.

When a WORD is multiplied by WORD, the multiplicand, that is

WORD, must be in the AX register and the multiplier, which is

the source operand, can be in the register or memory location.

After multiplication, the result will be DWORD, which is saved in

DX:AX. The higher order WORD is stored in DX and the lower

order WORD in AX.

When a DWORD is multiplied by DWORD, the multiplicand, that

is DWORD, must be in the EAX register and the multiplier, which

is the source operand, can be in the register or memory location.



After multiplication, the result will be QWORD, which is saved in

EDX:EAX. The higher order DWORD is stored in EDX and the

lower order DWORD in EAX.

Flags Affected: OF, CF

Example

MOV AX, 0x8003     ;load AX with 8003H

MOV CX, 0x100       ;load AX with 100H

MUL CX                   ;DX=80H, AX=0300H



IMUL

Instruction Format:

IMUL SOURCE_OPERAND

Meaning:

The Integer Multiple instruction is used to multiply the signed

data. The rest is the same with respect to the multiplicand and

multiplier as in MUL instruction.

Flags Affected: OF, CF



INC

Instruction Format:

INC DESTINATION_OPERAND

Meaning:

It increments or adds one to the destination operand, which can

be the register or a memory location. Result is saved back in

register or a memory location.

Flags Affected: AF OF PF SF ZF

Example

MOV EAX, 02H     ;load EAX with 02H

INC EAX                ;EAX will be 03H



NEG

Instruction Format:

NEG DESTINATION_OPERAND

Meaning:

This instruction changes the sign of the destination operand from

a positive number to a negative number or from a negative

number to a positive number. Basically, it subtracts 0 from the

destination operand and performs the 2’s complement to save the

result back in the destination operand. 2’s complement of an 8-bit

number 00100101 -> 11011010 (Invert bits) -> then add 00000001

= 11011011

Flags Affected: AF OF PF SF ZF

Example

MOV EAX, 02H     ;load EAX with 02H, (2 in decimal)

NEG EAX               ;EAX will be FFFFFFFEH, (-2 in decimal)



SBB

Instruction Format:

SBB DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

It subtracts source operand from the destination operand. The

result is stored in the destination operand. If the CF flag is set to

1, then 1 is subtracted from the destination.

Flags Affected: AF CF OF PF SF ZF



SUB

Instruction Format:

SUB DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

Subtract the source operand from destination operand. The result

is stored in the destination operand.

Flags Affected: AF CF OF PF SF ZF



XADD

Instruction Format:

XADD DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

The Exchange and Add instruction is the same as the ADD

instruction where it adds the source operand and the destination

operand, to store the result in the destination operand. The

difference from ADD instruction is that after the XADD instruction,

the original value of the destination operand is copied to the

source operand.

Flags Affected: AF CF OF PF SF ZF

Example

MOV EAX, 0x00000001    ; load EAX with 01H, (1 in decimal)

MOV EBX, 0x00000002    ; load EBX with 02H, (2 in decimal)

XADD EAX,EBX              ; EAX= 03H (3 in decimal),

EBX=01H



Program Execution Instructions

These instructions are used in controlling the program execution

flow and flags.



CALL

Instruction Format:

CALL DESTINATION_OPERAND

Meaning:

During program execution, a procedure is called from another

function; the CALL instruction is used. Using CALL instruction

pointer jump to the code of a procedure called within a function.

When the CALL instruction is executed, the memory address of

the next instruction after the CALL instruction is pushed onto the

stack. This memory address is popped back from the stack once

the called procedure execution is over with the RET instruction.

Flags Affected: None

Example

CALL Program flow is deviated to the procedure label memory

location



ENTER

Instruction Format:

ENTER Storage, Level

Meaning:

In Intel Architecture, another method of performing the procedure

call is supported with the ENTER and LEAVE instructions. These

instructions create and release the stack frame for the procedure

to store variables and pointers to return the execution from the

procedure. In block-structured language like C and Pascal, these

instructions provide machine language support for procedure calls.

The ENTER instruction has 2 operands:

This tells the number of bytes to be reserved on the stack for the

procedure call.

Also called lexical nesting level (from 0 to 31), it is the depth of

procedure in a ladder of procedure calls.

Flags Affected: None



LEAVE

Instruction Format:

LEAVE

Meaning:

This instruction releases the stack frame created for the procedure

to store variables and pointers to return the execution from the

procedure by restoring (E)SP/(E)BP.

Flags Affected: None



INT

Instruction Format:

INT

type is between 0 and 255.

Meaning:

Interrupt is a condition which halts the processor to temporarily

work on some other task and then return to the main task.

Interrupt is an event or signal that asks for the CPU’s attention.

This is used by peripheral hardware devices to access the CPU.

Whenever the interrupt occurs, the processor completes the

current set of instructions and then starts the interrupt service

routine or interrupt handler. ISR is a routine which contains a set

of instructions to handle specific interrupts. This ISR tells the

processor what to do when an interrupt occurs.

Now, the INT instruction allows a program to explicitly call the

interrupt handler. The following tasks are done when an INT

instruction is called:

The FLAGS register is pushed on the stack.

The Code segment is pushed on the stack.



The offset of the next instruction after the INT instruction is

pushed onto the stack.

The IP (Instruction Pointer) is loaded from an absolute memory

address, which is a multiple of the interrupt type by 4. If INT is

8, the IP (Instruction Pointer) will be read from 8 * 4 = 32

decimal = 0x00020 memory location.

The code segment will be the next WORD location. The CS will

be 0x00022 (0x00020 + 2).

Reset TF Trap flag (TF) and IF Interrupt flag (IF).

Flags Affected: IF, TF



INTO

Instruction Format:

INTO

Meaning:

Interrupt Overflow If the Overflow flag is set, this instruction

raises the overflow exception. If OF is not set, then the

instruction execution continues without raising an exception. This

helps to check the overflow condition. The following tasks are

done when an INT instruction is called:

The FLAGS register is pushed on the stack.

The CS (code segment) is pushed on the stack.

The offset of the next instruction after the INT instruction is

pushed onto the stack.

The IP (Instruction Pointer) is loaded from an absolute memory

address, which is multiple of interrupt type by 4.

If the overflow condition is INT 4, the IP (Instruction Pointer) will

be read from 4 * 4 = 16 decimal = 0x00010 memory location.



The code segment will be the next WORD location. The CS will

be 0x00012 (0x00010 + 2).

Reset Interrupt flag and Trap flag to 0.

Flags Affected: IF, TF



IRET

Instruction Format:

IRET

Meaning:

Interrupt Return This instruction is used to end the Interrupt

Service Routine or interrupt handler and return the execution to

the interrupted program. When an Interrupt Service Routine is

called, the instruction pointer, code segment, and flags registers

are pushed onto the stack. On return from the ISR instruction

pointer, the code segment and flags are restored back from the

stack to continue the execution of the interrupted program.

Flags Affected: AF, CF, DF, IF, ZF, SF, TF, PF



LOOP

Instruction Format:

LOOP DESTINATION

Meaning:

In LOOP instruction, the (E)CX register is decremented by 1. If

the new value in the (E)CX register is non-zero, then a jump is

taken to the destination mentioned in the instruction. If the (E)CX

register is decremented and the ECX is equal to 0, then no action

will be taken and the instruction next to the LOOPE instruction is

executed.

Flags Affected: None

Example

LOOPE MEM_LOC     ; Program will jump to the memory

location if ECX is non-zero

                                      ; after decrementing



LOOPE

Instruction Format:

LOOPE DESTINATION

Meaning:

In the LOOPE instruction, the (E)CX register is decremented by 1.

If the new value in the (E)CX register is non-zero and the ZF flag

is set to 1, then a jump is taken to the destination mentioned in

the instruction. If the (E)CX register is decremented and ECX is

equal to 0, then no action will be taken and the instruction next

to the LOOPE instruction is executed.

Flags Affected: None

Example

LOOPE MEM_LOC     ; Program will jump to the memory

location if ECX is non-zero

                                       ; after decrementing

and ZF=1 due to the previous instruction



LOOPNE

Instruction Format:

LOOPNE DESTINATION

Meaning:

In the LOOPNE instruction, the (E)CX register is decremented by

1. If the new value in the (E)CX register is non-zero and the ZF

flag is set to 0, then a jump is taken to the destination

mentioned in the instruction. If the (E)CX register is decremented

and ECX is equal to 0, then no action will be taken and the

instruction next to the LOOPNE instruction is executed.

Flags Affected: None

Example

LOOPNE MEM_LOC    ; Program will jump to the memory

location if ECX is non-zero

                                        ; after decrementing

and ZF=0 due to the previous instruction



TEST

Instruction Format:

TEST DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

This instruction performs the logical AND between the source

operand and the destination operand. Unlike the AND instruction,

the TEST instruction does not update any of the operands. It

updates the flags without saving the results. This instruction is

used to check the registers for zero, without altering its value.

Flags Affected: SF, ZF, and PF

Example

TEST EAX, 01H    ; IF EAX=01H

                                ; 01H AND 01H = 01H (non

–zero value)

                                ; Result is non-zero value, ZF

is not set, ZF=0



TEST EAX, 02H    ; IF EAX=01H

                                ; 01H AND 02H = 00H (zero

value)

                                ; Result is zero value, ZF is

set, ZF=1

TEST EAX, EAX   ; if EAX is equal to 0, set ZF to 1



Branching Instructions

This includes instructions which help in controlling the code flow.

There are two types of jumps in x86:

Unconditional The instruction pointer jumps to the code path

mentioned.

Conditional The instruction pointer jumps after evaluating the

condition. The condition is commonly evaluated using two

instructions. Both the instructions do not store any result but

change the flags in the EFLAGS register.

TEST It performs the logical AND.

CMP It performs subtraction.

Note: The DESTINATION_OPERAND used in branching

instructions is also named as a LABEL or DESTINATION LABEL

or DESTINATION ADDRESS. This is a displacement from the

address of the unconditional/conditional jump instruction itself or

the absolute address.



JMP

Instruction Format:

JMP DESTINATION_OPERAND

Meaning:

This is an unconditional jump instruction where the instruction

pointer jumps to the destination operand during execution.

Flags Affected: None

Example

JMP PROC_LABEL   ;Program flow jumps to the procedure label

memory location



JZ

Instruction Format:

JZ DESTINATION_OPERAND

Meaning:

This is a conditional jump instruction which jumps to the

destination operand if the zero flag (ZF) is set to 1. If ZF is set

to 0, then no action will be taken and the next instruction

following it will be executed.

Flags Affected: None

Example

JZ MEM_LOC  ; Program will jump to the memory location if

ZF=1



JNZ

Instruction Format:

JNZ DESTINATION_OPERAND

Meaning:

This is a conditional jump instruction which jumps to the

destination operand if the zero flag (ZF) is set to 0. If ZF is set

to 1, then no action will be taken and the next instruction

following it will be executed.

Flags Affected: None

Example

JNZ MEM_LOC    ; The program will jump to the memory

location if ZF=0



JE

Instruction Format:

JE DESTINATION_OPERAND

Meaning:

This instruction is the same as JZ. As Jump if Equal is a

conditional jump instruction, it is commonly used after the CMP

instruction. The jump will happen if the destination operand is

equal to the source operand in the conditional jump.

Flags Affected: None

Example

CMP EAX, 01H    ; Compare the EAX value with 01H

JE MEM_LO        ; The program will jump to the memory

location if EAX = 01H and ZF = 1



JNE

Instruction Format:

JNE DESTINATION_OPERAND

Meaning:

This instruction is the same as JNZ. As Jump if Not Equal is a

conditional jump instruction, it is commonly used after the CMP

instruction. The jump will happen if the destination operand is

not equal to the source operand.

Flags Affected: None

Example

CMP EAX, 01H    ; Compare the EAX value with 01H

JNE MEM_LO      ; The program will jump to the memory

location if EAX != 01H and ZF = 0



JG

Instruction Format:

JG DESTINATION_OPERAND

Meaning:

As Jump if Greater (JG) is a conditional jump instruction, it is

commonly used after the CMP instruction where it performs a

signed comparison between the destination operand and the

source operand. The jump will happen if the destination operand

is greater than the source operand.

Flags Affected: None

Example

CMP EAX, 02H    ; Compare the EAX value with 02H

JG MEM_LO        ; The program will jump to the memory

location if EAX > 02H



JGE

Instruction Format:

JGE DESTINATION_OPERAND

Meaning:

The Jump if Greater or Equal is a conditional jump instruction, so

it is commonly used after the CMP instruction where it performs

a signed comparison between the destination operand and the

source operand. The jump will happen if the destination operand

is greater than or equal to the source operand.

Flags Affected: None

Example

CMP EAX, 02H     ; Compare the EAX value with 02H by

subtracting 02H from EAX

JGE MEM_LO      ; The program will jump to the memory

location if EAX ≥ 02H



JA

Instruction Format:

JA DESTINATION_OPERAND

Meaning:

This instruction is the same as JG. As Jump if above is a

conditional jump instruction, it is commonly used after the CMP

instruction where it perform an unsigned comparison between the

destination operand and the source operand. The jump will

happen if the destination operand is above the source operand.

Flags Affected: None

Example

CMP EAX, 04H    ; Compare the EAX value with 04H by

subtracting 04H from EAX

JA MEM_LO        ; The program will jump to the memory

location if EAX is above 04H



JAE

Instruction Format:

JAE DESTINATION_OPERAND

Meaning:

This instruction is the same as JGE. As Jump if above or equal is

a conditional jump instruction, it is commonly used after the CMP

instruction where it performs an unsigned comparison between the

destination operand and the source operand. The jump will

happen if the destination operand is above or equal to the source

operand.

Flags Affected: None

Example

CMP EAX, 04H    ; Compare the EAX value with 04H, by

subtracting 04H from EAX

JAE MEM_LO     ; The program will jump to the memory

location if EAX is above or equal to 04H



JL

Instruction Format:

JL DESTINATION_OPERAND

Meaning:

As Jump if Less is a conditional jump instruction, it is commonly

used after the CMP instruction where it performs a signed

comparison between the destination operand and the source

operand. The jump will happen if the destination operand is less

than the source operand.

Flags Affected: None

Example

CMP EAX, 02H    ; Compare the EAX value with 02H by

subtracting 02H from EAX

JL MEM_LO        ; The program will jump to the memory

location if EAX < 02H



JLE

Instruction Format:

JLE DESTINATION_OPERAND

Meaning:

The Jump if Less or equal is a conditional jump instruction. It is

commonly used after the CMP instruction where it performs a

signed comparison between the destination operand and the

source operand. The jump will happen if the destination operand

is less than or equal to the source operand.

Flags Affected: None

Example

CMP EAX, 02H    ; Compare the EAX value with 02H by

subtracting 02H from EAX

JLE MEM_LO      ; The program will jump to the memory

location if EAX ≤ 02H



JB

Instruction Format:

JB DESTINATION_OPERAND

Meaning:

This instruction is the same as JL. As Jump if below is a

conditional jump instruction, it is commonly used after the CMP

instruction where it performs an unsigned comparison between the

destination operand and the source operand. The jump will

happen if the destination operand is below the source operand.

Flags Affected: None

Example

CMP EAX, 04H    ; Compare the EAX value with 04H by

subtracting 04H from EAX

JB MEM_LO        ; The program will jump to the memory

location if EAX is below 04H



JBE

Instruction Format:

JBE DESTINATION_OPERAND

Meaning:

This instruction is the same as JLE. As Jump if below or equal is

a conditional jump instruction, it is commonly used after the CMP

instruction to perform an unsigned comparison between the

destination operand and the source operand. The jump will

happen if the destination operand is below or equal to the source

operand.

Flags Affected: None

Example

CMP EAX, 04H    ; Compare the EAX value with 04H by

subtracting 04H from EAX

JBE MEM_LO     ; The program will jump to the memory

location if EAX is below or equal to ; 04H



JO

Instruction Format:

JO DESTINATION_OPERAND

Meaning:

This is a conditional jump instruction which jumps to the

destination operand if the overflow flag (OF) is set to 1. If OF is

set to 0, then no action will be taken and the next instruction

following it will be executed.

Flags Affected: None

Example

ADD AL, BL       ; Add the signed bytes in AL and BL

JO MEM_LOC   ; The program will jump to the memory location

if OF=1, due to addition ; above



JS

Instruction Format:

JS DESTINATION_OPERAND

Meaning:

This is a conditional jump instruction which jumps to the

destination operand if the sign flag (SF) is set to 1. If SF is set

to 0, then no action will be taken and the next instruction

following it will be executed.

Flags Affected: None

Example

ADD AL, BL       ; Add signed bytes in AL and BL

JS MEM_LOC   ; The program will jump to the memory location

if SF=1, due to addition ; above



JECXZ

Instruction Format:

JECXZ DESTINATION_OPERAND

Meaning:

This is a conditional jump instruction which jumps to the

destination operand if the ECX register is equal to 0.

Flags Affected: None

Example

JECXZ MEM_LOC   ; The program will jump to the memory

location if ECX = 0



Bit Manipulation Instructions

This includes instructions used in bit manipulation operations.

Before we get started with the instructions, let’s walk through the

truth table:

Figure 4.4: Truth table



BSWAP

Instruction Format:

BSWAP REGISTER32

Meaning:

This instruction changes the byte order of the register from Big-

endian to Little-endian or from Little-endian to Big-endian.

Flags Affected: None

Example

MOV EAX, 87654321H    ; EAX is 87654321H

BSWAP EAX                     ; EAX will become 21436587H



AND

Instruction Format:

AND DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

This instruction performs the logical AND operation between the

destination operand and the source operand. The result of the

AND operation is saved in the destination operand.

Flags Affected: CF OF PF SF ZF

Example

MOV EAX, 87654321H    ; EAX is 87654321H

MOV EBX, 21436587H    ; EBX is 21436587H

AND EAX, EBX               ; EAX will become 0x01414101



NOT

Instruction Format:

NOT DESTINATION_OPERAND

Meaning:

This instruction inverts all the bits of the destination operand. All

the 1s will become 0 and all the 0s will become 1 by taking one's

complement. One’s complement is obtained by toggling all the

bits.

Flags Affected: None

Example

MOV EAX, 12121212H    ; EAX is 12121212H

NOT EAX                          ; EAX will become

EDEDEDEDH



OR

Instruction Format:

OR DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

This instruction performs the logical OR operation between the

destination operand and the source operand. The result of the

logical OR operation is saved in the destination operand.

Flags Affected: CF OF PF SF ZF

Example

MOV EAX, 87654321H    ; EAX is 87654321H

MOV EBX, 21436587H    ; EBX is 21436587H

OR EAX, EBX                  ; EAX will become 0xA76767A7



XOR

Instruction Format:

XOR DESTINATION_OPERAND SOURCE_OPERAND

Meaning:

This instruction performs the exclusive-OR operation between the

destination operand and the source operand. The result of the

XOR operation is saved in the destination operand.

Flags Affected: CF OF PF SF ZF

Example

MOV EAX, 87654321H    ; EAX is 87654321H

XOR EAX, EAX               ; EAX will become 0x00000000



RCL

Instruction Format:

RCL DESTINATION_OPERAND COUNT

Meaning:

Figure 4.5: RCL

Rotate through Carry Left rotates the bits n (count) times in the

destination operand from the right to left through the CF Flag.

On every rotation, Most Significant Bit is moved to the CF flag

and the CF flag enters into Least significant bit

Flags Affected: CF OF

Example

MOV EAX, 01H    ; EAX is 00000001H and CF=0



RCL EAX, 2          ; RCL EAX bits 2 times, EAX will become

0x00000004



RCR

Instruction Format:

RCR DESTINATION_OPERAND COUNT

Meaning:

Figure 4.6: RCR

Rotate through carry right (RCR) rotates the bits n (count) times

in the destination operand from the left to right through the CF

flag. On every rotation, LSB is moved to the CF flag and the CF

flag enters into MSB.

Flags Affected: CF OF

Example

MOV EAX, 01H    ; EAX is 00000001H and CF=0



RCR EAX, 2          ; RCR EAX bits 2 times, EAX will become

0x80000000



ROL

Instruction Format:

ROL DESTINATION_OPERAND COUNT

Meaning:

Figure 4.7: ROL

Rotate Left rotates the bits n (count) times in the destination

operand from the right to left and the CF flag will have the value

of the last bit rotated.

Flags Affected: CF OF

Example

MOV EAX, 40000001H      ; EAX is 40000001H and CF=0



ROL EAX, 2                    ; ROL EAX bits 2 times, EAX

will become 0x00000005 and ; CF will set to 1



ROR

Instruction Format:

ROR DESTINATION_OPERAND COUNT

Meaning:

Figure 4.8: ROR

Rotate Right rotates the bits n (count) times in the destination

operand from the left to right and the CF flag will have the value

of the last bit rotated.

Flags Affected: CF OF

Example

MOV EAX, 40000001H     ; EAX is 40000001H and CF=1

ROR EAX, 2                   ; ROR EAX bits 2 times, EAX will

become 0x50000000 and ; CF will set to 0





SHR

Instruction Format:

SHR DESTINATION_OPERAND COUNT

Meaning:

To understand the bit shifting concept, refer to it in the

Figure 4.9: SHR

Shift Logical Right shifts the bits n (count) times in the

destination operand from the left to right and the CF flag will

have the value of the last bit shifted out. As it is logical shifting,

the bit placeholder on every shift count is set to 0.

Flags Affected: CF OF PF SF ZF (AF undefined)



Example

MOV EAX, 40000001H     ; EAX is 40000001H and CF=0

SHR EAX, 2                    ; SHR EAX bits 2 times, EAX

will become 0x10000000 and ; CF will set to 0



SHL

Instruction Format:

SHL DESTINATION_OPERAND COUNT

Meaning:

As said above, to understand bit shifting concept, refer bit shifting

section in

Figure 4.10: SHL

Shift Logical Left shifts the bits n (count) times in the destination

operand from the right to left and the CF flag will have the value

of the last bit shifted out. As it is logical shifting, the bit

placeholder on every shift count is set to 0.



Flags Affected: CF OF PF SF ZF (AF undefined)

Example

MOV EAX, 40000001H      ; EAX is 40000001H and CF=0

SHL EAX, 2                     ; SHL EAX bits 2 times, EAX

will become 0x00000004 and ; CF will set to 1



SAR

Instruction Format:

SAR DESTINATION_OPERAND COUNT

Meaning:

Figure 4.11: SAR

Shift Arithmetic Right shifts the bits n (count) times in the

destination operand from the left to right and the CF flag will

have the value of the last bit shifted out. As it is arithmetic

shifting, the bit placeholder is determined by MSB.

Flags Affected: CF OF PF SF ZF (AF undefined)

Example



MOV EAX, 40000001H      ; EAX is 40000001H and CF=1

SAR EAX, 2                     ; SAR EAX bits 2 times, EAX

will become 0x10000000 and ; CF will set to 0



SAL

Instruction Format:

SAL DESTINATION_OPERAND COUNT

Meaning:

Figure 4.12: SAL

Shift Arithmetic Left shifts the bits n (count) times in the

destination operand from the right to left and the CF flag will

have the value of the last bit shifted out. As it is arithmetic

shifting, the bit placeholder at LSB will always be 0.

Flags Affected: CF OF PF SF ZF (AF undefined)

Example



MOV EAX, 40000001H      ; EAX is 40000001H and CF=0

SAL EAX, 2                     ; SAL EAX bits 2 times, EAX

will become 0x00000004 and ; CF will set to 1



SHLD

Instruction Format:

SHLD DESTINATION_OPERAND, SOURCE_OPERAND, COUNT

Meaning:

Figure 4.13: SHLD

Shift Left Double shifts the bits n (count) times in the destination

operand from the right to left and the empty bit placeholders in

the destination operand are filled by the bits shifted out of the

source operand. The CF flag will have the value of the last bit

shifted out of the destination operand. The source operand will

not be modified.

Flags Affected: CF OF PF SF ZF (AF undefined)

Example

MOV EAX, 40000001H    ; EAX is 40000001H and CF=0



MOV EBX, 50000001H    ; EBX is 50000001H and CF=0

SHLD EAX, EBX, 2         ; EAX = 0x00000005 and EAX =

0x50000001

                                           ; CF will set to 1



SHRD

Instruction Format:

SHRD DESTINATION_OPERAND, SOURCE_OPERAND, COUNT

Meaning:

Figure 4.14: SHRD

Shift Right Double shifts the bits n (count) times in the

destination operand from the left to right and the empty bit

placeholders in the destination operand are filled by the bits

shifted out of the source operand. The CF flag will have the value

of the last bit shifted out of the destination operand. The source

operand will not be modified.

Flags Affected: CF OF PF SF ZF (AF undefined)

Example

MOV EAX, 40000001H    ; EAX is 40000001H and CF=1



MOV EBX, 50000001H    ; EBX is 50000001H and CF=1

SHRD EAX, EBX, 2         ; EAX = 0x50000000 and EAX =

0x50000001

                                           ; CF will set to 0



Processor Control Instructions

This includes instructions used in controlling the processor

operations.



CLC

Instruction Format:

CLC

Meaning:

Clear the Carry Flag This instruction clears the Carry Flag.

Flags Affected: CF

Example

MOV EAX, 40000001H       ; EAX is 40000001H and CF=0

SAL EAX, 2                      ; SAL EAX bits 2 times, EAX

will become 0x00000004 and ; CF will set to 1

CLC                                      ; Clear the CF flag,

CF=0



CLD

Instruction Format:

CLD

Meaning:

Clear the Direction Flag This instruction clears the Direction Flag

to 0.

Flags Affected: CF



CLI

Instruction Format:

CLI

Meaning:

Clear the Interrupt Flag This instruction clears the Interrupt Flag

to 0. Once the IF flag is reset, the processor will not respond to

the interrupt signal.

Flags Affected: CF



CMC

Instruction Format:

CMC

Meaning:

Complement Carry This instruction inverts the Carry Flag.

Flags Affected: CF

Example

MOV EAX, 40000001H       ; EAX is 40000001H and CF=0

SAL EAX, 2                      ; SAL EAX bits 2 times, EAX

will become 0x00000004 and ; CF will set to 1

CMC                                     ; Toggle CF flag

from 1 to 0, CF=0



ESC

Instruction Format:

ESC OPCODE SOURCE_OPERAND

OPCODE = D8 to DF

SOURCE_OPERAND = REGISTER OR MEMORY

Meaning:

Escape to Floating Point Coprocessor This instruction passes the

instructions to the coprocessor, also called floating point or math

coprocessor. The microprocessor fetches the instruction bytes and

the coprocessor also fetches these instruction bytes from the data

bus and queues them. All the normal microprocessor instructions

are treated as NOP by the coprocessor but when the ESC

instruction is fetched by the microprocessor, the coprocessor

decodes the instruction to carry out the action. When the ESC

instruction is executed, the microprocessor provides the memory

address otherwise perform NOP.

Flags Affected: None



LOCK

Instruction Format:

LOCK: [INSTRUCTION]

Meaning:

LOCK is the not an instruction but an instruction prefix. When

LOCK is used as a prefix in front of any instruction, the

processor LOCK pin is activated or also called asserted. When the

LOCK pin is activated by the LOCK instruction, the external bus

master and other peripherals are disabled until the instruction

after LOCK is executed. So, LOCK is used in front of critical

instructions that are to be executed without any disturbance to

bus master (Bus Master is a program that controls the bus on

which the address and control signals flow) and system bus

(System Bus is a common term for address bus and data bus).

Flags Affected: None

Example

LOCK: MOV EAX, EBX  ; Activate the LOCK pin of the processor

for the MOV instruction ; execution



NOP

Instruction Format:

NOP

Meaning:

No Operation This instruction does nothing. It is used to eat up

the processor time and memory.

Flags Affected: None

Example

NOP    ; Do nothing



STC

Instruction Format:

STC

Meaning:

Set the Carry Flag This instruction sets the Carry Flag to 1.

Flags Affected: CF

Example

CLC   ; Clear the CF flag, CF=0

STC   ; Set the CF flag, CF=1



STD

Instruction Format:

STD

Meaning:

Set the Direction Flag This instruction sets the Direction Flag to

1.

Flags Affected: DF



STI

Instruction Format:

STI

Meaning:

Set the Flag This instruction sets the Interrupt Flag to 1. As

already explained in above instructions, when the IF flag is

enabled, the interrupt event or signal will cause the processor to

interrupt the program execution. Whenever the interrupt occurs,

the processor completes the current set of instructions and then

starts the interrupt service routine or interrupt handler. ISR is a

routine which contains a set of instructions to handle specific

interrupts. This ISR tells the processor what to do when an

interrupt occurs.

The IRET instruction after ISR returns the execution back to the

interrupted program.

Flags Affected: IF



String Instructions

This includes instructions used in handling string operations.



CMPS/CMPSB/CMPSW

Instruction Format:

This instruction can be visualized as a combination of CMP for

compare + S for String + B for Byte or W for WORD or D for

DWORD

CMPSB SOURCE, DESTINATION

CMPSW SOURCE, DESTINATION

CMPSD SOURCE, DESTINATION

Meaning:

This instruction is used to compare two strings where the source

string is pointed by ESI and the destination string is pointed by

EDI. When CMPSB is used, the comparison is done between every

byte. When CMPSW is used, the comparison is done between

every word. When CMPSD is used, the comparison is done

between every DWORD. By comparison, it means subtracting a

byte/word/dword pointed by the ESI and EDI registers, just as we

studied in the CMP instruction.

The CMPS instruction is used with the prefixes REPE/REPZ, which

means repeat the comparison until ECX=0 or ZF=0. We will cover

REPE/REPZ later.



If Direction flag, DF=0, then ESI and EDI are incremented by 1

for byte, 2 for word, and 4 for dword after each move.

If Direction flag, DF=1 then ESI and EDI are decremented by 1 for

byte, 2 for word, and 4 for dword after each move.

Flags Affected: AF,CF,OF,PF,SF,ZF

Example

Figure 4.15: CMPSB example

MOV ESI, 0x41000001     ; ESI pointing to STRING1

MOV EDI, 0x82000001     ; ESI pointing to STRING2

MOV ECX, 0x08                ; ECX is initialized to 0x08



CLD                                    ; Clear direction flag,

DF=0

REPE CMPSB                   ; Compare two strings until

ECX=0 or ZF=0



IN/INSB/INSW/INSD

This instruction can be visualized as a combination of IN for

Input + S for String + B for Byte or W for WORD or D for

DWORD.

Meaning:

There are two types of instructions used to transfer data between

the processor input/output ports and the peripheral devices. These

two types of instruction are as follows:

Register input/output These instructions move the data between

the processor I/O port and the register.

Block (or string) input/output These instructions move blocks of

data between the processor I/O port and the memory.

Register input instruction

IN DESTINATION SOURCE

Where, SOURCE is the port address

And DESTNATION is the register, EAX (32-bit) register or AX (16-

bit) register or AL (8-bit) register. The destination register length



determines the amount of data to be read from the input port,

which can be byte, word, or dword. The destination can be some

other general purpose register.

IN EAX, 80    ; It will read dword (32-bits) from port 80 and

store it in EAX.

IN AX, 80       ; It will read word (16-bits) from port 80 and

store it in AX.

Block (or string) input instruction

INSB/INSW/INSD

Where the processor input port address is specified in the DX

register and the destination is the memory location pointed by the

EDI register.

The INSB instruction moves a byte (8-bits) data from the input

port address specified in the DX register to the memory location

pointed by the EDI register. To transfer blocks of data between the

processor input port and the memory, the INSB instruction is

used with the repeat prefix REP. After every byte transfer between

the input port and the memory pointed by EDI, EDI is

incremented (when DF=0) or decremented (when DF=1) by 1.

The INSW instruction moves a word (16 bits) data from the input

port address specified in the DX register to the memory location

pointed by the EDI register. To transfer blocks of data between the



processor input port and the memory, the INSW instruction is

used with the repeat prefix REP. After every word transfer between

the input port and the memory pointed by EDI, EDI is

incremented (when DF=0) or decremented (when DF=1) by 2.

The INSD instruction moves a dword (32 bits) data from the

input port address specified in the DX register to the memory

location pointed by the EDI register. To transfer blocks of data

between the processor input port and the memory, the INSD

instruction is used with the repeat prefix REP. After every dword

transfer between the input port and the memory pointed by EDI,

EDI is incremented (when DF=0) or decremented (when DF=1) by

4.

Flags Affected: None

Example

MOV DX, PORT_ADDRESS    ; Move the input port address to

the DX register

MOV EDI, offset STR                ; Move the memory offset

for string to the EDI register

INSW                                          ; Move a

word (16 bits) from the input port address

                                                    ;

specified in the DX register to the memory location pointed



                                                    ; by EDI

register



OUT/OUTSB/OUTSW/OUTSD

This instruction can be visualized as a combination of OUT for

Output + S for String + B for Byte or W for WORD or D for

DWORD.

Meaning:

The same concept from input instruction is reiterated here. There

are two types of instructions used to transfer data between the

processor input/output ports and the peripheral devices. These two

types of instruction are as follows:

Register input/output These instructions move the data between

the processor I/O port and the register.

Block (or string) input/output These instruction move blocks of

data between the processor I/O port and the memory.

Register output instruction

OUT DESTINATION SOURCE

SOURCE is the register, EAX (32 bit) register or AX (16 bit)

register or AL (8 bit) register. The source register length

determines the amount of data to be output from the source



register to the port, which can be byte, word, or dword. The

source can also be some other general purpose register.

And DESTNATION is the port address

OUT 80, EAX     ; It will output dword (32-bits) from EAX to

port 80.

OUT 80, AX        ; It will output word (16-bits) from AX to

port 80.

Block (or string) output instruction

OUTSB/OUTSW/OUTSD

Where the processor output port address is specified in the DX

register and the source is the memory location pointed by the ESI

register.

The OUTSB instruction outputs a byte (8-bits) data from the

memory location pointed by the ESI register to the output port

address specified in the DX register. To transfer blocks of data

between the memory and the processor output port, the OUTSB

instruction is used with the repeat prefix REP. After every byte (8-

bits) output from the memory pointed by ESI to the output port

address specified in the DX register, ESI is incremented (when

DF=0) or decremented (when DF=1) by 1.



The OUTSW instruction outputs a word (16-bits) data from the

memory location pointed by the ESI register to the output port

address specified in the DX register. To transfer blocks of data

between the memory and the processor output port, the OUTSW

instruction is used with the repeat prefix REP. After every word

(16-bits) output from the memory pointed by ESI to the output

port address specified in the DX register, ESI is incremented

(when DF=0) or decremented (when DF=1) by 2.

The OUTSD instruction outputs a dword (32-bits) data from the

memory location pointed by the ESI register to the output port

address specified in the DX register. To transfer blocks of data

between the memory and the processor output port, the OUTSD

instruction is used with the repeat prefix REP. After every dword

(32-bits) output from the memory pointed by ESI to the output

port address specified in the DX register, ESI is incremented

(when DF=0) or decremented (when DF=1) by 4.

Flags Affected: None

Example

MOV ESI, offset STR                   ; Move memory offset

for string to the ESI register

MOV DX, PORT_ADDRESS       ; Move Output Port address to

the DX register



OUTSW                                         ; Output a

word (16 bits) from memory location pointed

                                                       ; by

ESI register to output Port address in DX register



LODS/LODSB/LODSW/LODSD

Instruction Format:

LODSB

LODSW

LODSD

Meaning:

Load String loads the string pointed by the ESI register to the

EAX register.

Load String Byte loads a byte of string pointed by the ESI register

to the AL register.

Load String Word loads a word of string pointed by the ESI

register to the AX register.

Load String DWORD loads a dword of string pointed by the ESI

register to the EAX register.

ESI is incremented (when DF=0) or decremented (when DF=1) by

1 for Load String Byte 2 for Load String Word and 4 for Load

String DWORD



Flags Affected: None

Example

CLD                                 ; Clear Direction flag,

DF=0

MOV ESI, Offset STR     ; Move memory offset of string to ESI

register

LODSB                            ; Loads a byte of the string

pointed by ESI register to AL

                                         ; register



STOS/STOSB/STOSW

Instruction Format:

STOSB

STOSW

STOSD

Meaning:

Store String stores the string from the EAX register to the

memory location pointed by the EDI register.

Store String Byte stores a byte of string from the AL register to

the memory location pointed by the EDI register.

Store String Word stores a word of string from the AX register to

the memory location pointed by the EDI register.

Store String DWORD stores a dword of string from the EAX

register to the memory location pointed by the EDI register.

EDI is incremented (when DF=0) or decremented (when DF=1) by

1 for Store String Byte 2 for Store String Word and 4 for Store

String DWORD



Flags Affected: None

Example

CLD                               ; Clear Direction flag, DF=0

MOV ESI, Offset STR   ; Move memory offset of string to ESI

register

STOSB                           ; Stores a byte of the string

from AL register to memory

                                       ; pointed by EDI

register



SCAS/SCASB/SCASW

Instruction Format:

SCASB

SCASW

SCASD

Meaning:

Scan String scans the string in the memory location pointed by

the EDI register and compares (or subtracts) it with the contents

of the EAX register. The result of the comparison or subtraction is

discarded and the status flags are updated accordingly.

Scan String Byte scans a byte of string in the memory location

pointed by the EDI register and compares it with the contents of

the AL register.

Scan String Word scans a word of string in the memory location

pointed by the EDI register and compares it with the contents of

the AX register.

Scan String DWORD scans a dword of string in the memory

location pointed by the EDI register and compares it with the

contents of the EAX register.



EDI is incremented (when DF=0) or decremented (when DF=1) by

1 for Scan String Byte 2 for Scan String Word and 4 for Scan

String DWORD

Flags Affected: None

Example

MOV ECX, 100             ; Scan a string of 100 characters

MOV EDI, offset STR   ; Move memory offset of string to ESI

register

MOV AL, 0x20              ; Scanning string for space

character, space=0x20

REPNE SCASB             ; Repeat until ECX=0 or ZF=1



MOVS/MOVSB/MOVSW

Instruction Format:

MOVSB

MOVSW

MOVSD

Meaning:

Move String moves the string in the memory location pointed by

the ESI register to the memory location pointed by the EDI

register.

Move String Byte moves a byte (8-bits) of string in the memory

location pointed by the ESI register to the memory location

pointed by the EDI register.

Move String Word moves a word (16-bits) of string in the

memory location pointed by the ESI register to the memory

location pointed by the EDI register.

Move String DWORD moves a dword (32-bits) of string in the

memory location pointed by the ESI register to the memory

location pointed by the EDI register.



ESI and EDI are incremented (when DF=0) or decremented (when

DF=1) by 1 for Move String Byte 2 for Move String Word and 4

for Move String DWORD

Flags Affected: None

Example

MOV ESI, SRC_STR   ; Move source string location in ESI

MOV EDI, DST_STR   ; Move destination string location in EDI

MOV ECX, 05H           ; Initialize ECX to 0x05, which is

string length

CLD                              ; Clear the direction flag,

DF=0

REP MOVSB               ; Moves the string of length 5 bytes

from src to dest



REP

Instruction Format:

REP

Meaning:

Repeat is not an instruction. It is a prefix which is used before

string instructions. When REP is used before a string instruction,

it will repeat the instruction until ECX counter becomes 0. On

every execution of the instruction after REP, the ECX counter is

decremented by 1 until ECX=0.

Flags Affected: Depends on the instruction used after REP.

Example:

MOV DWORD PTR DS:[0x011E8000], 0x41424344     ;write ABCD

to 0x011E8000

                                                           

                                ; memory location, ABCD will

be



                                                           

                                ; written in reverse order (little

                                                           

                                ; endian)

MOV ESI,

0X11E8000                                                  

   ; Move source string location in ESI

MOV EDI,

0X11E8010                                                  

  ; Move source string location in EDI

MOV ECX,

0X05                                                       

    ; Initialize ECX to 0x05, to run iteration 5 times

CLD                                                        

                         ; Clear the direction flag, DF=0

REP

MOVSB                                                     

             ; Moves the ABCD from src

                                                           

                              ; to dest, until ECX=0



REPE/REPZ

Instruction Format:

REPE

REPZ

Meaning:

Repeat if Equal and Repeat if Zero cause the preceding string

instruction to repeat until ECX=0 or Zero flag (ZF) = 0. These

prefixes are used with the CMPS and SCAS instructions.

Flags Affected: Depends on the instruction used after REPE/REPZ

instruction.



REPNE/REPNZ

Instruction Format:

REPNE

REPNZ

Meaning:

Repeat if Not Equal and Repeat if Not Zero cause the preceding

string instruction to repeat until ECX=0 or ZF=1. These prefixes

are used with the CMPS and SCAS instructions.

Flags Affected: Depends on instruction used after REPNE/REPNZ

instruction.



Conclusion

In this chapter, we studied the explanation of major assembly

instructions used in reverse engineering. We also covered the

different types of instructions for stack, data transfer, arithmetic,

program execution, branching, bit manipulation, processor control,

and string. Examples with some instructions were also covered to

elaborate the working of the instructions.

In the next chapter, we will talk about some stack based

instructions in detail and understand the concept of code calling

conventions. This concept is important from the reverse

engineering point of view and you will come across this quite

often in implementing reverse engineering.



CHAPTER 5

Types of Code Calling Conventions

In Chapter 2, Understanding Architecture of x86 Machines , we

understood the concept of stack. Several things happen in the

background when we call a function. Control is transferred to the

new function in a way that the stack frame is allocated for local

variables and parameters are passed for a callee to understand.

On return, the return address is placed on the stack so that the

caller can find it and a stack clean-up is performed as well.

Imagine if the callee and the caller both clean up the stack, then

it will create a disastrous situation where the stack is cleaned

twice both by callee and caller. So, understanding the difference in

code calling conventions becomes important. As there are many

variants of CPUs, some CPUs have a strict protocol on how this

is performed. But when we talk about the x86 architecture, it is

all flexible where a programmer decides on how to call the

methods. This is the reason that led to different calling

conventions.

When you write C/C++ code wherein you use shared libraries,

code calling convention becomes important, as the code you are

interacting is beyond your control. If you are a programmer who

writes C/C++ code, then as a programmer, you don’t have to

worry as the compiler takes care of the calling convention for you.

The compiler generally takes the default code convention

automatically based on the language. In this chapter, we will

understand the difference in code calling conventions.



Structure

In this chapter, we will cover the following topics:

Understand the types of calling conventions

Concept behind different calling conventions



Objective

After studying this chapter, you will be able to differentiate

between different assembly codes with respect to the calling

convention. If in case you receive some assembly code then, by

going over the assembly listing, you will be able to evaluate the

calling convention used. To understand the different code calling

conventions, we will take up a pseudo code to run over the

concept behind each calling convention in detail.



Understand types of calling conventions

To understand calling conventions, let’s take a basic pseudo code.

In this code, function funcA calls another function In this case,

funcA is called the caller and funcB is called the

FuncA()

{

Arg1;

Arg2;

FuncB(Arg1, Arg2);

}

Now when FuncB is called, it is called with 2 arguments When

this code is compiled with different compilers, it will generate

different assembly codes. Calling convention is this set of rules

that specify how C or C++ functions are converted into an

assembly code. So, calling convention basically defines:

How arguments are passed to the function

How functions return values

How the caller calls the callee

How stack is managed when one function calls another



How stack is cleared

All these are defined by the calling convention method the

compiler uses. In C/C++ language, there are three types of calling

conventions majorly used: and We will walk through all these

calling conventions one by one.



CDECL

CDECL can also be read as C Declaration. When CDECL calling

convention is used:

Arguments are passed from the right to left order. In the same

pseudo code, right to left order means Arg2 is first pushed on

the stack and then Arg1 is pushed on the stack.

FuncA()

{

Arg1;

Arg2;

FuncB(Arg1, Arg2);

}

The function return value is passed into the EAX register.

Calling function, the caller cleans the stack.



STDCALL

STDCALL stands for Standard Call. This calling convention is

defined by Microsoft as a standard calling convention for Win32

API. When STDCALL is used:

The first point is the same as CDECL. Arguments are passed

from the right to left order.

The function return value is passed into the EAX register. This

point is also the same as CDECL.

This point differs from CDECL where called function, callee cleans

the stack.



FASTCALL

The main difference between CDECL/STDCALL and FASTCALL is

that the initial arguments are not pushed on stack but rather

passed in the registers. Keeping data in registers is faster than in

memory, hence it is named FASTCALL. In FASTCALL, when the

calling convention is used:

The first two or three parameters are passed in the registers EDX,

ECX, or EAX. Additional parameters are passed on to the stack.

Arguments are passed from the right to left order.

The function return value is passed into the EAX register.

Calling function, the caller cleans the stack if needed.



Concept behind different calling conventions

Now to understand the concept behind different calling

conventions, we will write a simple code in C/C++. Then using

cl.exe (VS compiler), we will compile the code with different

calling conventions and understand the difference between the

assembly codes generated.

The following image shows a simple C/C++ code that will add

numbers:

Figure 5.1: AddNumber.cpp



The AddNumber.cpp code is a simple code of adding two

numbers. A few points to notice in the preceding program are as

follows:

The main function is the entry point of the program.

The main function is calling an addition function. So, the main

function is the caller and the addition function is the callee.

The local variable defined in the main function and the addition

function are of type integer.

Two parameters are passed to the callee, which are 4 and 5.

After writing the code, we will compile the code with cl.exe and

use different switches that will force the compiler to change the

calling convention.

Use this switch for the CDCEL calling convention.

Use this switch for the STDCALL calling convention.

Use this switch for the FASTCALL calling convention.

We will take up each calling convention one by one and

understand how they differ from each other.



CDECL

We will compile the AddNumber.cpp code with no optimization

and with CDECL calling convention. We will use the /Gd switch

for this. Run the commands given below on the Windows

command prompt to set the environment for cl.exe (VS compiler)

and then compile the code with the following switches.

Use this switch for the CDCEL calling convention.

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 5.2: CDECL

This will generate Now we will move on to analyze the assembly

code generated in Our C++ code is divided into two functions,

one is the main function (caller) and other is the addition

function To understand CDECL calling convention, we will take up

the main function code conversation from the C++ code to

assembly.

Figure 5.3: Main function code in AddNumber.cpp



The assembly code of the main function becomes:

Figure 5.4: Main proc assembly code in AddNumber-CDECL.asm

Let’s analyze the assembly code of the main function in asm file:

Line 20-21 is function prolong. These are a sequence of

instructions to start a function.

In line 22, the objective of PUSH ECX after the function prologue

is not to save ECX on stack but to allocate 4 bytes on the stack

for storing local variables, which is



Add variable can be accessed with the help of the _add$ macro,

which is equal to -4. So, Add can be accessed at -

From line 24, we will understand the concept of CDECL. Let’s

recall the CDCEL calling convention points one by one to

understand the concept practically:

Arguments are passed from the right to left order.

At line 12 of AddNumber.cpp, which is int we are passing 4,5

parameters to the addition function. Now, from right to left means

5 will be pushed on the stack first and then 4 will be pushed on

the stack, as done in AddNumber-CDECL.asm code at line 24-25.

After the parameters are pushed on the stack, the addition

function is called at line 26 of

Calling caller cleans the stack.

After returning from the addition function, at line 27 of

AddNumber-CDECL.asm instruction add esp, 8 shrinks the stack by

8. This is because the caller (which is main in our case) cleans

up the stack as per CDECL's calling convention.

The function return values are passed into the EAX register.

The call to addition function at line 26 of AddNumber-CDECL.asm

returns the addition function return value to the EAX register,



which is then copied to add the variable location, – This copy

operation is done by the instruction at line 28 of

mov DWORD PTR _add$[ebp], eax

Similarly, the main function returns 0, which is achieved by xor

eax, eax instruction.

If you are not able to understand any instruction, please refer to

Chapter 4, Walk Through On Assembly



STDCALL

We will compile the code with no optimization and with STDCALL

calling convention. We will use the /Gz switch for this. Run the

commands given below on the Windows command prompt to set the

environment for cl.exe (VS compiler) and then compile the code with

the following switches:

Use this switch for the STDCALL calling convention.

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 5.5: STDCALL

This will generate Now we will move on to analyze the assembly

code in To understand the STDCALL calling convention, we will again

take up the main function code along with the addition function code

to the see conversation from the C++ code to assembly.



Figure 5.6: Main & addition function code in AddNumber.cpp

In the STDCALL calling convention, the assembly code of the main

function and the addition function becomes:



Figure 5.7: Main & addition proc assembly code in AddNumber-

STDCALL.asm

Let’s analyze the assembly code with respect to STDCALL. Most of

the points will be the same as that of CDCEL calling convention. We

will discuss the few differences here:

In ASM code line 20-21 is function prolong. These are a sequence of

instructions to start a function.

In ASM code line 22, the objective of PUSH ECX after the function

prologue, is not to save ECX on stack but to allocate 4 bytes on the

stack for storing local variable, which is

Add variable can be accessed with the help of the _add$ which is

equal to -4. So Add variable can be accessed at –

From line 24 we will understand the concept of STDCALL. Let’s recall

STDCALL points one by one:

Arguments are passed in from the right to left order, which is same

as CDCEL

At line 12 of AddNumber.cpp, which is int we are passing 4,5

parameters to the addition function. Now from right to feft means 5

will be pushed on the stack first and then 4 will be pushed on the

stack. This can be seen at line 26 of AddNumber-STDCALL.asm by

PUSH 5 & PUSH 4 instructions before the addition function is

called.



Called function, callee cleans the stack. This point differs from that

in CDCEL.

This can be seen at line 47 of by the RET 8 instruction. The callee

cleans up the stack by using the RET nBytes instruction, where the

RET instruction transfers control from the callee to the caller to the

return address saved on the stack. which in our case, is 8. So, 8

bytes are released on the stack to clean up the stack.

The function return values are passed into the EAX register.

The call to addition function at line 26 of AddNumber-STDCALL.asm

returns the addition function return value to the EAX register, which

is then copied to add the variable location, – This copy operation is

done by the following instruction:

mov DWORD PTR _add$[ebp], eax

at line 27 of AddNumber-STDCALL.asm

Similarly, the main function returns 0, which is achieved by xor eax,

eax instruction.



FASTCALL

As we read previously, the FASTCALL calling convention differs

majorly in passing arguments. To understand this, we will compile

the code with the optimization off and with the FASTCALL switch.

We will use the /Gr switch for this. Run the commands given below

on the Windows command prompt to set the environment for cl.exe

(VS compiler) and then compile the code with the following

switches:

Use this switch for the FASTCALL calling convention.

Name of output assembly listing file

Name of output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 5.8: FASTCALL

This will generate To analyze the assembly code in we will once

again see our C/C++ code.



Figure 5.9: Main & addition function code in AddNumber.cpp

Let’s see AddNumber-FASTCALL.asm generated as follows:



Figure 5.10: Main & addition proc assembly code in AddNumber-

FASTCALL.asm

Let’s analyze the assembly code in the same order we did for the

other calling conventions.

The function prolong instruction on line 20-21 is a sequence of

instructions to start a function.

In ASM code line 22, PUSH ECX is the same. It is not to save

ECX on stack but to allocate 4 bytes on the stack for storing the

local variable, which is

The add variable can be accessed with the help of the _add$ which

is equal to -4. So, add can be accessed at –

From line 24, we will see a different approach to pass arguments to

function. To understand, let’s recall the FASTCALL concept:

Initial arguments are not pushed on stack but rather passed in the

registers. The first two or three arguments are passed in the

registers EDX, ECX, or EAX. Additional arguments are passed on to

the stack. Arguments are passed from the right to left order.

By now, we are clear with the right to left approach. The point to

note here is that argument 5 is moved to EDX and argument 4 is

moved to ECX, as done at line 24-25 of Once the arguments are



moved to registers, the call to addition function is made at line 26

of

During the addition function execution, we can see that the

arguments in EDX, ECX are passed to the stack for further

processing between lines 45-49 of

Calling function, caller cleans the stack.

Arguments are passed to EDX, ECX so no arguments are passed to

stack, no stack cleanup is needed.

Function return values are passed into EAX register this is same as

other 2 calling convention we discussed. Restating same point about

FASTCALL.

Call to addition function at line 26 of AddNumber-FASTCALL.asm

returns the addition function return value to EAX register, which

then is copied to add variable location, – This copy operation is

done by this instruction:

mov DWORD PTR _add$[ebp], eax

at line 27 of AddNumber-FASTCALL.asm

Similarly, the main function returns 0, which is achieved by xor eax,

eax instruction at line 29 of



Conclusion

In this chapter, we covered three types of code calling conventions

majorly used: CDCEL, STDCALL, and FASTCALL. We learned that

in CDCEL and STDCALL, arguments are passed from the right to

left order and the function return value is passed into the EAX

register. In the CDCEL calling function, the caller cleans the stack

and in STDCALL, callee cleans the stack.

In FASTCALL, the initial arguments are not pushed on the stack

but rather passed in the registers. The rest function return value

is passed into the EAX register and in calling function, the caller

cleans the stack if needed. In the next chapter, we will take

C/C++ codes and compile them to understand assembly output.



CHAPTER 6

Reverse Engineering Pattern of Basic Code

In this chapter, we will write small pieces of code and compile

them to understand assembly output. We will walk through step-

by-step instructions in the assembly code and understand code

flow from the assembly point of view.

Throughout this chapter of compiling small pieces of code, we will

use Microsoft compiler on the 32-bit environment. All the

programs are compiled on Microsoft Windows 32-bit environment.

We will also use code optimization during our analysis.



Structure

In this chapter, we will cover the following topics:

What is code optimization

Understanding assembly pattern of the C/C++ program

Concept of code optimization

Tools used to generate the assembly pattern of C/C++ program



Objective

After studying this chapter, you should be able to:

Understand code optimization and its importance

Assembly code with and without optimization



What is Code Optimization?

Optimization means doing something at its best in order to

effectively utilize resources. Code optimization means to transform

the code to remove unnecessary lines, so as to consume fewer

resources (Memory, CPU and others) during execution. When code

is optimized by compilers, the following things are taken care of:

The meaning of the code should not be changed while optimizing

the code.

An optimized code should consume fewer resources.

Optimization should not impact the compiling time of the

program.

Let’s begin with a small C/C++ program and gradually move to

complex programs. This process will help you understand the

pattern of code in assembly language with respect to C/C++

applications.



Empty function

An empty function is something that does nothing. Let’s create an

empty function in C/C++ code. Here, we are defining and

declaring an empty function as

Figure 6.1: EmptyFunction.cpp



Empty Function without Optimization

Now, let’s compile it without optimization using the MSVC

compiler Run the following commands on the Windows command

prompt to set the environment for cl.exe (VS compiler), and then

compile the code with the following switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.2: Empty Function without Optimization

The assembly code generated without optimization is as follows:



Figure 6.3: EmptyFunction.asm

We will walk through the assembly code line by line to understand

the meaning and working of the code pattern. Line 1 says:

▼Line 1



; Listing generated by Microsoft (R) Optimizing Compiler Version

16.00.30319.01

This is a comment as it starts with a semicolon. This comment

states the compiler that we are using to generate the assembly

code, Microsoft (R) 32-bit C/C++ Optimizing Compiler Version

16.00.30319.01 for 80x86. The compiler basically translates the

program from one language to another. But when we talk about

optimizing compiler, it improves the code to run faster.

▼Line 3

TITLE

C:\JitenderN\REBook\EmptyFunction\EmptyFunction\EmptyFunction.c

pp

Title defines the name of the absolute path of the C/C++

program.

▼Line 4

.686P

This enables all the instructions for the Pentium Pro processor

(32-bit MASM only).

▼Line 5



.XMM

This means that the program requires a CPU with the Streaming

SIMD Extensions instruction set.

▼Line 6

include listing.inc

This listing.inc file contains the assembler macros. Macros are

used in assembly language for modular programming. Visual C++

does not embed the macro code in the assembly code to improve

performance and align the code. You can find this file in the

Visual C++ include folder.

Figure 6.4: listing.inc path

▼Line 7

.model flat



This is directive for enabling the flat memory model. To

understand memory models, we have to understand that memory

is accessed using 3 memory models:

This is a non-segmented memory model where the whole memory

appears to a program as one massive array of bytes. Code, data,

and stack all reside in the same address space.

In this model, memory is divided into groups of spaces called

segments.

The real address memory model is a very old memory model

used in the Intel 8086 processor.

▼Line 9-10

INCLUDELIB LIBCMT

INCLUDELIB OLDNAMES

With INCLUDELIB derivative, we link LIBCMT.LIB and

OLDNAMES.LIB libraries located in the following path:



Figure 6.5: Libraries path

▼Line 12

PUBLIC _main

PUBLIC is the derivative which makes the procedure public. A

derivative is an instruction which is used by the assembler to

automate the assembly process; it also helps improve the code

readability.

all functions begin with an underscore. main function is labeled as

a public function, which means it can be accessed by other

modules.



▼Line 13

; Function compile flags: /Odtp

All the comments begin with semicolons. This line states that the

code is compiled with the /Odtp switch.

▼Line 14

_TEXT SEGMENT

This is the start of the text segment or, we can say, the code

segment.

▼Line 15

_main PROC

Procedures are defined with the PROC statement and they must

be closed by the ENDP statement. We can see _main ENDP on

line 25.

▼ Line 16

; File

c:\jitendern\rebook\emptyfunction\emptyfunction\emptyfunction.cpp



This is a comment stating the file path of the C/C++ source

code.

▼Line 17

; Line 9

This is a comment which states that line number 9 of the C/C++

source code file is mapped with the instruction following this

comment.

▼Line 18-19

push ebp

mov ebp, esp

This is function prologue, which is the sequence of instructions at

the start of a function.

▼Line 20-21

; Line 10

xor eax, eax

XOR is an exclusive OR. The EAX register is used for storing the

return value of the function. The main function is returning 0 in

the C/C++ code, so XOR EAX with EAX will set the EAX register



to zero. Also, compilers can use MOV EAX, 0 in place of XOR

EAX, EAX. But XOR is preferred over MOV as XOR occupies 2-

byte opcode and an MOV instruction occupies 5 bytes.

▼Line 22

; Line 11

This comment states that line number 12 of the C/C++ source

code file is mapped with the instruction following this comment.

▼Line 23

pop ebp

POP EBP is a function epilogue, which is the sequence of

instructions to end a function.

▼Line 24

ret 0

RET is the return instruction. It returns the instruction pointer to

the caller procedure. The syntax of the RET instruction is:

RET nBytes

The return instruction has an optional nBytes operand that

specifies the number of bytes to be added to the value of the



ESP register after the return.

▼Line 25-26

_main ENDP

_TEXT ENDS

This is the close of the main procedure and the end of the text

segment or code segment.

▼Line 27

PUBLIC ?EmptyFunction@@YAXXZ    ; EmptyFunction

Internally, functions are represented by their decorated names,

which are encoded string created during the compilation process.

It appends the calling convention, function return type, function

parameters, and other information with the function name. This

process helps the linker find the correct function when linking an

executable. This process of name decoration is also known as

name mangling.

Like main, EmptyFunction is made public with the help of the

PUBLIC derivative.

▼Line 28

; Function compile flags: /Odtp



It is the same as explained previously. It states that the code is

compiled with the /Odtp switch.

▼Line 29

_TEXT SEGMENT

This is the start of the text segment or code segment.

▼Line 30

?EmptyFunction@@YAXXZ PROC    ; EmptyFunction

Starting of EmptyFunction procedure with PROC statement

▼Line 31

; Line 15

This comment states that line number 15 of the C/C++ source

code file is mapped with the instruction following this comment.

▼Line 32-33

push ebp

mov ebp, esp



This is a function prologue for

▼Line 34

; Line 16

This comment states that line number 17 of the C/C++ source

code file is mapped with the instruction following this comment.

▼Line 35

pop ebp

POP EBP is a function epilogue of

▼Line 36

ret 0

As EmptyFunction is doing nothing, it’s just an empty/blank

function. So, it’s retuning the instruction pointer back to the caller.

0 means that the ESP will be unchanged.

▼Line 37-38

?EmptyFunction@@YAXXZ ENDP    ; EmptyFunction

_TEXT ENDS



This is the close of the EmptyFunction procedure and the end of

the text segment or code segment.

▼Line 39

END

The END statement ends the source code.



Empty Function with Optimization

Now let’s compile the code with optimization using the /0x switch

on the x86 platform. Run the following commands on the

Windows command prompt to set the environment for cl.exe (VS

compiler), and then compile the code with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.6: Empty Function with Optimization

The assembly code we get is as follows:



Figure 6.7: EmptyFunction-Optimized.asm

As we can see, when the code is optimized, it transforms the

code to remove the unnecessary lines. During this optimization,

the meaning of the code remains the same. Compilers nowadays

are good at optimization. So as a reverse engineer, it is always a

good practice to understand the concept or the logic behind the

code rather than the original code. If we can understand the logic

then we can write our prototype.

Coming back to the code, we can see most of the lines of the

code are the same as explained in the earlier section. So, we will



not restate all of them. We will take up instructions that are

specific to the code optimization.

▼Line 18

xor eax, eax

main procedure is XOR’ing EAX to return zero, as the EAX

register is used for storing the return value of the function.

▼Line 28

ret 0

EmptyFunction is returning the instruction pointer to the caller

with just the RET instruction.



Returning Value

In this section, we will create a function in the C/C++ code to

return a constant value. We will define and declare a

Figure 6.8: ReturningValues.cpp



Returning Value without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.9: Returning a Value without Optimization

Here is what we get after compiling:



Figure 6.10: ReturningValue.asm

We have discussed most of the lines in the code in earlier

section. So, we will focus on the main instructions.

▼Line 20-24

; Line 10



xor eax, eax

; Line 11

pop ebp

ret 0

This is the part of instructions from the main function, where we

are XOR’ing EAX to make EAX equal to zero. Once the EAX is

zero, we are calling function epilogue using the POP instruction.

The RET instruction returns the execution back to the caller, where

the caller can take the return value from the EAX register.

▼Line 34-38

; Line 15

mov eax, 2020    ; 000007e4H

; Line 16

pop ebp

ret 0

Now, we move to the ReturningValue function, where EAX is filled

with 2020, which is the return value of the ReturningValue

function. The POP instruction is function epilogue and finally, RET

passes the instruction pointer back to the caller, where the caller

will take the result from the EAX register.



Returning Value with Optimization

Compile the code with optimization (with /0x switch) in the

MSVC compiler on the x86 platform. Run the following commands

on the Windows command prompt to set the environment for

cl.exe (VS compiler), and then compile the code with the following

switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.11: Returning Value with Optimization

Assembly code generated will be:



Figure 6.12: ReturningValue-Optimized.asm

We can observe in the optimized code that all the unnecessary

code lines are removed.

The main function shows only 2 instructions:

▼Line 18,20

xor eax, eax

ret 0



EAX is XOR’ed to reset EAX to 0, and the return value is stored

in EAX. The RET instruction passes the instruction pointer back to

the caller.

The ReturningValue function also shows only 2 instructions:

▼Line 28, 30

mov eax, 2020    ; 000007e4H

ret 0

MOV fills EAX with the return value of 2020 and the RET

instruction passes the instruction pointer back to the caller.



Basic “Hello, World” Program

In this simple C/C++ code, we are just printing “hello, world” on

the console. We are printing it using the printf() function.

Figure 6.13: HelloWorld.cpp



Basic “Hello, World” Program without Optimization

Compile the code without optimization with the MSVC compiler

on the x86 platform. Run the following commands on the

Windows command prompt to set the environment for cl.exe (VS

compiler), and then compile the code with the following switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.14: Basic “Hello, World” program without Optimization

Following is the generated assembly code which we shall now

analyze:



Figure 6.15: HelloWorld.asm

Let’s walk through the assembly code line by line:

▼Line 1-10

We have already discussed this in the EmptyFunction section.

▼Line 12-14



CONST SEGMENT

$SG4677 DB 'hello, world', 0aH, 00H

CONST ENDS

The string constant, which in our case is “hello, world”, is

allocated in the constant segment. The CONST SEGMENT

derivative is used to define the start of the constant segment in

the memory. In our case linker renamed CONST SEGMENT to

which can be dumped using any debugger. In the following

screenshot, you can see that we have opened the EXE file

(generated after compilation) in x32dbg and in this EXE file, we

have disabled the Address Space Layout Randomization using CFF

Explorer. Follow the steps mentioned in the Appendix to disable

ASLR on an EXE file. Disabling ASLR on an EXE file will help us

load the EXE file on the same memory space every time the EXE

file is opened in the debugger:

Figure 6.16: .rdata

$SG4677 is the internal name given by a compiler to handle the

string constant. DB, Defines the byte, which is the data type.



'hello, world', 0aH, 00H is the string data, which is null

terminated ASCII string.

By CONST the constant segment is ended.

▼Line 15

PUBLIC _main

PUBLIC is the derivative which makes the _main procedure public,

to be accessed by other modules.

▼Line 16

EXTRN _printf:PROC

Note: A code is placed in the .code segment, a constant string is

placed in the CONST (.rdata) segment and if it is not a constant,

it is placed in the .data segment.

EXTRN derivative declares the extern function, which is printf in

our case. All functions begin with an underscore.

▼Line 18

_TEXT SEGMENT



This starts the _TEXT segment or code segment, where our main

function code resides.

▼Line 19

_main PROC

This is the start of the main procedure.

▼Line 20-23

; File c:\jitendern\rebook\helloworld\helloworld\helloworld.cpp

; Line 8

push ebp

mov ebp, esp

Here, it’s the same as we discussed earlier that all comments

begin with semicolons. One comment is stating the C/C++ source

code file path and the other comment is defining the line number

in C/C++ source code is mapped with the instruction following

this comment. With the main function prologue code starts.

▼Line 25-27

push OFFSET $SG4677

call _printf

add esp, 4



Before calling the printf function, we push the pointer to our

constant string onto stack with the help of the PUSH instruction.

The CALL instruction is calling the printf function.

After the execution of the printf function, the control is transferred

back to the caller, which is main function in our case. Throughout

the execution of the printf function, the pointer to the string will

be on the stack. So, when the execution is returned back to the

main function, the stack needs to be cleaned as we don’t need

the string pointer anymore.

Since we are following the CDECL calling convention, it is the

caller’s responsibility to clean up stack, which in our case is done

using the add esp, 4 instruction.

A 32-bit program uses 4 bytes for addressing. So, when we add 4

bytes to ESP, we increment ESP by 4 bytes to clean up the stack

and remove the constant string pointer on the stack. An

equivalent of ADD instruction can also be POP which is often

used by other compilers.

▼Line 28-29

; Line 10

xor eax, eax

As main is returning 0 in C/C++ code and we know that the

return value of the function is stored in the EAX register, EAX is

XOR’ed to return 0.



▼Line 30-32

; Line 11

pop ebp

ret 0

It is calling the main function epilogue code and the RET

instruction returns execution back to the caller, where the caller

can take the return value from the EAX register.

▼Line 33

_main ENDP

With this, the _main function is closed.

▼Line 34-35

_TEXT ENDS

END

This is ending the code segment and source code.



Basic “Hello, World” Program with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 6.17: Basic “Hello, World” program with Optimization

The generate assembly code will be as follows:



Figure 6.18: HelloWorld-Optimized.asm

All the code lines are the same as we discussed in preceding

section. The only difference is that the function prologue and the

epilogue code are removed by the compilers to consume fewer

resources (Memory, CPU, and so on).

All the rest of the instructions are the same as we discussed in

the without optimization section. Point to note here is that the

meaning of the code is the same as that in the without

optimization code. We are pushing the pointer to the constant

string on the stack to call the printf function.



The printf function upon execution returns the execution back to

main (caller) to clean up stack and fill EAX with 0 to return what

is in the EAX.



Conclusion

In this chapter we understood the concept of code optimization.

We took examples of empty function, function returning value and

printing “hello, world” programs to understand the assembly

listing of optimized and non-optimized code. In the next chapter

we will talk about the code optimization concept on the programs

with printf function and also we will discuss on how Integer, Float

and char variables are stored in the memory.



CHAPTER 7

Reverse Engineering Pattern of Printf Program

Every time we write a program, we use the printf function to print

something or the other on the output screen. It can be something

for the end user of the program or it can be something for the

debugging purpose or a simple welcome message. The same logic

is followed by malware or virus writers. Programs are coded to

print something or the other using the printf function. So as a

reverse engineer, we should understand the printf function pattern

while reversing any program coded to behave as a virus or a

malware. Most of the virus or malware writers while coding print

something or the other for their own purpose or for the target to

act upon.

So, it is important to understand the programs that use the printf

function to print messages on the console. Along with this, we

will also discuss the usage of printf with different variables.

Different types of variables allocate different amounts of memory,

which is quite interesting to know. In this chapter, we take C/C++

program that uses the printf function to print integer, float, and

char on the console. Each program will be taken separately to

understand the pattern of the printf program when reverse

engineered.



Structure

In this chapter, we will cover the following topics:

Understanding the assembly pattern of printf with Integer

Understanding the assembly pattern of printf with Float

Understanding the assembly pattern of printf with Char



Objective

After studying this chapter, we will be able to understand the

code optimization concept on programs with the printf function.

We will understand how assembly code, with optimization, is

different from without optimization. During this, we will also

discuss how Integer, Float, and Char variables are stored in

memory. A floating point variable takes a different approach in

working as compared to integer or char. We will cover the

approach with detailed examples.



Function printf with Integers

In this simple C/C++ code, we are printing 4 integers on the

console. We are using the printf function to print integers.

Figure 7.1: printfWithIntegers.cpp



Function printf Printing Integers without Optimization

Compile the code without optimization with the MSVC compiler

on the x86 platform. Run the following commands on the

Windows Command Prompt to set the environment for cl.exe (VS

compiler), and then compile the code with the following switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.2: Function printf printing Integers without optimization

The generated assembly code will be as follows:



Figure 7.3: printfWithIntegers.asm

As we have already discussed the initial instructions of assembly

code generated in Chapter 6, Reverse Engineering Pattern of Basic

so we will start with line 12.

▼Line 12-14

CONST SEGMENT



$SG4677 DB 'integer1=%d; integer2=%d; integer3=%d,

integer4=%d', 00H

CONST ENDS

It is the start and the end of CONST SEGMENT in memory,

within which the string constant $SG4677 is defined. This can be

viewed in the memory by dumping .rdata (linker renamed CONST

SEGMENT to using any debugger. You can view the string

constant using the x32dbg debugger as follows:

Figure 7.4: .rdata

▼Line 15

PUBLIC _main

All functions begin with an underscore. The main function is

labeled as public function, which means it can be accessed by

other modules.



▼Line 16

EXTRN _printf:PROC

With the EXTRN derivative, it is defining the external symbol of

the name _printf and the type procedure.

Tip: Syntax of EXTRN derivative is label:type, where label can be variable/function and Label
Type can be as below:

Label Type Meaning

BYTE Variable of 8 bits



WORD Variable of 16 bits

DWORD Variable of 32 bits

QWORD Variable of 64 bits

PROC Procedure Name

Table 7.1

▼Line 18, 19

_TEXT SEGMENT

_main PROC

This starts the _TEXT segment where our main function code

resides. This can also be visualized in the x32dbg debugger:

.text segment of printfWithIntegers.exe starts from the 0x00401000

address and we can see that the main function/procedure code

starts from the same address.



Figure 7.5: .text

▼Line 20-23

; File c:\jitendern\rebook\helloworld\helloworld\helloworld.cpp

; Line 8

push ebp

mov ebp, esp

This is the same as earlier. This comment states the C/C++

source code file path and other defining line number in C/C++

source code that is mapped with the instruction following this

comment. With PUSH instruction, the main function prologue

code starts.



▼Line 25-30

push4

push3

push2

push1

push OFFSET $SG4677

call_printf

From here, something interesting begins. All the arguments to

printf function are pushed onto the stack in a reverse order. Each

argument is of type integer. In a 32-bit environment, each integer

occupies 4 bytes in size. To understand the stack state during

execution, we can put breakpoint on the call of the printf function

in the x32dbg debugger. Once the breakpoint is set, we will run

the code to see the stack state when breakpoint is hit. This will

help us visualize how the arguments to printf are pushed onto

the stack.

Figure 7.6: Breakpoint on the call of printf



We can see that the argument integer 4 is pushed first on the

stack and then 3, 2, and 1 are pushed. The following is the

explanation for the stack state when breakpoint is hit:

0012FF2C  00408140  "integer1=%d; integer2=%d; integer3=%d,

integer4=%d"

0012FF30  00000001  Argument 1 of type int is pushed on stack

0012FF34  00000002  Argument 2 of type int is pushed on stack

0012FF38  00000003  Argument 3 of type int is pushed on stack

0012FF3C  00000004  Argument 4 of type int is pushed on stack

At the 0x0012FF2C location, the pointer to the constant string

(which is is pushed on the stack. We can dump the location in

x32dbg to view the constant string,

Figure 7.7: String dumped

Once all the arguments are pushed on the stack, the call to the

printf function is made by:

▼Line 30

call _printf



This will execute the printf function and after the execution of the

printf function, the instruction pointer will return the execution

pointer back to the caller.

▼Line 31

add esp, 20     ; 00000014H

As we are using the CDECL calling convention, the caller cleans

up the stack. So, after returning from the printf function, add esp,

20 shrinks the stack by 0x20.

20 bytes is calculated by adding the size of 4 arguments, 4 bytes

each plus one pointer argument to the constant string of 4 bytes

size. This makes a total of 4x5 bytes, which is equal to 20 bytes

in Hex).

Now, we will understand something more interesting related to

garbage on the stack. To understand the concept of garbage, we

put breakpoint on the instruction next to add esp, We see

something like the following on the stack:



Figure 7.8: Garbage on stack

The caller, as per the CDECL calling convention, is responsible for

cleaning the stack, which is done using the ADD instruction by

moving ESP back by 20 bytes. As we can see, ESP is moved

backed to but all the arguments and pointer to the constant

string are still on the stack. These values are not cleared or set

to zeros. Everything above the ESP value is garbage with no

meaning.

▼Line 34-39

; Line 9

xor eax, eax

; Line 10

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

All the remaining instructions are the same as we discussed in

the chapters before. The main function is returning a zero by

making EAX to zero.

With END, everything is closed and the program is ended.



Function printf Printing Integers with Optimization

Compile the code with optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.9: Function printf printing integers with optimization

The generated assembly code will be as follows:



Figure 7.10: printfWithIntegers-Optimized.asm

In the optimized code, everything is the same except the main

function prologue and the epilogue code is removed by compilers

to consume fewer resources.



Function printf with Float

Most of the calculations are done using integers, but when it

comes to accuracy, floating point plays an important role. The

earlier x86 processor family has separate coprocessors for

mathematical calculations that process floating point numbers. But

later on, the capability of handling floating point numbers was

integrated into the microprocessor itself. This unit which was

integrated into the microprocessor to handle the floating point

numbers is called the Floating Point Unit (FPU). Now to handle

the floating point, two things are required:

There should be space to store the floating point numbers.

There must be instructions to handle and do operations on the

floating point numbers.

Now, regarding the space to store floating point numbers, FPU

has 8 registers that forms a stack, i.e., from ST0 to ST7. FPU is

also referred to as the “x87” section or “FPU Register Stack” the

"x87 Stack". Instructions to handle the floating point numbers are

referred to as the "x87 instruction set".

The floating point numbers are generally 32-bit long for float type

and 64-bit long for double type. So, to maintain maximum

accuracy of the floating numbers, the FPU stack registers are 80-

bit wide. To understand more about floating point, we will take a



simple C/C++ code to print two floating numbers on the console.

We are using printf to print the floating numbers.

Figure 7.11: printfWithFloat.cpp



Function printf Printing Float without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.12: Function printf printing Float without Optimization

The generated assembly code will be as follows:



Figure 7.13: printfWithFloat.asm



Let’s start understanding the assembly code generated line by line:

▼Line 1-10

; Listing generated by Microsoft (R) Optimizing Compiler Version

16.00.30319.01

TITLE

C:\JitenderN\REBook\printfWithFloat\printfWithFloat\printfWithFloat.c

pp

.686P

.XMM

include listing.inc

.model flat

INCLUDELIB LIBCMT

INCLUDELIB OLDNAMES

We have already discussed this in the earlier section, so we will

move on to the next instruction.

▼Line 12-14

CONST SEGMENT

$SG4677 DB 'float1=%f, float2=%f', 00H

CONST ENDS

This is the start of CONST SEGMENT named by the linker as

The compiler is using the $SG4677 name to handle the string

constant. DB is the data type to define byte and the string is



terminated with null, The .rdata can be dumped to view the

constant string.

Figure 7.14: .rdata

▼Line 15-16

PUBLIC __real@3ff0000000000000

PUBLIC __real@40011eb851eb851f

Floating point numbers can be represented in a binary number

format and this binary numbering format is standardized. Real

number format, short/single, and long/double real numbers are

available in three sizes:

REAL4, 32-bit, short real or single precision

REAL8, 64-bit, long real or double precision

REAL10, 80-bit, temporary real or extended precision



REAL4, REAL8, REAL10 have different formats: The format for

REAL4 is:

Figure 7.15: REAL4 format

Where:

S = sign bit (0=positive, 1=negative)

E = exponent bits

F = fraction bits of the significand

The format for REAL8 is:

Figure 7.16: REAL8 format

The format for REAL10 is:



Figure 7.17: REAL10 format

To keep it simple and easy to understand, we will not discuss in

detail the individual formats. Keeping the real numbering format

(REAL8, which is 64 bit for long real or double precision is used

in our code) in mind, we will move to the same instructions:

PUBLIC __real@3ff0000000000000

PUBLIC __real@40011eb851eb851f

Public is a derivative that makes a variable public and make it

available across modules. real is representing the real number

format followed by the hexadecimal value of our function

parameter. Let’s convert this hex values into floating number using

an online line converter

Figure 7.18: Hex value into float1



This hexadecimal 3ff0000000000000 is equivalent to our

float1(1.0) argument in C/C++ code.

Figure 7.19: Hex value into float2

This hexadecimal 40011eb851eb851f is equivalent to our float2(2.14)

argument in C/C++ code.

▼Line 17

PUBLIC _main

The main function is labeled as a public function, which means it

can be accessed by other modules.

▼Line 18-20

EXTRN _printf:PROC

EXTRN __fltused:DWORD

; COMDAT __real@3ff0000000000000

EXTRN derivative declares the external function, which is printf in

our case. All functions begin with an underscore.



▼Line 22-29

CONST SEGMENT

__real@3ff0000000000000 DQ 03ff0000000000000r ; 1

CONST ENDS

; COMDAT __real@40011eb851eb851f

CONST SEGMENT

__real@40011eb851eb851f DQ 040011eb851eb851fr ; 2.14

; Function compile flags: /Odtp

CONST ENDS

This is the start/end of CONST Within this segment, our function

argument 2.14 represented by 40011eb851eb851f hexadecimal

notation is stored in CONST SEGMENT or we can say Let’s

dump .rdata to view our float2 argument in C/C++ code using

any debugger. As we deal with little-endian, the floating point

argument’s hexadecimal representation will be stored in a reverse

order.

40011eb851eb851f will be stored as 1F 85 EB 51 B8 1E 01 40 in

the .rdata segment, as we can see in x32dbg at 0x0040C158

memory location. If you are thinking about other floating variables

in .rdata segment, then wait. Things will be clear after a few

instructions.



Figure 7.20: Floating point argument in .rdata

▼Line 30-34

_TEXT SEGMENT

_main PROC

; Line 7

push ebp

mov ebp, esp

In the TEXT segment, we have the main procedure which starts

with a function prologue.

▼Line 36

sub esp, 8

Allocating 8 bytes on the stack for the main function local

variable, which is third argument (2.14) to the printf function.



▼Line 37

fld QWORD PTR __real@40011eb851eb851f

FLD stands for Floating Point Load. This instruction pushes the

floating point value on FPU stack, which is from ST0 to ST7. You

can see the debugger output before and after running this

instruction as follows:

You can insert breakpoint at the start of To insert breakpoint,

scroll to the top of .text segment, you will find the same set of

instructions as in our assembly file Once breakpoint is set you

can step into the instructions one by one.

x32dbg output before instruction execution of this instruction:

fld QWORD PTR __real@40011eb851eb851f



Figure 7.21: ST0 before

After instruction execution:

Figure 7.22: ST0 after

▼Line 38

fstp QWORD PTR [esp]

FSTP means Floating Point Store and POP. It moves the floating

point value from ST0 to the top of the stack PTR [esp] and POP

the value from ST0 completely.



Figure 7.23: Floating point Store and POP

▼Line 39

sub esp, 8

Again allocating 8 bytes on the stack for the main function local

variable, which is the second parameter 1.0 to the printf function.

Let’s see what it looks like in x32dbg.



Figure 7.24: Allocating space on stack

▼Line 40

fld1

This instruction loads the floating point value 1.0 on the FPU

stack.



Figure 7.25: Loads floating point value 1.0

▼Line 41

fstp QWORD PTR [esp]

FSTP means Floating Point Store and POP, it moves the floating

point value which is 1.0 from ST0 to the top of the stack PTR

[esp] and POP the value from ST0 completely.



Figure 7.26: Floating Point Store and POP

▼Line 42

push OFFSET $SG4677

Now before calling the printf function, we have to pass the

remaining string constant to the stack. This PUSH instruction is

pushing the string constant $SG4677 onto the stack.



Figure 7.27: Push string

▼Line 43

call _printf

All the parameters to the printf function are pushed onto the

stack before the CALL instruction to the printf function. After this

instruction execution, both the variables will be printed on the

console.

▼Line 44

add esp, 20     ; 00000014H

As we are following the CDECL calling convention, it’s the caller

who cleans the stack. On returning from the printf function, the



main cleans the stack by moving the stack point back by 20 bytes

(we used 4 bytes for pushing the string constant, 8 bytes for

pushing the 1.0 floating hex value and another 8 bytes were used

for pushing the 2.14 floating hex value).

Before this instruction, the x32dbg screen looks as follows:

To move directly to add instruction, you can use step over to

execute print function and stop at add instruction. Or you can

insert breakpoint at the add instruction to stop execution at add

instruction.

Figure 7.28: After call printf

After this instruction:



Figure 7.29: Stack cleaned

▼Line 45-52

; Line 9

xor eax, eax

; Line 10

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

The remaining instructions are making EAX zero as main is

returning 0 in the C/C++ code. In the last it is calling function

epilogue to end main, TEXT segment, and code.



Function printf Printing Float with Optimization

Compile the code with optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

/Ox: Enable maximum optimization

/Fa: Name of the output assembly listing file

/Fe: Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.30: Function printf printing Float with Optimization

The generated assembly code will be as follows:



Figure 7.31: printfWithFloat-Optimized.asm

All the instructions in the listing are the same except line 33. As

the code is optimized, the function prologue and epilogue are



removed, which we will discuss in this section.

▼Line 33

fld QWORD PTR __real@40011eb851eb851f

It is the same as before. This instruction pushes the floating

point value 2.14 on the FPU stack, ST0.

▼Line 34

sub esp, 16     ; 00000010H

As we saw in the non-optimized code, SUB is called twice to

allocate memory for the main function local variable. But in

optimization, both instructions are combined to subtract 16 bytes

from ESP to allocate 8+8 bytes for floating variables 1.0 and 2.14.

▼Line 35

fstp QWORD PTR [esp+8]

It moves the floating point value, which is 2.14 from ST0 to the

top of the stack PTR [esp+8] and POP the value from ST0

completely.

▼Line 36

fld1



It is the same as earlier. This instruction loads the floating point

value 1.0 on the FPU stack.

▼Line 37

fstp QWORD PTR [esp]

It moves the floating point value, which is 1.0 from ST0 to the

top of the stack PTR [esp] and POP the value from ST0

completely.

▼Line 38-39

push OFFSET $SG4677

call _printf

Pushes the string constant offset on the stack to call the printf

function.

▼Line 40-47

add esp, 20     ; 00000014H

; Line 9

xor eax, eax

; Line 10

ret 0

_main ENDP



_TEXT ENDS

END

The caller cleans the stack as per the CDECL calling convention.

The remaining instructions return 0 by XORing the EAX register,

and end the main procedure, text segment, and code in line 45-

47.



Function printf with char

In this simple C/C++ code, we are printing 2 char on the console.

We are using the printf function to print the char.

Figure 7.32: printfWithChar.cpp



Function printf Printing Char without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.33: Function printf printing Char without Optimization

The generated assembly code will be as follows:



Figure 7.34: printfWithChar.asm

Most of the part of the assembly listing has already been

discussed in the preceding section. Let’s move on to line 25.

▼Line 25-28

push 98     ; 00000062H

push 97     ; 00000061H

push OFFSET $SG4677

call _printf



Before calling the printf function, three parameters are pushed

onto the stack. The first PUSH instruction is PUSH where 98 is

the ASCII value of char ‘b’ and the hex equivalent is 62H. Refer

to the ASCII table in the appendix for a complete ASCII listing.

The second PUSH instruction is PUSH where 97 is the ASCII

value of ‘a’ and the hex equivalent is 61H.

And the third parameter to printf is the string constant defined in

the CONST This is how the stack looks in x32dbg before the

CALL instruction. You can check the stack state by inserting

breakpoint at the CALL to the printf function.

Figure 7.35: Stack state

1: [esp] 00408140 Memory location of $SG4677, "char1=%c,

char2=%c"

2: [esp+4] 00000061 Hex value of char ‘a’ is PUSHed

3: [esp+8] 00000062 Hex value of char ‘b’ is PUSHed

4: [esp+C] 0012FF88 [EBP]

5: [esp+10] 00401209 return to printfwithchar.00401209 from

printfwithchar.00401000

After returning from the caller cleans the stack with the ADD ESP,

12 instruction as we discussed in the CDECL calling convention.



Further, the code is ended with 0 in EAX, which is achieved by

XOR’ing EAX. As we discussed earlier, that function return value is

stored in EAX.



Function printf printing Char with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 7.36: Function printf printing Char with Optimization

The generated assembly code will be as follows:



Figure 7.37: printfWithChar-Optimized.asm

Everything in the optimized code is the same except that the

function prologue and epilogue are eliminated in the optimized

code.



Conclusion

In this chapter, we learned to reverse engineer programs or

applications with the printf function. We also spoke about the

code optimization concept in programs with the printf function.

We also discussed how integer, float, and char variables are stored

in memory. The floating point variable takes a different approach

in working as compared to integer or char. In the next chapter,

we will talk about pointers and how they are handled in reverse

engineering.



CHAPTER 8

Reverse Engineering Pattern of Pointer Program

Most of us find it difficult to understand pointers, but it is the

one of the most interesting subjects in programming. In our real

life, have you ever imagined that pointers are everywhere? When

we watch the television with a cable connection, we have so many

channels to watch. Each channel is associated with a number we

often call the channel number. When this channel number is

pressed on the remote of our cable modem, the respective

channel broadcasting starts on the television. In the context of

pointers, this channel number is the pointer to the channel. This

is the number where the channel is stored and played when

pressed on the remote control.

So now, to understand the concept of pointers, we will walk

through its concept in programming. In C/C++, there are various

types of variables to hold the different types of values. We have

the Integer variables that store the Integer value, the Floating

variables to store real numbers, Char to store characters, and

others. Similarly, a pointer is a variable that stores the memory

address of other variables. In this chapter, we will understand the

pattern of pointers in assembly code.



Structure

In this chapter, we will cover the following topics:

Pointers

Pointers without Optimization

Pointers with Optimization



Objective

After studying this chapter, we should be able to understand how

pointers are used in programming. We will study the basics of

pointers from integer to float and char. This will help you

understand the way pointers are handled with respect to memory

allocation. After understanding pointers, we will write a simple

C/C++ program to generate optimized and non-optimized ASM

code and check pointer assembly pattern with and without

optimization.



Pointers

To understand pointers, let’s take a simple declaration:

int iNumber = 3;

Here, we are defining an integer variable of the name, We are

using the Hungarian Notation as the variable naming convention.

This declaration is used by the compiler to:

Reverse space for an integer variable in memory

Associate the name with the memory location

Store 3 on the reserved memory location

You can imagine this as:

0x0012FF3C is the memory location address which is holding

0x00000003 as a value.



So we saw how a variable is stored in memory. Now, we will take

a C/C++ program to understand pointers and the concepts

associated with them:

Figure 8.1: Pointers.cpp

Line 8 of C/C++ code defines a variable of type integer. In lines 9

and 10, we see two operators, * and

First, we will discuss the & operator. It means the address of the

operator. So, &iNumber returns the memory address of the

variable which in the preceding case was

Second is the * operator. It is called the value at address

operator. It gives the value stored at the particular address. So, *



(&iNumber) returns the value at 0x0012FF3C memory location,

which is 3.

On line 9, piNumber is declared as the pointer variable, which

means it is capable of holding memory addresses. Declaring int

*piNumber does not mean that piNumber contains an integer

value. What it means is that piNumber will hold the memory

address of an integer variable. Similarly, Float *pf means that pf

will hold the address of a floating point variable. The output of

the preceding C/C++ program is:

Address of iNumber = 0x0012FF3C

Address of iNumber = 0x0012FF3C

Address of piNumber = 0x0012FF38

Value of piNumber = 0012FF3C

Value of iNumber = 3

Value of iNumber = 3

Value of iNumber = 3

Figure 8.2: Pointers.exe output



You will get different output while executing the preceding code.

Let us see what we get on compiling the code with and without

optimization.



Pointer without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 8.3: Pointer without Optimization

The generated assembly code will be as follows:



Figure 8.4: Pointers.asm-Part 1



Figure 8.5: Pointers.asm-Part 2



Figure 8.6: Pointers.asm-Part 3

The code generated contains two segments: CONST named by

linker) and _TEXT segment (for code). Let’s walk through the

segments in the assembly listing:

▼Line 12-24

CONST SEGMENT

$SG4679 DB 0aH, 'Address of iNumber = 0x%p', 00H



ORG $+1

$SG4680 DB 0aH, 'Address of iNumber = 0x%p', 00H

ORG $+1

$SG4681 DB 0aH, 'Address of piNumber = 0x%p', 00H

$SG4682 DB 0aH, 'Value of piNumber = %p', 00H

$SG4683 DB 0aH, 'Value of iNumber = %d', 00H

ORG $+1

$SG4684 DB 0aH, 'Value of iNumber = %d', 00H

ORG $+1

$SG4685 DB 0aH, 'Value of iNumber = %d', 00H

CONST ENDS

Constant strings in the code are terminated by zero byte and are

allocated in the CONST segment, which can be seen by dumping

.rdata using x32dbg.



Figure 8.7: .rdata

▼Line 28-30

_TEXT SEGMENT

_piNumber$ = -8      ; size = 4

_iNumber$ = -4      ; size = 4

To access the local variable on the stack frame, we have to add

_$ to the EBP address. So, to access the piNumber variable on

stack, we have to add -8 to the EBP address and add -4 to EBP

to access the iNumber variable.

▼Line 31-38

_main PROC

; File c:\jitendern\rebook\pointers\pointers\pointers.cpp

; Line 7

push ebp

mov ebp, esp

sub esp, 8

; Line 8

mov DWORD PTR _iNumber$[ebp], 3

Let us understand the main procedure by placing the breakpoint

at the start of the main call can be located by scrolling to the

top of the disassembled code). Once the breakpoint is set, run

the program and step into the instructions one by one. The main

procedure starts with a usual function prologue and then with a

SUB instruction. The SUB instruction is allocating 8 bytes on the



stack for the main function local variables. Once the space is

allocated on stack, the MOV instruction will push 3 on the main

stack frame at [EBP-0x4] as shown in the following screenshot:

Figure 8.8: Stack state

Line 39-40

; Line 10

lea eax, DWORD PTR _iNumber$[ebp]

Load Effective Address loads the address of [EBP-0x4] into EAX.

As we know that iNumber = which is stored on stack at [EBP-

0x4] = 0x0012FF3C memory location. This instruction loads EAX

with as shown in the following screenshot:



Figure 8.9: LEA output

▼Line 41

mov DWORD PTR _piNumber$[ebp], eax

This will move the memory location stored in EAX onto the stack

at [EBP-0x8]. Now we have both values stored on the stack,

integer value which is 0x00000003 and the pointer to the integer

value, as shown in the following screenshot:

Figure 8.10: piNumber on stack



▼Line 42-45

; Line 12

lea ecx, DWORD PTR _iNumber$[ebp]

push ecx

Before calling the first printf function, we will have to push the

arguments onto the stack. The first parameter that will be pushed

on the stack will be the address of LEA will load the address of

iNumber into ECX, which is later pushed on the stack, as shown

in the following screenshot:

Figure 8.11: Before calling first printf function

▼Line 45-46

push OFFSET $SG4679

call _printf



This push instruction is pushing another argument to which is a

string constant referred to by Once both the parameters are

pushed, call to the printf function is made. While debugging in

x32dbg, we are stepping over (using Debug > Step Over option)

during the printf call. Return from the printf function call will

print on the console the Address of as shown in the following

screenshot:

Figure 8.12: Pointer.exe output

▼Line 47

add esp, 8

On returning from the printf procedure, the stack is cleaned by

adding 8 bytes to ESP, as shown in the following screenshot:



Figure 8.13: Stack clean

▼Line 48-50

; Line 13

mov edx, DWORD PTR _piNumber$[ebp]

push edx

Now this is preparing the stack for the second printf function call.

It will first MOV the value stored at [EBP-0x8] to the EDX register

and then push EDX onto the stack, as shown in the following

screenshot:



Figure 8.14: EDX onto the stack

▼Line 51-53

push OFFSET $SG4680

call _printf

add esp, 8

This is pushing another argument to the printf function, which is

a string constant onto the stack. Now again, both the arguments

to printf are pushed on the stack. The call to the printf function

is made. On return, printf will print Address of iNumber =

piNumber and the stack will again be cleaned after the return.

▼Line 54-59

; Line 14

lea eax, DWORD PTR _piNumber$[ebp]

push eax

push OFFSET $SG4681

call _printf

add esp, 8

In third the printf call, we have to print the address of which is

For this, LEA is used to load the address of [EBP-0x8] to EAX

and then pushed on the stack before the printf call. The string

constant, represented by is also pushed on the stack before

another printf call, as shown in the following screenshot:



Figure 8.15: Print address of piNumber

▼Line 60-62

; Line 15

mov ecx, DWORD PTR _piNumber$[ebp]

push ecx

Now we have to print, value of So the MOV instruction will move

the piNumber variable value at [EBP-0x8] into ECX. In the next

instruction, it will push ECX onto the stack before the printf call.

▼Line 63-65

push OFFSET $SG4682

call _printf



add esp, 8

These are the same as we did in the earlier printf call. It then

cleans up the stack with the ADD instruction.

▼Line 66-71

; Line 16

mov edx, DWORD PTR _iNumber$[ebp]

push edx

push OFFSET $SG4683

call _printf

add esp, 8

This instruction will move the iNumber variable value at [EBP-0x4]

into EDX. Before the printf call, it pushes both the arguments

(string constant and EDX value) on the stack. Whatever is pushed

onto the stack before pushing the string constant will be printed

on the output console, as shown in the following screenshot:



Figure 8.16: Printing iNumber

▼Line 72-77

; Line 17

mov eax, DWORD PTR _iNumber$[ebp]

push eax

push OFFSET $SG4684

call _printf

add esp, 8

These instructions are doing the same as the earlier ones, except

that they are using EAX for pushing the iNumber variable value at

[EBP-0x4] onto the stack.



▼Line 78-80

; Line 18

mov ecx, DWORD PTR _piNumber$[ebp]

mov edx, DWORD PTR [ecx]

The first MOV instruction will move the piNumber variable value

at [EBP-0x8] into ECX. The second instruction will move the value

stored at a memory location pointed by ECX into EDX, as shown

in the following screenshot:

Figure 8.17: MOV [ECX] into EDX

▼Line 81-84

push edx

push OFFSET $SG4685

call _printf

add esp, 8



The push instruction is pushing the arguments on the stack

before the printf call. On return from the printf function, the value

of iNumber will be printed on the console. Stack cleaning is done

with the ADD instruction, as shown in the following screenshot:

Figure 8.18: iNumber will be printed

▼Line 85-92

; Line 19

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END



The remaining instructions are the same as what we discussed in

the earlier sections. The main function epilogue is called to end

the segment and code.



Pointer with Optimization

Compile the code with optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 8.19: Pointer with Optimization

The generated assembly code will be as follows:



Figure 8.20: Pointers-Optimized.asm-Part 1



Figure 8.21: Pointers-Optimized.asm-Part 2

First, we will talk about the difference in the optimized and non-

optimized code generated. In optimized code, the function



prologue is removed, so all the places where EBP is referred is

replaced with ESP. So, in the optimized assembly listing, we will

observe the ESP reference in place of EBP as we observed in the

non-optimized assembly listing. To explain this concept, we will

check the stack state in detail for a better understanding. Let’s

walk through the assembly listing by placing breakpoint at the

start of the main procedure:

▼Line 33-34

; Line 7

sub esp, 8

This is the start of the main procedure, where ESP is subtracted

by 8 bytes to create room for the main function local variables,

which are integer variable and pointer to that integer variable

Before the execution of this instruction, the stack will look as

follows:

Figure 8.22: Start of the main procedure



▼Line 35-36

; Line 10

lea eax, DWORD PTR _iNumber$[esp+8]

The Load effective address will load EAX with the address of

which is evaluated to:

lea eax, DWORD PTR ss:[esp]

as _iNumber$ = -8

As we can see, EAX is filled with 0x0012FF3C, which is ESP itself.

Now, EAX also points to the top of the stack as follows:

Figure 8.23: EAX also points to the top of stack

▼Line 37-39

; Line 12

mov ecx, eax



push ecx

Move EAX to ECX. Now, ECX is also filled with which is pushed

on the stack with the push ecx instruction. With this, our one

argument to the printf function is pushed on the stack.

▼Line 40

push OFFSET $SG4679

This will push the string constant on the stack, which is another

argument to the printf function. As we can see, both the

arguments to the printf function are pushed on the stack. The

stack state is shown in the following screenshot and can be

understood in the following manner:

[ESP]  0012FF34  00408140  “\nAddress of iNumber = 0x%p”,

arg to printf()

[ESP+0x4] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x8] 0012FF3C  JUNKJUNK  This where we will store

iNumber

[ESP+0xC] 0012FF40  JUNKJUNK  This where we will store

&iNumber

[ESP+0x10] 0012FF44  00401272  return to 0x00401272 from

0x401000



Figure 8.24: Stack state

▼Line 41-42

mov DWORD PTR _iNumber$[esp+16], 3

mov DWORD PTR _piNumber$[esp+16], eax

Both instructions are evaluated to:

mov dword ptr ss:[esp+0x8], 0x3

mov dword ptr ss:[esp+0xC], eax

Earlier, in the stack state, we allocated room for local variables of

the main function on the stack (shown as in stack state). Now,

using these instructions, we are storing the integer variable

0x00000003 at [ESP+0x8] and the pointer to this variable at

[ESP+0xC]. Now, the stack will look like as follows:

[ESP]  0012FF34  00408140  "\nAddress of iNumber = 0x%p",

argument to printf()

[ESP+0x4] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x8] 0012FF3C  00000003  iNumber is stored here  



[ESP+0xC] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x10] 0012FF44  00401272  return to 0x00401272 from

0x401000

Figure 8.25: After Line 41-42 execution

▼Line 43

call _printf

Once the arguments are pushed on the stack, call to printf is

made. As per the C/C++ code at line 12:

printf ("\nAddress of iNumber = 0x%p", &iNumber) ;

So, on returning from the printf call, the following will be printed

on the console:



Figure 8.26: After printf execution

▼Line 44-48

; Line 13

mov edx, DWORD PTR _piNumber$[esp+16]

push edx

push OFFSET $SG4680

call _printf

The C/C++ code on line 13 prints which is the memory location

of

printf ("\nAddress of iNumber = 0x%p", piNumber) ;

In our assembly code, arguments to the printf function are

pushed on the stack by first moving EDX with the pointer to the

Integer variable. The same EDX is then pushed on to stack with

another push of string constant. Once we have both arguments to

printf function on stack, call to printf function is made. As shown

in the stack state and the following screenshot:



[ESP]  0012FF2C  0040815C  "\nAddress of iNumber = 0x%p",

argument to printf()

[ESP+0x04] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x08] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x0C] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x10] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x14] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x18] 0012FF44  00401272  return to 0x00401272 from

0x401000

Figure 8.27: After the second printf execution

▼Line 49-53

; Line 14

lea eax, DWORD PTR _piNumber$[esp+24]

push eax



push OFFSET $SG4681

call _printf

The C/C++ code on line 14 prints which is the memory location

of

printf ("\nAddress of piNumber = 0x%p", &piNumber) ;

In our assembly code, the LEA instruction will be evaluated to:

lea eax, ss:[esp+0x14]

LEA will load EAX with the memory address of which is the

address of Once EAX is loaded with the address, it is pushed

onto the stack with another push of the string constant. Once we

have both arguments to the printf function on the stack, call to

the printf function is made. This is shown in the following

screenshot:

[ESP]  0012FF24  00408178  "\nAddress of piNumber = 0x%p",

argument to printf()

[ESP+0x04] 0012FF28  0012FF40  &piNumber is stored here,

argument to printf()

[ESP+0x08] 0012FF2C  0040815C  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x0C] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x10] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()



[ESP+0x14] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x18] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x1C] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x20] 0012FF44  00401272  return to 0x00401272 from

0x401000

Figure 8.28: After thrid printf execution

▼Line 54-58

; Line 15

mov ecx, DWORD PTR _piNumber$[esp+32]

push ecx

push OFFSET $SG4682

call _printf

The C/C++ code on line 15 prints which is the memory location

of

printf ("\nValue of piNumber = %p", piNumber) ;



In our assembly code, the MOV instruction will be evaluated to:

mov ecx, dword ptr ss:[esp+0x1C]

MOV will move the value at ss:[esp+0x1C] to ECX, which points

to the memory location of Now, the arguments are again pushed

to the stack for call to the printf function. This is shown in the

following screenshot:

[ESP]  0012FF1C  00408194  "\nValue of piNumber = %p",

argument to printf()

[ESP+0x04] 0012FF20  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x08] 0012FF24  00408178  "\nAddress of piNumber =

0x%p", argument to printf()

[ESP+0x0C] 0012FF28  0012FF40  &piNumber is stored here,

argument to printf()

[ESP+0x10] 0012FF2C  0040815C  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x14] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x18] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x1C] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x20] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x24] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x28] 0012FF44  00401272  return to 0x00401272 from

0x401000



Figure 8.29: After fourth printf execution

▼Line 59-63

; Line 16

mov edx, DWORD PTR _iNumber$[esp+40]

push edx

push OFFSET $SG4683

call _printf

The C/C++ code on line 16 prints which is the value of

printf ("\nValue of iNumber = %d", iNumber) ;

In our assembly code, the MOV instruction will be evaluated to:

mov edx, dword ptr ss:[esp+0x20]



MOV will move the value at ss:[esp+0x20] to EDX, which is the

value of Now, the arguments are again pushed to the stack for

call to the printf function. This is shown in the following

screenshot:

[ESP]  0012FF14  004081AC  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x04] 0012FF18  00000003  iNumber is stored here,

argument to printf()

[ESP+0x08] 0012FF1C  00408194  "\nValue of piNumber = %p",

argument to printf()

[ESP+0x0C] 0012FF20  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x10] 0012FF24  00408178  "\nAddress of piNumber =

0x%p", argument to printf()

[ESP+0x14] 0012FF28  0012FF40  &piNumber is stored here,

argument to printf()

[ESP+0x18] 0012FF2C  0040815C  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x1C] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x20] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x24] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x28] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x2C] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x30] 0012FF44  00401272  return to 0x00401272 from

0x401000



Figure 8.30: After fifth printf execution

▼Line 64-68

; Line 17

mov eax, DWORD PTR _iNumber$[esp+48]

push eax

push OFFSET $SG4684

call _printf

The C/C++ code on line 17 prints which itself is the value of

printf ("\nValue of iNumber = %d", *(&iNumber)) ;

In our assembly code, the MOV instruction will be evaluated to:

mov eax, dword ptr ss:[esp+0x28]



MOV will move the value at ss:[esp+0x28] to EAX, which is the

value of Now, the arguments are again pushed to the stack for

call to the printf function. As shown in the stack state and the

following screenshot:

[ESP]  0012FF0C  004081C4  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x04] 0012FF10  00000003  *(&iNumber) is stored here,

argument to printf()

[ESP+0x08] 0012FF14  004081AC  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x0C] 0012FF18  00000003  iNumber is stored here,

argument to printf()

[ESP+0x10] 0012FF1C  00408194  "\nValue of piNumber = %p",

argument to printf()

[ESP+0x14] 0012FF20  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x18] 0012FF24  00408178  "\nAddress of piNumber =

0x%p", argument to printf()

[ESP+0x1C] 0012FF28  0012FF40  &piNumber is stored here,

argument to printf()

[ESP+0x20] 0012FF2C  0040815C  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x24] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x28] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x2C] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x30] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x34] 0012FF40  0012FF3C  &iNumber is stored here  



[ESP+0x38] 0012FF44  00401272  return to 0x00401272 from

0x401000

Figure 8.31: After sixth printf execution

▼Line 69-74

; Line 18

mov ecx, DWORD PTR _piNumber$[esp+56]

mov edx, DWORD PTR [ecx]

push edx

push OFFSET $SG4685

call _printf

The C/C++ code on line 17 prints which itself is the value of

printf ("\nValue of iNumber = %d", *piNumber) ;



In our assembly code, we see two MOV instructions, where one

move instruction takes the memory location of iNumber and the

other fetches the value stored at that memory address. The first

MOV instruction is resolved to:

mov ecx, dword ptr ss:[esp+0x34]

This MOV will move the value at ss:[esp+0x34] to ECX, which is

the memory location of The second MOV fetches the value stored

at the memory address in ECX and moves it to EDX. Now, the

arguments are again pushed to the stack for call to the printf

function. This is shown in the following screenshot:

[ESP]  0012FF04  004081DC  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x04] 0012FF08  00000003  *piNumber is stored here,

argument to printf()

[ESP+0x08] 0012FF0C  004081C4  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x0C] 0012FF10  00000003  *(&iNumber) is stored here,

argument to printf()

[ESP+0x10] 0012FF14  004081AC  "\nValue of iNumber = %d",

argument to printf()

[ESP+0x14] 0012FF18  00000003  iNumber is stored here,

argument to printf()

[ESP+0x18] 0012FF1C  00408194  "\nValue of piNumber = %p",

argument to printf()

[ESP+0x1C] 0012FF20  0012FF3C  piNumber is stored here,

argument to printf()



[ESP+0x20] 0012FF24  00408178  "\nAddress of piNumber =

0x%p", argument to printf()

[ESP+0x24] 0012FF28  0012FF40  &piNumber is stored here,

argument to printf()

[ESP+0x28] 0012FF2C  0040815C  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x2C] 0012FF30  0012FF3C  piNumber is stored here,

argument to printf()

[ESP+0x30] 0012FF34  00408140  "\nAddress of iNumber =

0x%p", argument to printf()

[ESP+0x34] 0012FF38  0012FF3C  &iNumber is stored here,

argument to printf()

[ESP+0x38] 0012FF3C  00000003  iNumber is stored here  

[ESP+0x3C] 0012FF40  0012FF3C  &iNumber is stored here  

[ESP+0x40] 0012FF44  00401272  return to 0x00401272 from

0x401000

Figure 8.32: After seventh printf execution

▼Line 75-81



; Line 19

xor eax, eax

add esp, 64     ; 00000040H

ret 0

_main ENDP

_TEXT ENDS

END

XOR and ADD will clean up the EAX and stack, respectively and

END the code by returning 0. The ADD instruction cleaned up

the stack in one go, which is different from that in the non-

optimized code, wherein we cleaned the stack after each printf

call. This is shown in the stack state below and the following

screenshot:

[ESP]  0012FF44  00401272  return to 0x00401272 from

0x401000



Figure 8.33: Cleaning stack



Conclusion

In this chapter, we learned the conceptual knowledge about

pointers. We also learned how pointers are stored in memory with

respect to integer, float, and char pointers. We also found out

how non-optimized code is different from optimized assembly

code. The non-optimized code uses EBP to refer to arguments on

the stack and the stack cleaning is done after every printf call.

But in case of optimized code, ESP is used to refer to the

arguments and the stack cleaning is done in one go towards the

END of the code. In the next chapter, we will talk about another

interesting topic, which is decision. We will see how decisions

statements are handled in assembly programming.



CHAPTER 9

Reverse Engineering Pattern of Decision Control Structure

In our day-to-day life, we take many decisions and every decision

is related to an outcome. Let’s take an example. Before leaving

home for office, we all prefer to check Google maps and if the

traffic is high, we may ask our boss for permission to work from

home. Another example is if I earn more, I will purchase a nice

luxury car and a big house. All these decisions are linked with

some condition and result in certain outcomes.

Similar to this, computers are also programmed to make decisions

based on conditions. C/C++ programming also provides decision-

making statements, which help programmers to write code that

involves decisions based on the conditions. Different conditions

are linked to the outcomes to behave in the natural manner. This

chapter will help you understand the pattern of these conditions

in assembling listing from the reverse engineering point of view.



Structure

In this chapter, we will cover the following topics:

If-else statement

If-else statement without Optimization

If-else statement with Optimization



Objective

The objective of this chapter is to understand the concept of

assembly instructions used to make decisions in a program flow.

We will learn about CMP and Jump instructions in the assembly

code. As we tend to take several decisions for a single problem

in our day-to-day life, similarly to handle problems or conditions

in assembly we have CMP and jump instructions in assembly. We

will also understand the differentiation between optimized and

non-optimized assembly code of decision control structures.



If-else statement

In this section, we will cover simple C/C++ code with if-else

statement, wherein we will ask the user to enter two integer

numbers. If both the numbers are equal, it prints saying that both

the numbers are equal on the console. But if both the entered

numbers are not equal, the code will use else statement to print,

the numbers are not equal. This code also includes scanf and

printf in our C/C++ code. It is recommended to go through

Chapter 7, Reverse Engineering Pattern of Printf for a clear

understanding.

Figure 9.1: ifelse.cpp



If-else statement without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 9.2: If-else statement without Optimization

This will generate the assembly code and the EXE file. For

analysis purpose, we will disable the Address Space Layout

Randomization It is a security mechanism by which the base

address of the PE file is randomized on every load of the Portable

Executable file generated with our MSVC compiler. To disable

ASLR, follow the same steps by using the CFF explorer and

change the DllCharacteristics parameter to uncheck DLL can For

more details, refer to the Appendix.

Now, let us move on to the generated assembly listing:



Figure 9.3: ifelse.asm-Part-1



Figure 9.4: ifelse.asm-Part-2

Let’s walk through the assembly code line by line. As we have

discussed most of the initial assembly listing in the earlier

chapters, we will move on to the instructions from the start of

the main procedure.

▼Line 34-37



; Line 7

push ebp

mov ebp, esp

sub esp, 8

It starts with the main function prologue. With the SUB

instruction, we are creating room for the local variables of which

are iNumber1 and Each number will occupy 4 bytes of space,

making it a total of 8 bytes.

To analyze the stack state, let us open the PE file generated in

x32dbg and place a breakpoint at the start of the main procedure.

We will step into the code to see the stack state after the SUB

instruction.

[ESP]  0012FF38  004038DD  [EBP-8] now JUNK, Input

placeholder for iNumber1

[ESP+0x4] 0012FF3C  0040445A  [EBP-4] now JUNK, Input

placeholder for iNumber2

[ESP+0x8] 0012FF40  0012FF88  [EBP]

[ESP+0xC] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000

iNumber1 can be accessed with the help of the _iNumber1$

macro, which is equal to -8. So, iNumber1 can be accessed by

adding EBP with the _iNumber1$ macro, which is equal to [EBP-

8].



Figure 9.5: Creating room for our local variable

▼Line 38-41

; Line 10

push OFFSET $SG4679

call _printf

add esp, 4

The C/C++ code on line 10 prints the string on the console:

printf("Input Number1 : ");



In our assembly code, the argument to the printf function is first

pushed onto the stack. The argument of printf is a string

constant stored in the .rdata segment and internally defined as A

call to printf will print $SG4679 on the console and the ADD

instruction after call to printf is cleaning the stack by 4 bytes.

[ESP-0x4] 0012FF34  0040A140  "Input Number1 : ", parameter to

1st printf()

[ESP]  0012FF38  004038DD  [EBP-8] now JUNK, Input

placeholder for iNumber1

[ESP+0x4] 0012FF3C  0040445A  [EBP-4] now JUNK, Input

placeholder for iNumber2

[ESP+0x8] 0012FF40  0012FF88  [EBP]

[ESP+0xC] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000

Figure 9.6: Call to printf



▼Line 42-47

; Line 11

lea eax, DWORD PTR _iNumber1$[ebp]

push eax

push OFFSET $SG4680

call _scanf

add esp, 8

The C/C++ code on line 11 takes the input integer from the user

and stores it at the &iNumber1 memory location:

scanf("%d", &iNumber1);

In our assembly code, LEA will effectively load the address of

which is into the EAX register. The purpose of loading EAX with

the address of _iNumber1$[ebp] is to push the EAX register on

the stack along with the string constant Both the address and

string $SG4680 are arguments to the scanf function.

To check the stack state after the scanf function call, put another

breakpoint at ADD instruction after the scanf call. Now step into

the instructions one by one and on call to do a step over. It will

prompt you to enter the first number on the console. We will

enter number 7 and press After pressing number 7 will be saved

onto the stack at the input placeholder for the iNumber1 memory

location, With the scanf call, the number input by the user is

saved onto the stack. After the call, it is time to again clean up

the stack with the ADD instruction. ADD will move the stack



pointer by 8 bytes for cleaning. The stack state is shown in the

following screenshot:

[ESP-0x8] 0012FF30  0040A154  "%d", parameter to 1st scanf()

[ESP-0x4] 0012FF34  0012FF38  Memory location of placeholder

for iNumber1

[ESP]  0012FF38  00000007  [EBP-8] 7 is stored, Input

placeholder for iNumber1

[ESP+0xC] 0012FF3C  0040445A  [EBP-4] now JUNK, Input

placeholder for iNumber2

[ESP+0x10] 0012FF40  0012FF88  [EBP]

[ESP+0x14] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000

Figure 9.7: After scanf

▼Line 48-51



; Line 12

push OFFSET $SG4681

call _printf

add esp, 4

The C/C++ code on line 12 prints the string on the console:

printf("Input Number2 : ");

It is the same as the earlier. The argument to the printf function

is first pushed onto the stack. The argument of printf is a string

constant stored in the .rdata segment and internally defined as A

call to printf will print $SG4681 on the console and the ADD

instruction following the call to printf will clean the stack by 4

bytes. The stack state is shown in the following screenshot:

[ESP-0x4] 0012FF34  0040A158  "Input Number2 : ", parameter to

2nd printf()

[ESP]  0012FF38  00000007  [EBP-8] 7 is stored, Input

placeholder for iNumber1

[ESP+0xC] 0012FF3C  0040445A  [EBP-4] now JUNK, Input

placeholder for iNumber2

[ESP+0x10] 0012FF40  0012FF88  [EBP]

[ESP+0x14] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000



Figure 9.8: Again call to printf

▼Line 52-57

; Line 13

lea ecx, DWORD PTR _iNumber2$[ebp]

push ecx

push OFFSET $SG4682

call _scanf

add esp, 8

The C/C++ code on line 13 takes the input integer from the user

and stores it at the &iNumber2 memory location:

scanf("%d", &iNumber2);



It is same as the earlier scanf code. LEA will effectively load the

address of which is into the ECX register. The purpose of loading

ECX with the address of _iNumber2$[ebp] is to push the ECX

register on the stack along with the string constant Both the

address and string $SG4682 are arguments to the scanf function.

To check the stack state after the scanf function call, put another

breakpoint at ADD instruction after the scanf call. Now step into

the instructions one by one and on call to do a step over. It will

prompt you to enter the second number on the console. We will

enter number 8 and press After pressing number 8 will be saved

onto the stack at the input placeholder for the iNumber2 memory

location, With the scanf call, the number input by the user is

saved onto the stack. After the call, it is time to again clean up

the stack with the ADD instruction. ADD will move the stack

pointer by 8 bytes for cleaning. The stack state is shown in the

following screenshot:

[ESP-0x8] 0012FF30  0040A16C  "%d", parameter to 2nd scanf()

[ESP-0x4] 0012FF34  0012FF3C  Memory location of placeholder

for iNumber2

[ESP]  0012FF38  00000007  [EBP-8] 7 is stored, Input

placeholder for iNumber1

[ESP+0xC] 0012FF3C  00000008  [EBP-4] 8 is stored, Input

placeholder for iNumber2

[ESP+0x10] 0012FF40  0012FF88  [EBP]

[ESP+0x14] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000



Figure 9.9: Again after another scanf

▼Line 58-61

; Line 14

mov edx, DWORD PTR _iNumber1$[ebp]

cmp edx, DWORD PTR _iNumber2$[ebp]

jne SHORT $LN2@main

The C/C++ code on line 14 compares the two numbers:

if (iNumber1 == iNumber2)

Now we have both the numbers iNumber1 and iNumber2 stored

at [EBP-8] and [EBP-4], respectively. To compare these two

numbers, the first MOV instruction will move the value stored at



[EBP-8] to the EDX register, which is number 0x00000007 and

then use the CMP instruction to compare the value stored at

[EBP-4] with that of the EDX register.

In our case, EDX = 0x00000007 is compared with [EBP-8] =

The CMP instruction can be visualized as a SUB instruction and

as it is a conditional it will work as follows:

[EDX] - [EBP-8], based on the subtraction result, the control flag is

set

0x00000007 - 0x00000008 != 0, so it sets ZF (Zero Flag) = 0

Following the CMP is the which is Jump if Not As both numbers

are not equal and the jump will occur to the location specified

after the JNE instruction, which is Let’s check the stack state and

a screenshot of x32dbg before the JNE instruction:

[ESP-0x8] 0012FF30  0040A16C  "%d", parameter to 2nd scanf()

[ESP-0x4] 0012FF34  0012FF3C  Memory location of placeholder

for iNumber2

[ESP]  0012FF38  00000007  [EBP-8] 7 is stored, Input

placeholder for iNumber1

[ESP+0xC] 0012FF3C  00000008  [EBP-4] 8 is stored, Input

placeholder for iNumber2

[ESP+0x10] 0012FF40  0012FF88  [EBP]

[ESP+0x14] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000



Figure 9.10: Before JNE instruction

In our case, JNE will move the instruction pointer to the

$LN2@main location. If in case the user enters the same

numbers, the CMP instruction will result in ZF (Zero Flag) = That

will move the instruction pointer to print “Number1 and Number2

are equal” on the console, followed by the unconditional jump

instruction to $LN3@main SHORT $LN3@main at line 67), where

$LN3@main is the closing of the function and the code. The

stack state is shown in the following screenshot:

▼Line 68-72

$LN2@main:

; Line 17

push OFFSET $SG4686



call _printf

add esp, 4

The C/C++ equivalent is:

printf("Number1 and Number2 are not equal\n");

It prints ‘Number1 and Numver2 are not equal’. The ASM code

pushes the string constant $SG4686 on the stack to be used by

the printf function as an argument. This will print ‘Number1 and

Number2 are not equal’ on the console. Following this is the

ADD instruction which will clean the stack by 4 bytes, which was

used by string constant $SG4686 in PUSH operation. The stack

state after this will be as follows:

[ESP-0x4] 0012FF34  0040A190  "Number1 and Number2 are not

equal\n", arg to printf

[ESP]  0012FF38  00000007  [EBP-8] 7 is stored, Input

placeholder for iNumber1

[ESP+0xC] 0012FF3C  00000008  [EBP-4] 8 is stored, Input

placeholder for iNumber2

[ESP+0x10] 0012FF40  0012FF88  [EBP]

[ESP+0x14] 0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000



Figure 9.11: Print “Number1 and Number2 are not equal”

▼Line 73-81

$LN3@main:

; Line 18

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

XOR and the function epilogue will clean up EAX and stack,

respectively. END will end the code by returning 0. The stack

state is shown in the following screenshot:



[ESP-0x10] 0012FF34  0040A190  JUNK

[ESP-0xC] 0012FF38  00000007  JUNK

[ESP-0x8] 0012FF3C  00000008  JUNK

[ESP-0x4] 0012FF40  0012FF88  [EBP] popped up

[ESP]  0012FF44  004012F7  return to ifelse.004012F7 from

ifelse.00401000

Figure 9.12: Stack cleaned



If-else statement with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 9.13: If-else statement with Optimization

This will generate the assembly code and the EXE file. For

analysis purpose, we will disable the ASLR. It is a security

mechanism by which the base address of the PE file is

randomized on every load of the PE file generated with our MSVC

compiler. To disable ASLR, follow the same steps by using the

CFF explorer and change the DllCharacteristics parameter to

uncheck DLL can For step-by-step reference to disable ASLR, refer

to the Appendix.

Now, let’s move on to the generated assembly listing:



Figure 9.14: ifelse-Optimized.asm-Part-1



Figure 9.15: ifelse-Optimized.asm-Part-2

This assembly code is optimized by removing unnecessary lines to

consume fewer resources. In this code, we will not see the

function prologue and epilogue. We can also observe that ESP is

used as a reference rather than EBP; this is because of the

absence of the function prologue and epilogue. Let us start the

analysis and this time, we will enter the same number.

▼Line 34-35



; Line 7

sub esp, 8

The SUB instruction is creating room for the local variables of the

main function on the stack, iNumber1 and To check the stack

state, we will open the PE file in x32dbg and place our first

breakpoint at the start of the main procedure. The stack state and

the x32dbg screenshot after the SUB instruction is as follows:

[ESP]  0012FF3C  0040444A  right now is JUNK, Input

placeholder for iNumber1

[ESP+0x4] 0012FF40  00000000  right now is JUNK, Input

placeholder for iNumber2

[ESP+0x8] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000



Figure 9.16: Creating room for our local variable

▼Line 36-38

; Line 10

push OFFSET $SG4679

call _printf

The C/C++ equivalent of the ASM is:

printf(“Input Number1 : “);

It will print the string constant $SG4679 on the console. $SG4679

was pushed on the stack before the printf function call. The stack



state after the CALL instruction is as follows:

[ESP]  0012FF38  0040A140  “Input Number1 : “, parameter to

printf()

[ESP+0x4] 0012FF3C  0040444A right now is JUNK, Input

placeholder for iNumber1

[ESP+0x8] 0012FF40  00000000  right now is JUNK, Input

placeholder for iNumber2

[ESP+0xC] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000

▼Line 39-43

; Line 11

lea eax, DWORD PTR _iNumber1$[esp+12]

push eax

push OFFSET $SG4680

call _scanf

The C/C++ code on line 11 asks the user to input the first

number, This number will be stored at the &iNumber1 location.

scanf("%d", &iNumber1);

In ASM, the LEA instruction is evaluated to:

lea eax, ss:[esp+0x4]



This will load the effective address of ESP+0x4 to This is the

memory location on the stack where the iNumber1 input by the

user will be stored. As the scanf function expects two arguments,

so both the arguments to scanf are pushed onto the stack before

the CALL instruction. Arguments to scanf are memory location, on

which iNumber1 is stored, and the string constant When a call to

scanf is done, it will ask the user to enter the number. We have

inserted one more breakpoint after the scanf function to view the

stack after the scanf call. Refer to the stack state and x32dbg in

the following screenshot:

[ESP]  0012FF30  0040A154  “%d”, parameter to scanf()

[ESP+0x4] 0012FF34  0012FF3C  Memory location of Input

placeholder for iNumber1  

[ESP+0x8] 0012FF38  0040A140  “Input Number1 : “, parameter

to printf()

[ESP+0xC] 0012FF3C  00000007  7 is stored here, Input

placeholder for iNumber1

[ESP+0x10] 0012FF40  00000000  right now is JUNK, Input

placeholder for iNumber2

[ESP+0x14] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000



Figure 9.17: Breakpoint after the first scanf

▼Line 44-46

; Line 12

push OFFSET $SG4681

call _printf

The C/C++ code on line 12 prints the following message on the

console:

printf(“Input Number2 : “);

In ASM, it does the same by pushing the string constant

$SG4681 on the stack and the call printf function.



[ESP]  0012FF2C  0040A158  “Input Number2 : “, parameter to

printf()

[ESP+0x4] 0012FF30  0040A154  “%d”, parameter to scanf()

[ESP+0x8] 0012FF34  0012FF3C  Memory location of Input

placeholder for iNumber1  

[ESP+0xC] 0012FF38  0040A140  “Input Number1 : “, parameter

to printf()

[ESP+0x10] 0012FF3C  00000007  7 is stored here, Input

placeholder for iNumber1

[ESP+0x14] 0012FF40  00000000  right now is JUNK, Input

placeholder for iNumber2

[ESP+0x18] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000

▼Line 47-51

; Line 13

lea ecx, DWORD PTR _iNumber2$[esp+24]

push ecx

push OFFSET $SG4682

call _scanf

The C/C++ code on line 13 asks the user to input the second

number, This number will be stored at the &iNumber2 location.

scanf("%d", &iNumber2);

In ASM, the LEA instruction is evaluated to:



lea ecx, ss:[esp+0x14]

This will load the effective address of ESP+0x14 to This is

memory location on the stack where the iNumber2 input by the

user will be stored. As the scanf function expects two arguments,

so both the arguments to scanf are pushed onto the stack before

the CALL to the scanf function. Arguments to scanf are iNumber2

and the string constant When a call to scanf is done, it will ask

the user to enter the number. This time, we have entered the

same number, 7. We have inserted one more breakpoint after the

scanf function to view the stack after the scanf call. Refer to the

stack state and x32dbg in the following screenshot:.

[ESP]  0012FF24  0040A16C  "%d"

[ESP+0x4] 0012FF28  0012FF40

[ESP+0x8] 0012FF2C  0040A158  "Input Number2 : ", parameter

to printf()

[ESP+0xC] 0012FF30  0040A154  "%d", parameter to scanf()

[ESP+0x10] 0012FF34  0012FF3C  Memory location of Input

placeholder for iNumber1  

[ESP+0x14] 0012FF38  0040A140  "Input Number1 : ", parameter

to printf()

[ESP+0x18] 0012FF3C  00000007  7 is stored here, Input

placeholder for iNumber1

[ESP+0x1C] 0012FF40  00000007  7 is stored here, Input

placeholder for iNumber2

[ESP+0x20] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000



Figure 9.18: Breakpoint after the second scanf

▼Line 51-56

; Line 14

mov edx, DWORD PTR _iNumber1$[esp+32]

add esp, 24     ; 00000018H

cmp edx, DWORD PTR _iNumber2$[esp+8]

jne SHORT $LN2@main

The C/C++ code on line 14 compares the two numbers:

if (iNumber1 == iNumber2)



In ASM, the MOV instruction will move iNumber1 stored at ss:

[esp+0x18] to The ADD instruction will clean the stack by adding

24 bytes to Once the stack is cleaned, the CMP instruction

compares the value at EDX with ss:[esp+0x4]. As both the

numbers are equal, it will set As Jump if Not Equal condition is

not met, the instruction pointer will move to the next instruction

following the Refer to the stack state after the JNE instruction

execution and x32dbg in the following screenshot:

[ESP-0x18] 0012FF24  0040A16C  JUNK

[ESP-0x14] 0012FF28  0012FF40  JUNK

[ESP-0x10] 0012FF2C  0040A158  JUNK

[ESP-0xC] 0012FF30  0040A154  JUNK

[ESP-0x8] 0012FF34  0012FF3C  JUNK

[ESP-0x4] 0012FF38  0040A140  JUNK

[ESP]  0012FF3C  00000007  7 is stored here, Input placeholder

for iNumber1

[ESP+0x4] 0012FF40  00000007  7 is stored here, Input

placeholder for iNumber2

[ESP+0x8] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000



Figure 9.19: Stack state after JNE

▼Line 57-61

; Line 15

push OFFSET $SG4684

; Line 17

call _printf

add esp, 4

This will push the string constant $SG4684 on the stack for the

printf function to print on the console. The ADD instruction will

perform the stack cleaning. Refer to the stack state and x32dbg

after the ADD instruction in the following screenshot:



[ESP-0x4] 0012FF38  0040A170  Now JUNK, "Number1 and

Number2 are equal\n"

[ESP]  0012FF3C  00000007  7 is stored here, Input placeholder

for iNumber1

[ESP+0x4] 0012FF40  00000007  7 is stored here, Input

placeholder for iNumber2

[ESP+0x8] 0012FF44  004012F3  return to 0x004012F3 from

0x00401000

Figure 9.20: Stack state after the ADD instruction

▼Line 62-65

; Line 18



xor eax, eax

add esp, 8

ret 0

_main ENDP

_TEXT ENDS

END

XOR and the function epilogue will clean up the EAX and stack,

respectively. END will end the code by returning 0. Refer to the

stack state and x32dbg after the stack cleaning in the following

screenshot:

[ESP-0xC] 0012FF38  0040A170  Now JUNK, "Number1 and

Number2 are equal\n"

[ESP-0x8] 0012FF3C  00000007  Now JUNK, iNumber1 number 7

entered was stored here

[ESP-0x4] 0012FF40  00000007  Now JUNK, iNumber1 number 7

entered was stored here

[ESP]  0012FF44  004012F3  return to 0x004012F3 from

0x00401000



Figure 9.21: Stack cleaned



Conclusion

In this chapter, we learned the concept of assembly instructions

used to make decisions in a program flow. We also learned about

the usage of CMP and Jump instructions in assembly code. Along

with this, we also understood the differentiating pattern between

optimized and non-optimized assembly code of decision control

structures. In the next chapter, we will learn about the

disassembly of programs with looping control statements.



CHAPTER 10

Reverse Engineering Pattern of Loop Control Structure

In the last chapter, we discussed about the programs that are

associated with some decision control statements. In our day-to-

day life, we tend to do so many things over and over again. Like

we get ready every morning and go to sleep in the night around

the same time every day. This is where we see our routine

happening in a loop every day.

Every programming language is equipped with a similar loop

control structure, where the programs are coded in such a way

that they run in a loop with some conditions. As a reverse

engineer, this topic can be understood from a malware writer’s

point of view, wherein malware’s are coded in such a way that

they infect all the files on the target computer. When a malware

gets executed, files in the computer are run through a loop

condition so as to target the whole computer data. Understanding

to identify loop patterns in assembly will help you decode

programs using loop control structures. Most of the computer

programs are coded with these loop control structures. It is

important for us to should understand the pattern of these

programs when reverse engineered.



Structure

In this chapter, we will cover the following topics:

Understanding about a loop control structure

How loops are handled in assembly



Objective

The objective of this chapter is to learn about different loop

statements in C/C++ and understanding the code pattern in a

disassembled code. We will also learn to put a conditional

breakpoint in code execution. In an assembly listing generated

from loop statement programs, we will check the CMP and JMP

instruction patterns in assembly and note their differences in

optimized and non-optimized code.



While Condition

In this C/C++ code, we will use the while condition to print

numbers from 1 to 10 on the console/screen. This will also

include the printf function in our C/C++ code.

Figure 10.1: while.cpp



While condition without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 10.2: While condition without optimization

This will generate the assembly code and the EXE file. For further

analysis, we have disabled the ASLR manually. To disable ASLR,

follow the same steps by using the CFF explorer and change the

DllCharacteristics parameter to uncheck DLL can For step-by-step

instructions, refer to the

Now let’s move on to the generated assembly listing:



Figure 10.3: while.asm



Let’s walk through the assembly code line by line. As we have

discussed most of the initial instructions of the assembly listing in

the earlier chapters, we will move on to the instructions from the

start of the main procedure.

▼Line 22-25

; Line 7

push ebp

mov ebp, esp

push ecx

The assembly code starts with the main function prologue first

with the PUSH instruction and then with the MOV instruction.

ECX is pushed onto the stack to create room for the iNumber

integer variable of size 4 bytes.

▼Line 26-27

; Line 8

mov DWORD PTR _iNumber$[ebp], 1

The C/C++ code for this is as follows:

int iNumber = 1 ;

The iNumber integer variable is initialized to 1.



In the ASM code, we created room for the iNumber local variable

to main function by pushing ECX onto the stack. 1 is moved to

this memory location on stack [EBP-4] (We get this by adding

iNumber macro, which is _iNumber$ = -4 with Let’s check the

stack state by placing the breakpoint at the start of the main

procedure and then stepping into the instructions. Refer to the

following stack state and a screenshot of x32dbg:

[ESP]  0012FF3C  00000001  iNumber is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x4] 0012FF44  00401224  return to while.00401224 from

while.00401000



Figure 10.4: iNumber is stored on stack

▼Line 28-31

$LN2@main:

; Line 9

cmp DWORD PTR _iNumber$[ebp], 10  ; 0000000aH

jg SHORT $LN3@main

The C/C++ code for this is as follows:

while (iNumber <= 10)

As we see in the C/C++ code while condition checks iNumber

value, for less than or equal to 10 (0x0A). In the ASM code, the

value stored on the stack at [EBP-4] is compared with the value

10 with the CMP instruction. As both the operands are not equal

in the current state, executing the CMP instruction will set ZF=0.

When the value at [EBP-4] will be greater than 10, then JG (Jump

Greater) will jump to the label $LN3@main and the label

$LN3@main will point towards the closure of the main function.

Considering the current case where iNumber is 1, the stack state

and the screenshot of x32dbg will be as follows:

[ESP]  0012FF3C  00000001  iNumber is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]



[ESP+0x4] 0012FF44  00401224  return to while.00401224 from

while.00401000

Figure 10.5: After compare instruction when iNumber=1

▼Line 32-37

; Line 11

mov eax, DWORD PTR _iNumber$[ebp]

push eax

push OFFSET $SG4681

call _printf

add esp, 8



On line 11 of the C/C++ code is the printf function to print

iNumber on the console.

The ASM code moves the value stored on the stack at [EBP-4] to

the EAX register, which is later in the next instruction pushed

onto the stack along with the other argument, string constant

When both the arguments to the printf function are passed onto

the stack, the call to printf is made. On return from the printf

function, ADD is executed to clean the stack by adding 8 bytes to

The stack state and x32dbg screenshot before the ADD instruction

will be as follows:

[ESP]  0012FF34  00408140  "%d\n", as a parameter to printf()

[ESP+0x4] 0012FF38  00000001  iNumber is pushed as a

parameter to printf()

[ESP+0x8] 0012FF3C  00000001  iNumber is stored here

[ESP+0xC] 0012FF40  0012FF88  [EBP]

[ESP+0x10] 0012FF44  00401224  return to while.00401224 from

while.00401000



Figure 10.6: After printf

▼Line 38-41

; Line 12

mov ecx, DWORD PTR _iNumber$[ebp]

add ecx, 1

mov DWORD PTR _iNumber$[ebp], ecx

Line 12 of the C/C++ code increments the iNumber value by 1.

iNumber = iNumber + 1 ;



In ASM, we are incrementing the iNumber value by first moving

the iNumber value stored at [EBP-4] to and then incrementing

ECX by 1. Once incremented, we will move ECX back to [EBP-4]

memory location. This process or iteration is repeated every time

until iNumber is less than or equal to 10 (0x0A).

The stack state and the screenshot of x32dbg when iNumber is

incremented by 1 will be as follows:

[ESP]  0012FF3C  00000002  iNumber is stored here, now its

incremented by 1

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x4] 0012FF44  00401224  return to while.00401224 from

while.00401000



Figure 10.7: When iNumber is incremented by 1

▼Line 42-43

; Line 13

jmp SHORT $LN2@main

This is an unconditional jump to the $LN2@main label, where the

value stored at [EBP-4] is again compared with the value 10

(0x0A). If the value is less than or equal to 10, then the same

instructions will print iNumber on screen, along with incrementing

the iNumber value at [EBP-4] by 1.

The stack state will be the same as earlier after

[ESP]  0012FF3C  00000002  iNumber is stored here, now its

incremented by 1

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x4] 0012FF44  00401224  return to while.00401224 from

while.00401000

Instruction pointer will be pointed to 0x0040100B as follows:



Figure 10.8: unconditional jump to $LN2@main

Now, we will see what happens when iNumber becomes 10

(0x0A). There are two ways to analyze the code:

Manually step into the code instruction by instruction. This is a

time-consuming process.

Set the breakpoint on the condition when either the value stored

at [EBP-4] becomes 0x0A or ECX == We will set the conditional

breakpoint in x32dbg, when ECX ==

Now, to set the conditional breakpoint, set the software breakpoint

(press key first at:



0x00401025   add ecx, 1

Then right-click on the instruction and select the Edit Breakpoint

command from the context menu. Fill in the following conditional

expression and then confirm and close the dialog box, as shown

in the following screenshot:

Figure 10.9: Set the breakpoint on the condition

Run the code until you hit the conditional breakpoint. From there,

we can manually step into the instructions. The stack state and

the screenshot of x32dbg at this point will be as follows:

[ESP]  0012FF3C  0000000A  iNumber is stored here, now its

incremented to 0xA

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x4] 0012FF44  00401224  return to while.00401224 from

while.00401000



Figure 10.10: When iNumber is incremented to 0x0A

As we step ECX and [EBP-4] will become 0x0B.



Figure 10.11: When iNumber is incremented to 0x0B

In the next iteration, the JG instruction will jump the instruction

pointer to the $LN3@main label, which we will discuss next.

▼Line 44-52

$LN3@main:

; Line 14

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END



This will zero the EAX and call the main function epilogue. With

this, the TEXT segment and code is ended.



While condition with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 10.12: While condition with Optimization

It will generate the assembly code and the EXE file. Follow the

same process to disable the ASLR manually. To disable ASLR,

follow the same steps by using the CFF explorer and change the

DllCharacteristics parameter to uncheck DLL can For a step-by-step

process to disable ASLR, refer to the

Now, let’s move on to the generated assembly listing:



Figure 10.13: while-Optimized.asm

We will walk through the generated assembly code instruction by

instruction:

▼Line 21-22



; Line 7

push esi

The main procedure starts by pushing the ESI register. By pushing

ESI onto the stack, we are preserving the ESI register value. ESI

is restored back with POP ESI instruction at the end of the main

procedure. So, it is basically persevering and restoring the register

value at the start and end of the function with the use of the

PUSH & POP instructions, respectively.

▼Line 23-25

; Line 8

mov esi, 1

npad 10

Line 8 of the C/C++ code initializes the iNumber variable:

int iNumber = 1 ;

In the ASM code, the ESI register will be used to hold the

iNumber value and for subsequent operations. The MOV

instruction initializes iNumber by moving 0x01 into the ESI

register.

Next is the npad macro which inserts non-destructive and non-

operational instructions. It means that it will insert an instruction

that does nothing. For information on please refer to the Appendix



section. Our assembly listing is using npad which is defined in

LISTING.INC as jmp .+A; .npad 7; .npad where

npad 10 is

Figure 10.14: npad 10

npad 7 is

Figure 10.15: npad 7

npad 1 is

Figure 10.16: npad 1

Together, npad 10 makes:

jmp .+A -> It will add 0x0A to instruction location (0x00401006 +

0x0A)

lea esp, [esp+00000000]



nop

Let’s see how the npad 10 macro is resolved in the x32dbg

screenshot:

Figure 10.17: npad 10 in x32dbg

All the three instructions marked in RED have no effect on the

code flow; they are just equivalent to a series of NOPs of size 10

bytes. The compiler pads 10 bytes between the mov esi,1

instruction and the label $LL2@main (defined next).

▼Line 26-30

$LL2@main:

; Line 11

push esi

push OFFSET $SG4681

call _printf

The $LL2@main label is defined followed by the comment as line

11. Line 11 of the C/C++ code prints the iNumber on the screen

using the printf function.



printf("%d\n", iNumber);

In the ASM code, before calling the printf function, two arguments

to printf are pushed onto stack. The first one is ESI holding the

iNumber and the other is the string constant defined by The stack

state after the printf call is shown as follows, along with the

x32dbg screenshot for a better understanding:

[ESP]  0012FF38  00408140  "%d\n", parameter to printf()

[ESP+0x4] 0012FF3C  00000001  iNumber is pushed as a

parameter to printf()

[ESP+0x8] 0012FF40  00000000  Old value of ESI is preserved

[ESP+0xC] 0012FF44  00401219  return to 0x00401219 from

0x00401000



Figure 10.18: After printf

▼Line 31-35

; Line 12

inc esi

add esp, 8

cmp esi, 10     ; 0000000aH

jle SHORT $LL2@main

The C/C++ code on line 12 increments the iNumber by 1.

iNumber = iNumber + 1 ;

In ASM, we are incrementing the iNumber stored in ESI by using

the INC instruction. INC adds 1 to ESI and stores the result back

in the ESI register. The ADD instruction cleans the stack by

adding 8 bytes to Once the stack is cleaned, the value in ESI is

compared with 10 (0x0A). It will perform a signed comparison

jump after a CMP instruction, if the value in ESI is less than or

equal to 10 (0x0A).

In our case, the current value of ESI = 0x02 after incrementing.

So, the instruction pointer will be jumped to the $LL2@main

label. The ESI is again printed on the console. This loop iterates

until ESI becomes 0x0B. When ESI is incremented to 0x0B, a

signed comparison jump after a CMP instruction will not take



place. So, the instruction pointer will move to the end of the

assembly code. The stack state at this point:

[ESP-0x8] 0012FF38  00408140  NOW JUNK

[ESP-0x4] 0012FF3C  0000000A  NOW JUNK

[ESP]  0012FF40  00000000  Old value of ESI is preserved

[ESP+0xC] 0012FF44  00401219  return to 0x00401219 from

0x00401000

Figure 10.19: ESI is incremented to 0x0B

▼Line 36-42



; Line 14

xor eax, eax

pop esi

ret 0

_main ENDP

_TEXT ENDS

END

It is the same as explained in the other sections. EAX is XOR’ed

to return 0. A point to note here is that the value of ESI is

restored back using the POP ESI instruction. With this, our main

procedure, TEXT segment, and code ends. The stack state after

popping ESI is as follows:

[ESP-0x8] 0012FF38  00408140  NOW JUNK

[ESP-0x4] 0012FF3C  0000000A  NOW JUNK

[ESP]  0012FF40  00000000  NOW JUNK

[ESP+0xC] 0012FF44  00401219  return to 0x00401219 from

0x00401000



Figure 10.20: Stack cleaned



For Loop

In this section, we will use for loop in the C/C++ code, which

initializes an integer variable and increments it by 2 to print it on

the screen or console.

Figure 10.21: for.cpp



For Loop without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 10.22: For Loop without Optimization

The compilation generates the assembly code and the EXE file. To

manually disable ASLR, use the CFF explorer and change the

DllCharacteristics parameter to uncheck DLL can

Now, let’s move on to the generated assembly listing:





Figure 10.23: for.asm

▼Line 22-25

; Line 7

push ebp

mov ebp, esp

push ecx

The ASM code starts with the main function prologue. The first

PUSH ECX will create room for the iNumber integer variable on

the stack.

▼Line 26-27

; Line 8

mov DWORD PTR _iNumber$[ebp], 1

The following line 8 of the C/C++ code initializes the iNumber

variable to 1, which corresponds to the preceding ASM code:

int iNumber = 1;

In the ASM code, iNumber macro is defined as:

_iNumber$ = -4; size = 4



So, the preceding ASM code resolves to the following instruction

in x32dbg:

mov dword ptr ss:[ebp-0x4], 0x1

MOV initializes the iNumber variable on the stack at ss:[ebp-0x4]

to 0x01. This is the same place in memory where ECX was

pushed for creating room for the iNumber variable. The stack

state after this instruction execution is as follows:

[ESP]  0012FF3C  00000001  iNumber variable is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  0040122D  return to for.0040122D from

for.00401000



Figure 10.24: iNumber on stack

▼Line 28-30

; Line 9

mov DWORD PTR _iNumber$[ebp], 1

jmp SHORT $LN3@main

This ASM code corresponds to the C/C++ code line 9, where

iNumber is again initialized and the loop is started.

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)

In ASM, the MOV instruction again initializes the iNumber

variable. As the code is not optimized, the compiler does not

remove the unwanted or duplicate instructions. JMP is an

unconditional jump to $LN3@main label, where the iNumber is

compared to 10(0x0A) to get into the loop. We will see the

$LN3@main label in the next ASM explanation. The stack state

after this unconditional JMP will be the same:

[ESP]  0012FF3C  00000001  iNumber variable is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  0040122D  return to for.0040122D from

for.00401000

▼Line 35-44



$LN3@main:

cmp DWORD PTR _iNumber$[ebp], 10  ; 0000000aH

jg SHORT $LN4@main

; Line 10

mov ecx, DWORD PTR _iNumber$[ebp]

push ecx

push OFFSET $SG4681

call _printf

add esp, 8

jmp SHORT $LN2@main

The preceding ASM code corresponds to the following C/C++ code

lines 9-10, which compare iNumber with 10 (0x0A).

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)

printf ("%d\n", iNumber);

Let’s walk through the ASM code. The CMP instruction compares

the iNumber value stored on the stack with 10 (0x0A). It will

perform a signed comparison jump if the iNumber at [EBP-0x04]

is greater than 10 (0x0A). Currently, the iNumber is 1 so the

jump will not happen and the instruction pointer will move to the

next section after the line 10 comment in the assembly listing.

The CMP instruction also sets ZF=0.

Instructions after the line 10 comment move the iNumber value at

[EBP-4] to the ECX register so that ECX can be pushed back to

the stack along with the string constant $SG4681 as argument to



On call to the printf function, iNumber value = 1 will be printed

on the screen.

On return from the printf call, the stack is cleaned with the ADD

instruction by adding 8 bytes to The which is an unconditional

jump, makes the instruction pointer move to the $LN2@main

label, where the iNumber is incremented by 2. The stack state

after the unconditional jump is as follows:

[ESP-0x8] 0012FF34  00408140  Now JUNK, "%d\n", parameter to

print() was pushed

[ESP-0x4] 0012FF38  00000001  Now JUNK, iNumber parameter

to print() was pushed

[ESP]  0012FF3C  00000001  iNumber variable is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  0040122D  return to for.0040122D from

for.00401000



Figure 10.25: Stack state after unconditional jump

▼Line 31-34

$LN2@main:

mov eax, DWORD PTR _iNumber$[ebp]

add eax, 2

mov DWORD PTR _iNumber$[ebp], eax

This ASM code corresponds to the following C/C++ code line 9,

where the iNumber is incremented by 2.

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)



In ASM, the MOV instruction takes the iNumber value from [EBP-

0x4] to the EAX register, where EAX is incremented by 2 using

the ADD instruction and moved back to the memory placeholder

for Following this instruction is the same instruction when

iNumber is compared with 10 (0x0A), as discussed previously. The

stack state after the increment is as follows:

[ESP-0x8] 0012FF34  00408140  Now JUNK, "%d\n", parameter to

print() was pushed

[ESP-0x4] 0012FF38  00000001  Now JUNK, iNumber parameter

to print() was pushed

[ESP]  0012FF3C  00000003  iNumber variable is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  0040122D  return to for.0040122D from

for.00401000



Figure 10.26: iNumber on stack is incremented

▼Line 35-37

$LN3@main:

cmp DWORD PTR _iNumber$[ebp], 10  ; 0000000aH

jg SHORT $LN4@main

This ASM code corresponds to the following C/C++ code line 9,

which compares the iNumber with the 10 (0x0A).

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)



Now, we will take that iteration wherein the iNumber is

incremented to 11 (0xB). At this point, it will perform a signed

comparison jump as the iNumber at [EBP-0x04] is greater than 10

(0x0A). The iNumber is 11 (0xB), so the jump will happen to the

$LN4@main label. The stack state after the JG (JUMP if Greater)

is as follows:

[ESP-0x8] 0012FF34  00408140  Now JUNK, "%d\n", parameter to

print() was pushed

[ESP-0x4] 0012FF38  00000009  Now JUNK, last iNumber value

pushed as arg to print

[ESP]  0012FF3C  0000000B  iNumber variable is stored here

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  0040122D  return to for.0040122D from

for.00401000



Figure 10.27: iNumber is incremented to 11 (0x0B)

▼Line 45-53

$LN4@main:

; Line 11

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END



In this $LN4@main label, EAX is zeroed to return 0. The function

epilogue is called to END the main function, TEXT segment, and

code. The stack state will be as follows:

[ESP-0x10] 0012FF34  00408140  Now JUNK, "%d\n", parameter

to print() was pushed

[ESP-0xC] 0012FF38  00000009  Now JUNK, last iNumber value

pushed as arg to print

[ESP-0x8] 0012FF3C  0000000B Now JUNK,  iNumber variable is

stored here

[ESP-0x4] 0012FF40  0012FF88  Now JUNK, EBP popped

[ESP]  0012FF44  0040122D  return to for.0040122D from

for.00401000



Figure 10.28: Stack cleaned



For Loop with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 10.29: For Loop with Optimization

To manually disable the ASLR, use the CFF explorer and change

the DllCharacteristics parameter to uncheck DLL can

Now, let’s move on to the generated assembly listing:



Figure 10.30: For-Optimized.asm

Let’s walk through the generated ASM code using the optimization

flag.

▼Line 21-22



; Line 7

push esi

In the function prologue, ESI is pushed onto the stack and in the

function epilogue, ESI is popped up. ESI will be used as the

iNumber placeholder. So before using it as a placeholder for the

the old value ESI is preserved onto the stack and in the main

procedure epilogue, the ESI value is restored to the old value

using POP

▼Line 23-25

; Line 9

mov esi, 1

npad 10

Line 9 of the C/C++ code initializes the iNumber variable:

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)

In the ASM code, the ESI register will be used as a placeholder

for the iNumber value. So, 0x01 is moved to the ESI register to

initialize the

npad macro inserts non-destructive non-operational instructions.

For information on please refer to the Appendix section.



The compiler inserts three instructions that will have no effect on

the code flow; they are just equivalent to a series of NOPs of

size 10 bytes. In x32dbg, npad macro is resolved as marked within

the RED box:

Figure 10.31: npad 10

The compiler pads 10 bytes between the mov esi,1 instruction and

the label $LL3@main (defined next).

▼Line 26-34

$LL3@main:

; Line 10

push esi

push OFFSET $SG4681

call _printf

add esi, 2

add esp, 8

cmp esi, 10     ; 0000000aH

jle SHORT $LL3@main

Line 9-10 of the C/C++ code initializes the iNumber value to enter

into the loop to print iNumber and increment every iNumber



iteration by 2.

for (iNumber = 1 ; iNumber <= 10 ; iNumber = iNumber + 2)

printf ("%d\n", iNumber);

In ASM, it is done by pushing ESI and the string constant

$SG4681 onto the stack. Once we have both the arguments to the

printf function on the stack, the call to the printf function is

made. This will print the current value of iNumber stored in the

ESI register on the screen.

Now, ESI is incremented by 2 by adding 0x02 to the ESI register.

This is to increment the iNumber value by 2.

Next, the ADD instruction cleans up the stack by adding 8 bytes

to the ESP register.

CMP will compare the value in ESI with 0x10. It will perform a

signed comparison jump after a CMP instruction if the value in

ESI is less than or equal to 10 (0x0A).

In our case, the current value of ESI = 0x03 after incrementing,

which is less than 10 (0x0A). So, the instruction pointer will jump

to the $LL3@main label. The stack state and x32dbg screenshot at

this point will be as follows:

[ESP-0x8] 0012FF38  00408140  "%d\n", parameter to printf()

[ESP-0x4] 0012FF3C  00000001  ESI holding iNumber is pushed,

as arg to printf



[ESP]  0012FF40  00000000  Old value of ESI is preserved on

stack

[ESP+0x4] 0012FF44  0040121B  return to 0x0040121B from

0x00401000

Figure 10.32: After JMP

This loop iterates until ESI becomes 0x0B. When ESI is

incremented to 0x0B, a signed comparison jump after a CMP

instruction will not take place. So, the instruction pointer will

move to the end of the assembly code. The stack state at this

point is as follows:

[ESP-0x8] 0012FF38  00408140  "%d\n", parameter to printf()



[ESP-0x4] 0012FF3C  00000009  ESI holding iNumber is pushed,

as arg to printf

[ESP]  0012FF40  00000000  Old value of ESI is preserved on

stack

[ESP+0x4] 0012FF44  0040121B  return to 0x0040121B from

0x00401000

Figure 10.33: ESI is incremented to 0x0B

▼Line 35-41

; Line 11

xor eax, eax

pop esi

ret 0



_main ENDP

_TEXT ENDS

END

With this, the main function, TEXT segment, and code is ended

by XOR’ing EAX to return 0 and the old value of ESI is restored

from the stack by the POP ESI instruction. The stack state at this

point will be as follows:

[ESP-0xC] 0012FF38  00408140  Now JUNK

[ESP-0x8] 0012FF3C  00000009  Now JUNK

[ESP-0x4] 0012FF40  00000000  Now JUNK

[ESP]  0012FF44  0040121B  return to 0x0040121B from

0x00401000



Conclusion

In this chapter, we learned about the different loop statements in

C/C++ and how the code pattern of different loop statements can

be identified in a disassembled code. We also found out how to

putt a conditional breakpoint to check the stack state and the

major flag bits. In the assembly listing generated from loop

statement programs, we checked CMP and Jump instruction

patterns in assembly and learned the difference between optimized

and non-optimized code. In the subsequent chapters, we will talk

about real-world problems and their solutions.



CHAPTER 11

Array Code Pattern in Reverse Engineering

Imagine you are a programmer working in some company to

develop software to mark the attendance of 50 students in a

class. Now, as a software developer, you have an option to define

separate variables for students, which is quite difficult to manage

and not appropriate in case the student count increases in the

future. To manage these situations where you have similar data

type variables, every programming language is equipped with the

concept of arrays. Arrays are sets of similar elements stored in

contiguous memory locations. So, in developing the attendance

software for a class, an array will be the most appropriate.

We have already studied the pattern of pointers in the earlier

chapter. Pointers and array are correlated to each other. The

importance of array in reverse engineering is very important.

Sometimes, malware writers code malware in such a way that they

infect the list of files with a specific extension. In most of these

cases, all the specific file extensions are defined in an array. So,

adding any other extension in the future to the malware becomes

easy for malware coders. In this chapter, we will work on this

real-world problem by coding the same program using array and

then reversing it to understand its pattern.



Structure

In this chapter, we will cover the following topics:

Understanding an array

Array loop without Optimization

Array loop with Optimization



Objective

The objective of this chapter is to understand the working of an

array with respect to reverse engineering. We will talk about the

array code pattern in a disassembled code and how arrays are

stored in memory. Arrays are stored in contiguous memory

locations and depending on the data types of the array, the

storage is allocated in memory. We will also learn to put a

conditional breakpoint in code execution. We will also cover an

array program pattern when the code is optimized and not

optimized.



Understanding an array

In this example, we have declared and defined an array named

We will iterate through the array up to its length and print each

element along with the index on the screen.

Figure 11.1: Array.cpp



Array Loop without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 11.2: Array Loop without Optimization

Compilation generates the EXE file and assembly code. Disable

ASLR manually. To disable ASLR, use the CFF explorer and change

the DllCharacteristics parameter to uncheck DLL can For detailed

steps to understand how to disable ASLR, please refer to the

Appendix.

Now, let’s move on to the generated assembly listing:



Figure 11.3: Array.asm-Part-1



Figure 11.4: Array.asm-Part-2

▼Line 12-14

CONST SEGMENT

$SG4682 DB 'iArray[%d]=%d', 0aH, 00H



CONST ENDS

The code defines two segments, one being CONST This derivative

is used to define the start of the constant segment in the

memory. The linker renames CONST SEGMENT to .rdata the code

is placed in the .code segment, the constant string is placed in

the CONST(.rdata) segment and if not constant, it is placed in

the .data segment], which can be dumped using any debugger.

Below screenshot shows $SG4682 in the memory dump:

Figure 11.5: .rdata

The $SG4682 is the internal name given by the compiler to

handle the string constant. DB, defines the byte which is the data

type. 'iArray[%d]=%d', 0aH, 00H is the string data, which is null

terminated ASCII string.

By CONST the constant segment is ended.

▼Line 15-16

PUBLIC __$ArrayPad$



PUBLIC _main

PUBLIC is the derivative which makes the _main procedure and

__$ArrayPad$ macro public, which makes it accessible to other

modules.

▼Line 17-19

EXTRN _printf:PROC

EXTRN ___security_cookie:DWORD

EXTRN @__security_check_cookie@4:PROC

The EXTRN derivative declares the extern function, which is printf

in our case. All functions begin with an underscore.

▼Line 21-24

_TEXT SEGMENT

_iArray$ = -48      ; size = 40

__$ArrayPad$ = -8     ; size = 4

_iLoop$ = -4      ; size = 4

This is the start of the _TEXT segment, where our main function

code resides. After we have the different variable macro defined.

To access the local variable on the stack frame, we have to add

_$ to the EBP address.

▼Line 25



_main PROC

This is the start of the main procedure.

▼Line 27-30

; Line 7

push ebp

mov ebp, esp

sub esp, 48; 00000030H

Line 7 of the C/C++ code starts the main function.

int main() {

The ASM code starts with the main function prologue of PUSH

and SUB is creating room for variables on the stack by

subtracting 48 (0x30) from ESP.

▼Line 31-33

mov eax, DWORD PTR ___security_cookie

xor eax, ebp

mov DWORD PTR __$ArrayPad$[ebp], eax

To understand all these three instructions, we will first have to

understand the concept of stack cookie. A stack cookie is the



protection mechanism against buffer overflow attacks. To

understand buffer overflow in layman terms, imagine somebody

pours more coffee in a cup; the coffee poured in excess will spill

on the table. Similarly, when a buffer stored in memory is filled

with more data than its size, the excess data will be spilled

causing the critical memory locations to be overwritten. A stack

cookie is a random value generated at each execution. This value

is XOR’ed with EBP and then placed on the stack. This value

stored on the stack is placed between local variables (buffer or

array in our case) and EBP.

Figure 11.6: Stack cookie

Once this value is stored on the stack after the function prologue,

to prevent against buffer overflow attacks, this value is checked

before the function epilogue. If this value is not the same before

the function epilogue, then it means that a buffer overflow exploit

has occurred.

Now coming back to the first MOV instruction, it moves the

value stored at the stack cookie location to EAX. EAX is XOR’ed

with EBP and the result of XOR is stored in EAX. This XOR value

stored in EAX is moved to the stack at ss:[ebp-0x8] location. This

is where our stack cookie is stored on the stack. Let’s see the

stack state and the stack cookie value in the memory dump.



Stack Cookie stored at 0x0040B000 location is = 0xED4B8BCF

EBP = 0x0012FF40

Stack Cookie XOR EBP = 0xED4B8BCF XOR 0x0012FF40 =

0xED59748F

[ESP]  0012FF10  0012FEFC [EBP-0x30] JUNK Right Now

[ESP+0x4] 0012FF14  00000004 [EBP-0x2C] JUNK Right Now

[ESP+0x8] 0012FF18  0012FF78 [EBP-0x28] JUNK Right Now

[ESP+0xC] 0012FF1C  004024E0 [EBP-0x24] JUNK Right Now

[ESP+0x10] 0012FF20  ED0B1017 [EBP-0x20] JUNK Right Now

[ESP+0x14] 0012FF24  FFFFFFFE [EBP-0x1C] JUNK Right Now  

[ESP+0x18] 0012FF28  0040548C [EBP-0x18] JUNK Right Now

[ESP+0x1C] 0012FF2C  004054A0 [EBP-0x14]  JUNK Right Now

[ESP+0x20] 0012FF30  0040343B [EBP-0x10] JUNK Right Now

[ESP+0x24] 0012FF34  0012FF48 [EBP-0x0C] JUNK Right Now

[ESP+0x28] 0012FF38  ED59748F [EBP-0x08] Stack Cookie xor EBP

value placed here

[ESP+0x2C] 0012FF3C  0040343B [EBP-0x04] JUNK Right Now

[ESP+0x30] 0012FF40  0012FF88 [EBP]

[ESP+0x34] 0012FF44  00401299 return to array.00401299 from

array.00401000



Figure 11.7: Stack cookie on stack

▼Line 34-44

; Line 8

mov DWORD PTR _iArray$[ebp], 0

mov DWORD PTR _iArray$[ebp+4], 1

mov DWORD PTR _iArray$[ebp+8], 2

mov DWORD PTR _iArray$[ebp+12], 3

mov DWORD PTR _iArray$[ebp+16], 4

mov DWORD PTR _iArray$[ebp+20], 5

mov DWORD PTR _iArray$[ebp+24], 6

mov DWORD PTR _iArray$[ebp+28], 7

mov DWORD PTR _iArray$[ebp+32], 8

mov DWORD PTR _iArray$[ebp+36], 9

Line 8 of the C/C++ code defines iArray of type

int iArray[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};



In ASM, iArray is of type integer, so each element of the array

will occupy 4 bytes of space as required for that integer. All these

move instructions will place the elements of iArray on the stack.

iArray macro is defined as:

_iArray$ = -48 (-0x30)

So _iArray$[ebp] will correspond to ss:[ebp-0x30]. Similarly, other

iArray elements can be accessed on the stack by adding _$ to the

EBP address. The stack state after the execution of the preceding

instructions is as follows:

[ESP]  0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x4] 0012FF14  00000001  [EBP-0x2C] iArray second element

[ESP+0x8] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0xC] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x10] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x14] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x18] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x1C] 0012FF2C  00000007  [EBP-0x14]  iArray eighth

element

[ESP+0x20] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x24] 0012FF34  00000009  [EBP-0x0C] iArray tenth element

[ESP+0x28] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor

EBP value placed

[ESP+0x2C] 0012FF3C  0040343B  [EBP-0x04] JUNK Right Now



[ESP+0x30] 0012FF40  0012FF88  [EBP]

[ESP+0x34] 0012FF44  00401299  return to array.00401299 from

array.00401000

Figure 11.8: iArray on stack

▼Line 35-47

; Line 11

mov DWORD PTR _iLoop$[ebp], 0

jmp SHORT $LN3@main

Line 11 of the C/C++ code initializes the iLoop variable to iterate

over the iArray elements. The MOV instruction is placing 0x00 on

the iLoop variable placeholder on the stack at ss:[ebp-0x4]. The



JMP instruction makes an unconditional jump to the $LN3@main

label.

▼Line 52-54

$LN3@main:

cmp DWORD PTR _iLoop$[ebp], 10  ; 0000000aH

jge SHORT $LN1@main

The CMP instruction compares the iLoop value stored on the

stack with 10(0x0A). It will perform a signed comparison jump if

the iLoop at [EBP-0x04] is greater than or equal to 10(0x0A).

Currently, iLoop is 0, so the jump will not happen and the

instruction pointer will move to the next instruction. The stack

state will be as follows:

[ESP]  0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x4] 0012FF14  00000001  [EBP-0x2C] iArray second element

[ESP+0x8] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0xC] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x10] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x14] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x18] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x1C] 0012FF2C  00000007  [EBP-0x14]  iArray eighth

element

[ESP+0x20] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x24] 0012FF34  00000009  [EBP-0x0C] iArray tenth element

[ESP+0x28] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor

EBP value placed



[ESP+0x2C] 0012FF3C  00000000  [EBP-0x04] iLoop placeholder

here

[ESP+0x30] 0012FF40  0012FF88  [EBP]

[ESP+0x34] 0012FF44  00401299  return to array.00401299 from

array.00401000

Figure 11.9: iLoop is 0

▼Line 55-64

; Line 12

mov ecx, DWORD PTR _iLoop$[ebp]

mov edx, DWORD PTR _iArray$[ebp+ecx*4]



push edx

mov eax, DWORD PTR _iLoop$[ebp]

push eax

push OFFSET $SG4682

call _printf

add esp, 12     ; 0000000cH

jmp SHORT $LN2@main

Line 12 of the C/C++ code prints the element of iArray array

along with the index on the screen.

printf ("iArray[%d]=%d\n", iLoop, iArray[iLoop]);

As the printf function takes three arguments to print on the

screen, all these three arguments need to be pushed onto the

stack before the call to the printf function. In the ASM code, the

first argument to be pushed on the stack will be iArray[iLoop]. To

push this value on the stack, the iLoop value stored at [EBP-0x04]

is moved to ECX is the current value of array index. It is

multiplied by 4 (the size of the integer) and then added to the

iArray macro to calculate the memory location of the element

stored for the particular array index. This will give us the value of

the first array element in the EDX register. So, by pushing EDX

onto the stack, we pushed the first argument to printf onto the

stack.

Next argument, iLoop is pushed onto the stack by first pushing

the iLoop value stored at [EBP-0x04] to and the push EAX which

is second argument to



Last argument, the string constant is pushed by push OFFSET

Now, the three arguments are on the stack. So a call to printf is

made. The stack state at this point in time is as follows:

[ESP]  0012FF04  00408140  [EBP-0x40] "iArray[%d]=%d\n",

argument to printf

[ESP+0x4] 0012FF08  00000000  [EBP-0x38] iLoop value is

pushed as printf argument

[ESP+0x8] 0012FF0C  00000000  [EBP-0x34] iArray first element

pushed as printf arg

ESP+0xC] 0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x10] 0012FF14  00000001  [EBP-0x2C] iArray second

element

[ESP+0x14] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0x18] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x1C] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x20] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x24] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x28] 0012FF2C  00000007  [EBP-0x14]  iArray eighth

element

[ESP+0x2C] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x30] 0012FF34  00000009  [EBP-0x0C] iArray tenth element

[ESP+0x34] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor EBP

value placed

[ESP+0x38] 0012FF3C  00000000  [EBP-0x04] iLoop placeholder

here

[ESP+0x3C] 0012FF40  0012FF88  [EBP]



[ESP+0x40] 0012FF44  00401299  return to array.00401299 from

array.00401000

Figure 11.10: Printf arg on stack

On return from call to the printf function, the stack is cleaned by

12 bytes by the ADD instruction. Next, an unconditional jump to

$LN2@main label is made. The stack state after the unconditional

jump is as follows:

[ESP-0x0C] 0012FF04  00408140  [EBP-0x40] NOW JUNK

[ESP-0x8] 0012FF08  00000000  [EBP-0x38] NOW JUNK

[ESP-0x4] 0012FF0C  00000000  [EBP-0x34]  NOW JUNK

[ESP]  0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x4] 0012FF14  00000001  [EBP-0x2C] iArray second element



[ESP+0x8] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0xC] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x10] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x14] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x18] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x1C] 0012FF2C  00000007  [EBP-0x14]  iArray eighth

element

[ESP+0x20] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x24] 0012FF34  00000009  [EBP-0x0C] iArray tenth element

[ESP+0x28] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor

EBP value placed

[ESP+0x2C] 0012FF3C  00000000  [EBP-0x04] iLoop placeholder

here

[ESP+0x30] 0012FF40  0012FF88  [EBP]

[ESP+0x34] 0012FF44  00401299  return to array.00401299 from

array.00401000



Figure 11.11: Stack cleaned

▼Line 48-51

$LN2@main:

mov eax, DWORD PTR _iLoop$[ebp]

add eax, 1

mov DWORD PTR _iLoop$[ebp], eax

At this label, the iLoop value from [EBP-0x04] is moved to EAX

and incremented by 1. This increment is placed back to [EBP-0x4].

The instruction pointer will again iterate over the label

$LN3@main to compare the iLoop value with 10(0x0A).



▼Line 52-54

$LN3@main:

cmp DWORD PTR _iLoop$[ebp], 10  ; 0000000aH

jge SHORT $LN1@main

Now, imagine that we iterated 9 times over the instructions and

the iLoop value has become 10 At this point, the CMP instruction

will perform a signed comparison jump as the iLoop at [EBP-

0x04] is equal to 10(0x0A) and it will also set ZF=1. As iLoop is

10(0xA), so the jump will happen to the $LN1@main label. The

stack state after JUMP if greater equal is as follows:

[ESP-0x0C] 0012FF04  00408140  [EBP-0x40] NOW JUNK

[ESP-0x8] 0012FF08  00000009  [EBP-0x38] NOW JUNK

[ESP-0x4] 0012FF0C  00000009  [EBP-0x34] NOW JUNK

[ESP]  0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x4] 0012FF14  00000001  [EBP-0x2C] iArray second element

[ESP+0x8] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0xC] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x10] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x14] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x18] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x1C] 0012FF2C  00000007  [EBP-0x14] iArray eighth

element

[ESP+0x20] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x24] 0012FF34  00000009  [EBP-0x0C] iArray tenth element



[ESP+0x28] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor

EBP value placed

[ESP+0x2C] 0012FF3C  0000000A  [EBP-0x04] iLoop placeholder

here

[ESP+0x30] 0012FF40  0012FF88  [EBP]

[ESP+0x34] 0012FF44  00401299  return to array.00401299 from

array.00401000

Figure 11.12: The stack state after JGE

▼Line 65-77



$LN1@main:

; Line 14

xor eax, eax

; Line 15

mov ecx, DWORD PTR __$ArrayPad$[ebp]

xor ecx, ebp

call @__security_check_cookie@4

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

At this label, EAX is zeroed using XOR to return 0 as per line 14

of the C/C++ code.

Security Cookie is checked before the function epilogue by first

moving the Security Cookie stored at [EBP-0x08] to ECX and then

XOR ECX with EBP. A call to the security_check_cookie procedure

is made to prevent the buffer overflow attack.

Security Cookie stored at [EBP-0x08] = 0xED59748F

EBP = 0x0012FF40

ECX XOR EBP = 0xED59748F XOR 0x0012FF40 = 0xED4B8BCF

The result will be saved in ECX.



As we can see, this value is the same as the value generated and

stored at the 0x0040B000 memory location. As we are dealing

with little-endian, the value is stored in the reversed order. The

stack state at this point is the same as earlier:

[ESP-0x0C] 0012FF04  00408140  [EBP-0x40] NOW JUNK

[ESP-0x8] 0012FF08  00000009  [EBP-0x38] NOW JUNK

[ESP-0x4] 0012FF0C  00000009  [EBP-0x34] NOW JUNK

[ESP]  0012FF10  00000000  [EBP-0x30] iArray first element

[ESP+0x4] 0012FF14  00000001  [EBP-0x2C] iArray second element

[ESP+0x8] 0012FF18  00000002  [EBP-0x28] iArray third element

[ESP+0xC] 0012FF1C  00000003  [EBP-0x24] iArray forth element

[ESP+0x10] 0012FF20  00000004  [EBP-0x20] iArray fifth element

[ESP+0x14] 0012FF24  00000005  [EBP-0x1C] iArray sixth element

[ESP+0x18] 0012FF28  00000006  [EBP-0x18] iArray seventh

element

[ESP+0x1C] 0012FF2C  00000007  [EBP-0x14]  iArray eighth

element

[ESP+0x20] 0012FF30  00000008  [EBP-0x10] iArray ninth element

[ESP+0x24] 0012FF34  00000009  [EBP-0x0C] iArray tenth element

[ESP+0x28] 0012FF38  ED59748F  [EBP-0x08] Stack Cookie xor

EBP value placed

[ESP+0x2C] 0012FF3C  0000000A  [EBP-0x04] iLoop placeholder

here

[ESP+0x30] 0012FF40  0012FF88  [EBP]

[ESP+0x34] 0012FF44  00401299  return to array.00401299 from

array.00401000



Figure 11.13: Call to security_check_cookie

If we step into the call we can see that our XOR result saved in

ECX is compared with the security cookie stored at



Figure 11.14: Security_check_cookie function

As our security cookie stored at 0x0040B000 is the same as that

in ECX, ZF=1, the instruction pointer will return back to the main

function. On return, the function epilogue is called to end the

main function, TEXT segment, and code. Below is the stack state

explained before return instruction:

[ESP-0x34] 0012FF10  00000000  NOW JUNK

[ESP-0x30] 0012FF14  00000001  NOW JUNK

[ESP-0x2C] 0012FF18  00000002  NOW JUNK

[ESP-0x28] 0012FF1C  00000003  NOW JUNK

[ESP-0x24] 0012FF20  00000004  NOW JUNK

[ESP-0x20] 0012FF24  00000005  NOW JUNK

[ESP-0x1C] 0012FF28  00000006  NOW JUNK

[ESP-0x18] 0012FF2C  00000007  NOW JUNK

[ESP-0x14] 0012FF30  00000008  NOW JUNK

[ESP-0x10] 0012FF34  00000009  NOW JUNK

[ESP-0x0C] 0012FF38  ED59748F  NOW JUNK

[ESP-0x08] 0012FF3C  0000000A  NOW JUNK

[ESP-0x04] 0012FF40  0012FF88  NOW JUNK



[ESP]  0012FF44  00401299  return to array.00401299 from

array.00401000

Figure 11.15: Stack cleaned



Array Loop with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 11.16: Array Loop with Optimization

The compilation generates the EXE file and assembly code.

Disable ASLR manually. To disable ASLR, use the CFF explorer and

change the DllCharacteristics parameter to uncheck DLL can For

detailed steps to disable ASLR, please refer to the

Now, let us move on to generated assembly listing:



Figure 11.17: Array-Optimized.asm-Part-1



Figure 11.18: Array-Optimized.asm-Part-2

With optimization enabled, all of the unwanted code is removed

in the ASM listing. As we walk through the ASM code, we see

that the standard function prologue and the epilogue are not in

the optimized code. So, the EBP reference is replaced with ESP in

all the instructions.



We will directly jump to the instructions as we have covered some

of the common ASM listings in the earlier section.

▼Line 26-31

; Line 7

sub esp, 44     ; 0000002cH

mov eax, DWORD PTR ___security_cookie

xor eax, esp

mov DWORD PTR __$ArrayPad$[esp+44], eax

push esi

The SUB instruction creates room for the local variables on the

stack by adding 44 (0x2C) bytes to ESP. 44 bytes are coming

from the 10 elements of iArray wherein each element is of 4

bytes each and 4 bytes are used for storing the stack cookie on

the stack to prevent buffer overflow as explained earlier.

The instruction moves the stack cookie stored in the .data

segment to the EAX register, where it is XOR’ed with The XOR’ed

result is placed on the stack to prevent a buffer overflow exploit

to happen. This XOR value will be checked before the main

function epilogue.

ESI will be used for the placeholder of the iLoop variable; the old

value of ESI is preserved on the stack using the PUSH

instruction. The stack state after pushing the ESI register is as

follows:

[ESP]  0012FF14  00000000  old ESI value is preserved here



[ESP+0x04] 0012FF18  0012FF78  JUNK

[ESP+0x08] 0012FF1C  004024D0  JUNK

[ESP+0x0C] 0012FF20  132AFDF8  JUNK

[ESP+0x010] 0012FF24  FFFFFFFE  JUNK

[ESP+0x014] 0012FF28  0040547C  JUNK

[ESP+0x18] 0012FF2C  00405490  JUNK

[ESP+0x1C] 0012FF30  0040342B  JUNK

[ESP+0x20] 0012FF34  0012FF48  JUNK

[ESP+0x24] 0012FF38  004028AE  JUNK

[ESP+0x28] 0012FF3C  0040342B  JUNK

[ESP+0x2C] 0012FF40  13789938  XOR of stack cookie and ESP is

stored here

[ESP+0x30] 0012FF44  0040128B  ESP before ‘sub esp, 44’

instruction

Figure 11.19: Old ESI value is preserved



▼Line 32-44

; Line 8

xor esi, esi

mov DWORD PTR _iArray$[esp+48], esi

mov DWORD PTR _iArray$[esp+52], 1

mov DWORD PTR _iArray$[esp+56], 2

mov DWORD PTR _iArray$[esp+60], 3

mov DWORD PTR _iArray$[esp+64], 4

mov DWORD PTR _iArray$[esp+68], 5

mov DWORD PTR _iArray$[esp+72], 6

mov DWORD PTR _iArray$[esp+76], 7

mov DWORD PTR _iArray$[esp+80], 8

mov DWORD PTR _iArray$[esp+84], 9

npad 3

Line 8 of the C/C++ code initializes

int iArray[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

In the ASM code, the XOR instruction resets the ESI register to

0x00 and then moves ESI to the [ESP+0x04] location as the first

element of iArray. All the other MOV instructions push the

remaining elements of iArray on the stack.

We see the npad macro, which inserts the non-destructive and

non-operational instructions rather than a series of NOP

instructions. Npad 3 corresponds to lea ecx, For more details



related to refer to the Appendix. The stack state immediately after

the npad macro is as follows:

[ESP]  0012FF14  00000000   old ESI value is preserved here

[ESP+0x04] 0012FF18  00000000   iArray first element pushed

here

[ESP+0x08] 0012FF1C  00000001   iArray second element pushed

here

[ESP+0x0C] 0012FF20  00000002   iArray third element pushed

here

[ESP+0x010] 0012FF24  00000003   iArray forth element pushed

here

[ESP+0x014] 0012FF28  00000004   iArray fifth element pushed

here

[ESP+0x18] 0012FF2C  00000005   iArray sixth element pushed

here

[ESP+0x1C] 0012FF30  00000006   iArray seventh element pushed

here

[ESP+0x20] 0012FF34  00000007   iArray eighth element pushed

here

[ESP+0x24] 0012FF38  00000008   iArray ninth element pushed

here

[ESP+0x28] 0012FF3C  00000009   iArray tenth element pushed

here

[ESP+0x2C] 0012FF40  13789938   XOR of stack cookie and ESP

is stored here

[ESP+0x30] 0012FF44  0040128B   ESP before ‘sub esp, 44’

instruction



Figure 11.20: The stack state after npad

▼Line 45-55

$LL3@main:

; Line 12

mov eax, DWORD PTR _iArray$[esp+esi*4+48]

push eax

push esi

push OFFSET $SG4682

call _printf

inc esi

add esp, 12     ; 0000000cH

cmp esi, 10     ; 0000000aH

jl SHORT $LL3@main



Line 12 of the C/C++ code prints the elements of iArray along

with the index on the screen.

printf ("iArray[%d]=%d\n", iLoop, iArray[iLoop]);

This same concept was discussed in the previous section without

optimization. The printf function takes three arguments to the

print iArray elements and indexes on the screen. So, all these

three arguments need to be pushed onto the stack before the call

to the printf function.

In the ASM code, the first argument to be pushed on the stack

will be To push this value on the stack, the iLoop value stored in

the ESI register is multiplied by 4 (the size of the integer) and

then added to the iArray macro and offset of 48 bytes to

calculate the memory location of the element stored for the

particular iLoop value. So, during the first iteration when the

iLoop stored at ESI = 0, the first MOV instruction will result in:

mov eax, DWORD PTR _iArray$[esp+esi*4+48]

mov eax, dword ptr ss:[esp+esi*4+0x4], as ESI = 0

mov eax, dword ptr ss:[esp+0x4]

This will give us the value of the first array element in the EAX

register. So, by pushing EAX onto the stack, we pushed the first

argument to printf onto the stack.

The next argument to printf is the iLoop value. It is pushed onto

the stack by pushing the ESI register.



Last argument, which is string constant is pushed by push

OFFSET

Now that the three arguments are on the stack, a call to printf is

made. Stack at this point in time is as follows:

[ESP]  0012FF08  00408140   "iArray[%d]=%d\n", string argument

to printf

[ESP+0x04] 0012FF0C  00000000   iLoop value, ESI is pushed as

printf argument

[ESP+0x08] 0012FF10  00000000   iArray first element is pushed

as printf argument

[ESP+0x0C] 0012FF14  00000000   old ESI value is preserved

here

[ESP+0x10] 0012FF18  00000000   iArray first element pushed

here

[ESP+0x14] 0012FF1C  00000001   iArray second element pushed

here

[ESP+0x18] 0012FF20  00000002   iArray third element pushed

here

[ESP+0x1C] 0012FF24  00000003   iArray forth element pushed

here

[ESP+0x20] 0012FF28  00000004   iArray fifth element pushed

here

[ESP+0x24] 0012FF2C  00000005   iArray sixth element pushed

here

[ESP+0x2C] 0012FF30  00000006   iArray seventh element pushed

here



[ESP+0x30] 0012FF34  00000007   iArray eighth element pushed

here

[ESP+0x34] 0012FF38  00000008   iArray ninth element pushed

here

Figure 11.21: Arg to printf on stack

The INC instruction will increment the ESI register. This means

that it increments the iLoop value stored in ESI.

The ADD instruction cleans the stack by 12 bytes. Next, ESI is

compared with 10 (0x0A). At this point, the CMP instruction will

perform a signed comparison jump to the label $LL3@main as

the iLoop at ESI less than 10(0x0A). The stack state after JUMP if

Less than is as follows:



[ESP-0x0C] 0012FF08  00408140   Now JUNK

[ESP-0x08] 0012FF0C  00000000   Now JUNK

[ESP-0x04] 0012FF10  00000000   Now JUNK

[ESP]  0012FF14  00000000   old ESI value is preserved here

[ESP+0x04] 0012FF18  00000000   iArray first element pushed

here

[ESP+0x08] 0012FF1C  00000001   iArray second element pushed

here

[ESP+0x0C] 0012FF20  00000002   iArray third element pushed

here

[ESP+0x010] 0012FF24  00000003   iArray forth element pushed

here

[ESP+0x014] 0012FF28  00000004   iArray fifth element pushed

here

[ESP+0x18] 0012FF2C  00000005   iArray sixth element pushed

here

[ESP+0x1C] 0012FF30  00000006   iArray seventh element pushed

here

[ESP+0x20] 0012FF34  00000007   iArray eighth element pushed

here

[ESP+0x24] 0012FF38  00000008   iArray ninth element pushed

here

[ESP+0x28] 0012FF3C  00000009   iArray tenth element pushed

here

[ESP+0x2C] 0012FF40  13789938   XOR of stack cookie and ESP

is stored here

[ESP+0x30] 0012FF44  0040128B   ESP before ‘sub esp, 44’

instruction



Figure 11.22: The stack state after JL

Now, imagine that we iterated 10 times over the instructions and

the iLoop value at ESI has become 10 (0x0A). At this point, the

CMP instruction will result in ZF=1 and the jump will not happen

to the $LL3@main label. The instruction pointer will move to the

next instruction. The stack state at this stage will be:

[ESP-0x0C] 0012FF08  00408140   Now JUNK

[ESP-0x08] 0012FF0C  00000009   Now JUNK

[ESP-0x04] 0012FF10  00000009   Now JUNK

[ESP]  0012FF14  00000000   old ESI value is preserved here

[ESP+0x04] 0012FF18  00000000   iArray first element pushed

here



[ESP+0x08] 0012FF1C  00000001   iArray second element pushed

here

[ESP+0x0C] 0012FF20  00000002   iArray third element pushed

here

[ESP+0x010] 0012FF24  00000003   iArray forth element pushed

here

[ESP+0x014] 0012FF28  00000004   iArray fifth element pushed

here

[ESP+0x18] 0012FF2C  00000005   iArray sixth element pushed

here

[ESP+0x1C] 0012FF30  00000006   iArray seventh element pushed

here

[ESP+0x20] 0012FF34  00000007   iArray eighth element pushed

here

[ESP+0x24] 0012FF38  00000008   iArray ninth element pushed

here

[ESP+0x28] 0012FF3C  00000009   iArray tenth element pushed

here

[ESP+0x2C] 0012FF40  13789938   XOR of stack cookie and ESP

is stored here

[ESP+0x30] 0012FF44  0040128B   ESP before ‘sub esp, 44’

instruction



Figure 11.23: The stack state after ESI is 0x0A

▼Line 56-66

; Line 15

mov ecx, DWORD PTR __$ArrayPad$[esp+48]

pop esi

xor ecx, esp

xor eax, eax

call @__security_check_cookie@4

add esp, 44     ; 0000002cH

ret 0

_main ENDP

_TEXT ENDS



END

The MOV instruction will move the stack cookie stored at

[ESP+0x2C] to

The POP instruction restores the value of ESI from the stack.

The XOR instruction will XOR the stack cookie moved to ECX

with and the result of XOR will be stored back in the ECX

register. On the call to the security_check_cookie procedure, this

ECX value is compared with the stack cookie stored in the .data

section.

Figure 11.24: Call to security_check_cookie

As the stack cookie value is unchanged, the instruction pointer

will return back to On return, EAX is XOR with EAX to return 0

and the ADD instruction will clean up the stack to end the main

procedure, TEXT segment, and code. The stack state in the end

will be as follows:



[ESP-0x3C] 0012FF08  00408140   Now JUNK

[ESP-0x38] 0012FF0C  00000009   Now JUNK

[ESP-0x34] 0012FF10  00000009   Now JUNK

ESP-0x30] 0012FF14  00401087   Now JUNK

[ESP-0x2C] 0012FF18  00000000   Now JUNK

[ESP-0x28] 0012FF1C  00000001   Now JUNK

[ESP-0x24] 0012FF20  00000002   Now JUNK

[ESP-0x20] 0012FF24  00000003   Now JUNK

[ESP-0x1C] 0012FF28  00000004   Now JUNK

[ESP-0x18] 0012FF2C  00000005   Now JUNK

[ESP-0x14] 0012FF30  00000006   Now JUNK

[ESP-0x10] 0012FF34  00000007   Now JUNK

[ESP-0x0C] 0012FF38  00000008   Now JUNK

[ESP-0x08] 0012FF3C  00000009   Now JUNK

[ESP-0x04] 0012FF40  13789938   Now JUNK

[ESP]  0012FF44  0040128B   ESP at the start of main function



Figure 11.25: The stack state in the end



Conclusion

In this chapter, we discussed about the working of an array with

respect to reverse engineering. We saw the array code pattern in a

disassembled code and understood how arrays are stored in

contiguous memory locations. As an integer occupies 4 bytes of

memory, so the integer array occupies 4 bytes multiplied by the

number of elements in an array. We saw how contiguous memory

locations are allocated in stack. We also covered the array

program pattern when a code is optimized and not optimized. In

the next chapter, we will talk about reversing structures that can

handle dissimilar data types.



CHAPTER 12

Structure Code Pattern in Reverse Engineering

In the real world, we can describe an individual using several

attributes. These attributes, or we can say parameters or

characteristics, help us identify an individual uniquely. The

attributes using which we can uniquely identify an individual can

be their name, age, sex, height, weight, nationality, and many

more. All these attributes correlate to different types of data. It

means that the age is an integer, the sex is a string, the weight

can be float, and the nationality is a string.

Now, as a computer programmer, if we have to code an

application to record the details of all the individuals present in a

geographical location, then we have to write an application in

such a way that it can handle the data of the individuals in a

well-managed and easy manner. In the earlier chapter, we have

already seen ordinary variables that can hold a single piece of

information. We have also seen how an array can hold data of a

similar data type. But in the case of recording individual data, we

have to use structures, which are used to record data of

dissimilar data types. In this chapter, we will be reversing a

structure which is used in many applications.



Structure

In this chapter, we will cover the following topics:

Understanding of structures

Structure without Optimization

Structure with Optimization



Objective

In this chapter, we will study about pointers to structures with

respect to reverse engineering. We will talk about structures code

pattern in disassembled code and how structures are stored in

memory. We will also cover structures program with optimized and

not optimized code.



Understanding of structures

In this example, let’s demonstrate the structure pointer. As we

have a pointer to an integer or a pointer to a char, similarly, we

have a pointer to structures. In C, we have an arrow operator that

refers to the elements of a structure.

Figure 12.1: Structures.cpp



Structure without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 12.2: Structure without Optimization

The compilation generates the EXE file and assembly code.

Disable ASLR manually. To disable ASLR, use the CFF explorer and

change the DllCharacteristics parameter to uncheck DLL can

Now, let us move onto the generated assembly listing:



Figure 12.3: Structures.asm-Part-1



Figure 12.4: Structures.asm-Part-2



Figure 12.5: Structures.asm-Part-3

Let’s move onto the explanation of the ASM code:

▼Line 30-33

; Line 9



push ebp

mov ebp, esp

sub esp, 64     ; 00000040H

It starts with the main function prologue, wherein the old EBP is

pushed onto the stack and the current ESP is moved to a new

The SUB instruction creates room for the security cookie and the

local variable by subtracting 64 bytes from the ESP register. Space

allocated for variables on stack can be segregated as follows:

char rgName[40]; = 40 bytes

int  iAge;  = 4 bytes

unsigned long long uMobile; = 8 bytes

struct SSubscriber *puser; = 4 bytes

Stack Cookie = 4 bytes

▼Line 34-36

mov eax, DWORD PTR ___security_cookie

xor eax, ebp

mov DWORD PTR __$ArrayPad$[ebp], eax

As shown in the following screenshot, the stack cookie stored at

0x0040B000 is moved to EAX where it is XOR’ed with The result

of XOR from EAX is moved back to which is [EBP-0x08]. The

stack at this point in time is as follows:



[ESP]  0012FF00  00000000  Right now JUNK, space for local

variables

[ESP+0x04] 0012FF04  00000000  Right now JUNK, space for

local variables

[ESP+0x08] 0012FF08  7FFDE000  Right now JUNK, space for

local variables

[ESP+0x0C] 0012FF0C  0040345B  Right now JUNK, space for

local variables

[ESP+0x10] 0012FF10  0012FEFC  Right now JUNK, space for local

variables

[ESP+0x14] 0012FF14  00000004  Right now JUNK, space for

local variables

[ESP+0x18] 0012FF18  0012FF78  Right now JUNK, space for local

variables

[ESP+0x1C] 0012FF1C  00402500  Right now JUNK, space for

local variables

[ESP+0x20] 0012FF20  0185B22A  Right now JUNK, space for local

variables

[ESP+0x24] 0012FF24  FFFFFFFE  Right now JUNK, space for local

variables

[ESP+0x28] 0012FF28  004054AC  Right now JUNK, space for

local variables

[ESP+0x2C] 0012FF2C  004054C0  Right now JUNK, space for

local variables

[ESP+0x30] 0012FF30  0040345B  Right now JUNK, space for local

variables

[ESP+0x34] 0012FF34  0012FF48  Right now JUNK, space for local

variables

[ESP+0x38] 0012FF38  01D7D682  XOR of Stack Cookie and EAX

is stored here



[ESP+0x3C] 0012FF3C  0040345B  Right now JUNK, space for

local variables

[ESP+0x40] 0012FF40  0012FF88  [EBP]

[ESP+0x44] 0012FF44  004012B3  return to structures.004012B3

Figure 12.6: Stack cookie

▼Line 37-56

; Line 18

mov eax, DWORD PTR $SG5660

mov DWORD PTR _user$[ebp], eax

mov ecx, DWORD PTR $SG5660+4

mov DWORD PTR _user$[ebp+4], ecx

mov dl, BYTE PTR $SG5660+8



mov BYTE PTR _user$[ebp+8], dl

xor eax, eax

mov DWORD PTR _user$[ebp+9], eax

mov DWORD PTR _user$[ebp+13], eax

mov DWORD PTR _user$[ebp+17], eax

mov DWORD PTR _user$[ebp+21], eax

mov DWORD PTR _user$[ebp+25], eax

mov DWORD PTR _user$[ebp+29], eax

mov DWORD PTR _user$[ebp+33], eax

mov WORD PTR _user$[ebp+37], ax

mov BYTE PTR _user$[ebp+39], al

mov DWORD PTR _user$[ebp+40], 30  ; 0000001eH

mov DWORD PTR _user$[ebp+48], -691168947 ; d6cd994dH

mov DWORD PTR _user$[ebp+52], 1

; Line 18

This is a comment which states that the ASM instructions

preceding it will represent line 18 of the C/C++ code, which is:

struct SSubscriber user = {"Jitender", 30, 7898765645};    //

Structure Variable

In the ASM code, we see several MOV instructions. To understand

these instructions, we will have to understand that the elements

of structure are always stored in contiguous memory locations. All

the MOV instructions will store the elements of structure onto the

stack. To understand the stack state, let’s first take each element

of structure in a hex representation as follows:

char rgName[40]; = 40 bytes = Jitender (0x4A6974656E646572)



(0x4A6974656E646572)

(0x4A6974656E646572)

int iAge; = 4 bytes = 30 (0x0000001E)

(0x0000001E)

unsigned long long uMobile; = 8 bytes = 7898765645

(0x00000001D6CD994D)

(0x00000001D6CD994D)

The stack state after all the MOV instructions will be as follows:

[ESP]  0012FF00  6574694A  4 bytes of array, rgName in little-

endian etiJ

[ESP+0x04] 0012FF04  7265646E  4 bytes of array, rgName in

little-endian redn

[ESP+0x08] 0012FF08  00000000  String terminator with NULL in

remaining array

[ESP+0x0C] 0012FF0C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x10] 0012FF10  00000000  NULL values in char array of

size 40 bytes



[ESP+0x14] 0012FF14  00000000  NULL values in char array of

size 40 bytes

[ESP+0x18] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x1C] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x20] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x24] 0012FF24  00000000  array from 0x0012FF00 to

0x0012FF28, total 40 bytes

[ESP+0x28] 0012FF28  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x2C] 0012FF2C  004054C0  return to 0x004054C0 from

0x00405477

[ESP+0x30] 0012FF30  D6CD994D  4 bytes of uMobile stored

here

[ESP+0x34] 0012FF34  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x38] 0012FF38  01D7D682  XOR of Stack Cookie and EAX

is stored here

[ESP+0x3C] 0012FF3C  0040345B  structures.0040345B

[ESP+0x40] 0012FF40  0012FF88  [EBP]

[ESP+0x44] 0012FF44  004012B3  return to 0x004012B3 from

0x00401000



Figure 12.7: Stack after all the MOV instructions

▼Line 57-59

; Line 21

lea ecx, DWORD PTR _user$[ebp]

mov DWORD PTR _puser$[ebp], ecx

This is a comment which states that the ASM instructions

preceding it will represent line 21 of the C/C++ code, which is:

puser = &user;



In the ASM code, the pointer to structure is pushed onto the

ECX register using the Load Effective Address instruction. The

pointer to the structure points to the first element of the

structure, as structures are always stored in contiguous memory

locations.

The MOV instruction will push the pointer to structure on the

stack at [EBP-0x04]. The stack state after this instruction will be

as follows:

[ESP]  0012FF00  6574694A  4 bytes of array, rgName in little-

endian etiJ

[ESP+0x04] 0012FF04  7265646E  4 bytes of array, rgName in

little-endian redn

[ESP+0x08] 0012FF08  00000000  String terminator with NULL in

remaining array

[ESP+0x0C] 0012FF0C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x10] 0012FF10  00000000  NULL values in char array of

size 40 bytes

[ESP+0x14] 0012FF14  00000000  NULL values in char array of

size 40 bytes

[ESP+0x18] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x1C] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x20] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x24] 0012FF24  00000000  rgName from 0x0012FF00 to

0x0012FF28, total 40 bytes    



[ESP+0x28] 0012FF28  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x2C] 0012FF2C  004054C0  return to 0x004054C0 from

0x00405477

[ESP+0x30] 0012FF30  D6CD994D  4 bytes of uMobile stored

here

[ESP+0x34] 0012FF34  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x38] 0012FF38  01D7D682  XOR of Stack Cookie and EAX

is stored here

[ESP+0x3C] 0012FF3C  0012FF00  Pointer to structure is stored

here, puser

[ESP+0x40] 0012FF40  0012FF88  [EBP]

[ESP+0x44] 0012FF44  004012B3   return to 0x004012B3 from

0x00401000



Figure 12.8: Pointer to structure on stack

▼Line 60-71

; Line 22

mov edx, DWORD PTR _user$[ebp+52]

push edx

mov eax, DWORD PTR _user$[ebp+48]

push eax

mov ecx, DWORD PTR _user$[ebp+40]

push ecx

lea edx, DWORD PTR _user$[ebp]

push edx



push OFFSET $SG5662

call _printf

add esp, ; 00000014H

This is a comment which states that the ASM instructions

preceding it will represent line 22 of the C/C++ code, which is:

printf("\n%s %d %llu", user.rgName, user.iAge, user.uMobile);

In the ASM code, we are pushing all the arguments to the stack

one by one and then a call to the printf function is made. The

stack state just before the call to the printf function is as follows:

[ESP]  0012FEEC  0040814C  "\n%s %d %llu", argument to

printf() is pushed here

[ESP+0x04] 0012FEF0  0012FF00  pointer to rgName array is

pushed here

[ESP+0x08] 0012FEF4  0000001E  iAge value is pushed here

[ESP+0x0C] 0012FEF8  D6CD994D  uMobile value is pushed here

[ESP+0x10] 0012FEFC  00000001  uMobile value is pushed here

[ESP+0x14] 0012FF00  6574694A  4 bytes of array, rgName in

little-endian etiJ

[ESP+0x18] 0012FF04  7265646E  4 bytes of array, rgName in

little-endian redn

[ESP+0x1C] 0012FF08  00000000  String terminator with NULL in

remaining array

[ESP+0x20] 0012FF0C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x24] 0012FF10  00000000  NULL values in char array of

size 40 bytes



[ESP+0x28] 0012FF14  00000000  NULL values in char array of

size 40 bytes

[ESP+0x2C] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x30] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x34] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x38] 0012FF24  00000000  rgName from 0x0012FF00 to

0x0012FF28, total 40 bytes    

[ESP+0x3C] 0012FF28  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x40] 0012FF2C  004054C0  return to 0x004054C0 from

0x00405477

[ESP+0x44] 0012FF30  D6CD994D  4 bytes of uMobile stored

here

[ESP+0x48] 0012FF34  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x50] 0012FF38  01D7D682  XOR of Stack Cookie and EAX

is stored here

[ESP+0x54] 0012FF3C  0012FF00  Pointer to structure is stored

here, puser

[ESP+0x58] 0012FF40  0012FF88  [EBP]

[ESP+0x5C] 0012FF44  004012B3   return to 0x004012B3 from

0x00401000



Figure 12.9: Before the call to printf

After the call to the printf function, the stack is cleaned using the

ADD instruction.

▼Line 72-85

; Line 23

mov eax, DWORD PTR _puser$[ebp]

mov ecx, DWORD PTR [eax+52]

push ecx

mov edx, DWORD PTR [eax+48]

push edx

mov eax, DWORD PTR _puser$[ebp]



mov ecx, DWORD PTR [eax+40]

push ecx

mov edx, DWORD PTR _puser$[ebp]

push edx

push OFFSET $SG5663

call _printf

add esp, 20     ; 00000014H

This is a comment which states that the ASM instructions

preceding it will represent line 23 of the C/C++ code, which is:

printf("\n%s %d %llu", puser->rgName, puser->iAge, puser-

>uMobile);

In the C/C++ code, we are accessing all the elements of structure

using pointer to the structure and using -> operator. So, in ASM,

we can observe that in the first MOV instruction, pointer to

structure is pushed onto the EAX register and then all the

subsequent MOV instructions are referring to the elements using

the EAX register, as EAX points to the start of the structure

memory. In all the subsequent instructions, we are pushing the

structure elements onto the stack using a combination of MOV

and PUSH instructions.

All the MOV instructions are accessing variables using EAX+offset

(where offset is the number of bytes. When added to it gives the

location of the element value stored on the stack) and moving it

to an available register. Next, the PUSH instruction pushes the

structure element value onto the stack. Once all the elements are

pushed onto the stack, a call to the printf function is made. The



stack state before the call to the second printf function is as

follows:

[ESP]  0012FEEC  00408158  "\n%s %d %llu", argument to

printf() is pushed here

[ESP+0x04] 0012FEF0  0012FF00  pointer to rgName array is

pushed here

[ESP+0x08] 0012FEF4  0000001E  iAge value is pushed here

[ESP+0x0C] 0012FEF8  D6CD994D  uMobile value is pushed here

[ESP+0x10] 0012FEFC  00000001  uMobile value is pushed here

[ESP+0x14] 0012FF00  6574694A  4 bytes of array, rgName in

little-endian etiJ

[ESP+0x18] 0012FF04  7265646E  4 bytes of array, rgName in

little-endian redn

[ESP+0x1C] 0012FF08  00000000  String terminator with NULL in

remaining array

[ESP+0x20] 0012FF0C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x24] 0012FF10  00000000  NULL values in char array of

size 40 bytes

[ESP+0x28] 0012FF14  00000000  NULL values in char array of

size 40 bytes

[ESP+0x2C] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x30] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x34] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x38] 0012FF24  00000000  rgName from 0x0012FF00 to

0x0012FF28, total 40 bytes    



[ESP+0x3C] 0012FF28  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x40] 0012FF2C  004054C0  return to 0x004054C0 from

0x00405477

[ESP+0x44] 0012FF30  D6CD994D  4 bytes of uMobile stored

here

[ESP+0x48] 0012FF34  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x50] 0012FF38  01D7D682  XOR of Stack Cookie and EAX

is stored here

[ESP+0x54] 0012FF3C  0012FF00  Pointer to structure is stored

here, puser

[ESP+0x58] 0012FF40  0012FF88  [EBP]

[ESP+0x5C] 0012FF44  004012B3    return to 0x004012B3 from

0x00401000



Figure 12.10: Before call to second printf

After the call to the printf function, the stack is cleaned using the

ADD instruction.

▼Line 86-87

; Line 25

xor eax, eax

This is a comment which states that the ASM instructions

preceding it will represent line 25 of the C/C++ code, which is:



return 0;

In the ASM code, EAX is zeroed to return 0, as we discussed

earlier that the return value of a function is stored in the EAX

register.

▼Line 88-97

; Line 26

mov ecx, DWORD PTR __$ArrayPad$[ebp]

xor ecx, ebp

call @__security_check_cookie@4

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

This ASM code that retrieves the stack cookie value from [EBP-

0x08] and XOR with EBP to match the stack cookie value stored

at On return from the security_check_cookie procedure, the

function epilogue is called to return 0 and end the main

procedure, TEXT segment, and code. The stack state before the

return is as follows:

[ESP-0x44] 0012FF00  6574694A   Now JUNK

[ESP-0x40] 0012FF04  7265646E   Now JUNK

[ESP-0x3C] 0012FF08  00000000   Now JUNK



[ESP-0x38] 0012FF0C  00000000   Now JUNK

[ESP-0x34] 0012FF10  00000000   Now JUNK

[ESP-0x30] 0012FF14  00000000   Now JUNK

[ESP-0x2C] 0012FF18  00000000   Now JUNK

[ESP-0x28] 0012FF1C  00000000   Now JUNK

[ESP-0x24] 0012FF20  00000000   Now JUNK

[ESP-0x20] 0012FF24  00000000   Now JUNK

[ESP-0x1C] 0012FF28  0000001E   Now JUNK

[ESP-0x18] 0012FF2C  004054C0   return to 0x004054C0 from

0x00405477

[ESP-0x14] 0012FF30  D6CD994D   Now JUNK

[ESP-0x10] 0012FF34  00000001   Now JUNK

[ESP-0x0C] 0012FF38  01D7D682   Now JUNK

[ESP-0x08] 0012FF3C  0012FF00   Now JUNK

[ESP-0x04] 0012FF40  0012FF88   Now JUNK

[ESP]  0012FF44  004012B3   return to 0x004012B3 from

0x00401000



Figure 12.11: Stack cleaned



Structure with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 12.12: Structure with Optimization

The compilation generates the EXE file and assembly code.

Disable ASLR manually. To disable ASLR, use the CFF explorer and

change the DllCharacteristics parameter to uncheck DLL can

Now, let’s move onto the generated assembly listing:



Figure 12.13: Structures-Optimized.asm-Part-1



Figure 12.14: Structures-Optimized.asm-Part-2

Let’s analyze the ASM code:

▼Line 29-33



; Line 9

sub esp, 60     ; 0000003cH

mov eax, DWORD PTR ___security_cookie

xor eax, esp

mov DWORD PTR __$ArrayPad$[esp+60], eax

In the ASM code, 60 bytes are subtracted from ESP to create

room for the variables on the stack. The MOV instruction moves

the stack cookie stored at 0x0040B000 to where it is XOR’ed

with ESP and the result is moved to the stack at [ESP+0x38]. As

instruction:

mov DWORD PTR __$ArrayPad$[esp+60], eax

When this instruction is viewed in x32dbg it will be shown as

below:

mov dword ptr ss:[esp+0x38], eax

The stack state after this instruction is as follows:

[ESP]  0012FF08  7FFDF000  JUNK

[ESP+0x4] 0012FF0C  0040345B  JUNK

[ESP+0x8] 0012FF10  0012FEFC  JUNK

[ESP+0xC] 0012FF14  00000004  JUNK

[ESP+0x10] 0012FF18  0012FF78  JUNK

[ESP+0x14] 0012FF1C  00402500  JUNK

[ESP+0x18] 0012FF20  858BFA6B  JUNK



[ESP+0x1C] 0012FF24  FFFFFFFE  JUNK

[ESP+0x20] 0012FF28  004054AC  JUNK

[ESP+0x24] 0012FF2C  004054C0  JUNK

[ESP+0x28] 0012FF30  0040345B  JUNK

[ESP+0x2C] 0012FF34  0012FF48  JUNK

[ESP+0x30] 0012FF38  004028DE  JUNK

[ESP+0x34] 0012FF3C  0040345B  JUNK

[ESP+0x38] 0012FF40  85D99E8B  XOR of Stack Cookie and ESP

is stored here

[ESP+0x3C] 0012FF44  004012B4  return to structures-

optimized.004012B4

Figure 12.15: Stack cookie

▼Line 34-37



; Line 18

mov eax, DWORD PTR $SG5660

mov ecx, DWORD PTR $SG5660+4

mov dl, BYTE PTR $SG5660+8

These instructions move the first 4 bytes of the rgName array

into the EAX register in the little-endian format and the next 4

bytes in the ECX register. The null terminated character is moved

to the DL register.

▼Line 38-61

; Line 22

push 1

mov DWORD PTR _user$[esp+64], eax

xor eax, eax

push -691168947    ; d6cd994dH

mov DWORD PTR _user$[esp+77], eax

mov DWORD PTR _user$[esp+81], eax

mov DWORD PTR _user$[esp+85], eax

mov DWORD PTR _user$[esp+89], eax

mov DWORD PTR _user$[esp+93], eax

mov DWORD PTR _user$[esp+97], eax

mov DWORD PTR _user$[esp+101], eax

mov WORD PTR _user$[esp+105], ax

mov BYTE PTR _user$[esp+107], al

push 30     ; 0000001eH

lea eax, DWORD PTR _user$[esp+72]

push eax

push OFFSET $SG5662



mov DWORD PTR _user$[esp+84], ecx

mov BYTE PTR _user$[esp+88], dl

mov DWORD PTR _user$[esp+120], 30  ; 0000001eH

mov DWORD PTR _user$[esp+128], -691168947 ; d6cd994dH

mov DWORD PTR _user$[esp+132], 1

call _printf

In the non-optimized section, we saw how EBP is referred to

access the structure elements on the stack. In the preceding ASM

code, the stack is similarly filled with the elements of structure by

referring to the stack memory with Also, for the first printf

function call, the arguments are pushed onto the stack. The stack

state before the call to printf will be:

[ESP]  0012FEF4  0040814C  "\n%s %d %llu", argument to

printf() is pushed here

[ESP+0x4] 0012FEF8  0012FF08  pointer to rgName array is

pushed here

[ESP+0x8] 0012FEFC  0000001E  iAge value is pushed here

[ESP+0xC] 0012FF00  D6CD994D  uMobile value is pushed here

[ESP+0x10] 0012FF04  00000001  uMobile value is pushed here

[ESP+0x14] 0012FF08  6574694A  4 bytes of array, rgName in

little-endian etiJ

[ESP+0x18] 0012FF0C  7265646E  4 bytes of array, rgName in

little-endian redn

[ESP+0x1C] 0012FF10  00000000  String terminator with NULL

values in array

[ESP+0x20] 0012FF14  00000000  NULL values in char array of

size 40 bytes



[ESP+0x24] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x28] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x2C] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x30] 0012FF24  00000000  NULL values in char array of

size 40 bytes

[ESP+0x34] 0012FF28  00000000  NULL values in char array of

size 40 bytes

[ESP+0x38] 0012FF2C  00000000  rgName from 0x0012FF08 to

0x0012FF30, total 40 bytes

[ESP+0x3C] 0012FF30  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x40] 0012FF34  0012FF48  Pointer to structure is stored

here, puser

[ESP+0x44] 0012FF38  D6CD994D  4 bytes of uMobile stored

here

[ESP+0x48] 0012FF3C  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x4C] 0012FF40  85D99E8B  XOR of Stack Cookie and EAX

is stored here

[ESP+0x50] 0012FF44  004012B4  return to structures-

optimized.004012B4



Figure 12.16: The stack state before the call to printf

▼Line 62-72

; Line 23

mov ecx, DWORD PTR _user$[esp+132]

mov edx, DWORD PTR _user$[esp+128]

mov eax, DWORD PTR _user$[esp+120]

push ecx

push edx

push eax



lea ecx, DWORD PTR _user$[esp+92]

push ecx

push OFFSET $SG5663

call _printf

The first three MOV and PUSH instructions push the uMobile and

iAge values on the stack. Load Effective Address moves the

pointer to structure on the ECX register and then to the stack.

Now, we have all three arguments to printf on the stack. We can

call the printf function. The stack state before the call to the

second printf will be:

[ESP]  0012FEE0  00408158  "\n%s %d %llu", arg to 2nd printf()

pushed here

[ESP+0x4] 0012FEE4  0012FF08  pointer to rgName array is

pushed here

[ESP+0x8] 0012FEE8  0000001E  iAge value is pushed here

[ESP+0x0C] 0012FEEC  D6CD994D  uMobile value is pushed here

[ESP+0x10] 0012FEF0  00000001  uMobile value is pushed here

[ESP+0x14] 0012FEF4  0040814C  "\n%s %d %llu", arg to 1st

printf() pushed here

[ESP+0x18] 0012FEF8  0012FF08  pointer to rgName array is

pushed here

[ESP+0x1C] 0012FEFC  0000001E  iAge value is pushed here

[ESP+0x20] 0012FF00  D6CD994D  uMobile value is pushed here

[ESP+0x24] 0012FF04  00000001  uMobile value is pushed here

[ESP+0x28] 0012FF08  6574694A  4 bytes of array, rgName in

little-endian etiJ

[ESP+0x2C] 0012FF0C  7265646E  4 bytes of array, rgName in

little-endian redn



[ESP+0x30] 0012FF10  00000000  String terminator with NULL in

remaining array

[ESP+0x34] 0012FF14  00000000  NULL values in char array of

size 40 bytes

[ESP+0x38] 0012FF18  00000000  NULL values in char array of

size 40 bytes

[ESP+0x3C] 0012FF1C  00000000  NULL values in char array of

size 40 bytes

[ESP+0x40] 0012FF20  00000000  NULL values in char array of

size 40 bytes

[ESP+0x44] 0012FF24  00000000  NULL values in char array of

size 40 bytes

[ESP+0x48] 0012FF28  00000000  NULL values in char array of

size 40 bytes

[ESP+0x4C] 0012FF2C  00000000  rgName from 0x0012FF08 to

0x0012FF30, total 40 bytes

[ESP+0x50] 0012FF30  0000001E  Second element of Structure,

iAge is stored here

[ESP+0x54] 0012FF34  0012FF48  Pointer to structure is stored

here, puser

[ESP+0x58] 0012FF38  D6CD994D  4 bytes of uMobile stored here

[ESP+0x6C] 0012FF3C  00000001  remaining 4 bytes of uMobile

stored here

[ESP+0x64] 0012FF40  85D99E8B  XOR of Stack Cookie and EAX

is stored here

[ESP+0x68] 0012FF44  004012B4  return to structures-

optimized.004012B4



Figure 12.17: Stack state before call to second printf

▼Line 73-83

; Line 26

mov ecx, DWORD PTR __$ArrayPad$[esp+100]

add esp, 40     ; 00000028H

xor ecx, esp

xor eax, eax

call @__security_check_cookie@4

add esp, 60     ; 0000003cH



ret 0

_main ENDP

_TEXT ENDS

END

The rest of the ASM code is the same, where the stack is

cleaned using the ADD instruction to match the stack cookie for

the buffer overflow. Finally, after a call to the security_check_cookie

procedure, the stack is again cleaned to return 0 to end the main

function, TEXT segment, and code. The stack state x32dbg will be

as follows:

[ESP-0x40] 0012FF08  6574694A   Now JUNK

[ESP-0x38] 0012FF0C  7265646E   Now JUNK

[ESP-0x34] 0012FF10  00000000   Now JUNK

[ESP-0x30] 0012FF14  00000000   Now JUNK

[ESP-0x2C] 0012FF18  00000000   Now JUNK

[ESP-0x28] 0012FF1C  00000000   Now JUNK

[ESP-0x24] 0012FF20  00000000   Now JUNK

[ESP-0x20] 0012FF24  00000000   Now JUNK

[ESP-0x1C] 0012FF28  00000000   Now JUNK

[ESP-0x18] 0012FF2C  00000000   Now JUNK

[ESP-0x14] 0012FF30  0000001E   Now JUNK

[ESP-0x10] 0012FF34  0012FF48   Now JUNK

[ESP-0x0C] 0012FF38  D6CD994D   Now JUNK

[ESP-0x08] 0012FF3C  00000001   Now JUNK

[ESP-0x04] 0012FF40  85D99E8B   Now JUNK

[ESP]  0012FF44  004012B4   return to structures-

optimized.004012B4



Figure 12.18: The stack is cleaned



Conclusion

In this chapter, we learned pointers to structures with respect to

reverse engineering. We discussed about structures code pattern in

disassembled code and how structures are stored in memory. The

main point to understand is that, pointer to the structure points

to the first element of structure as structures are always stored in

contiguous memory locations. We also covered structures program

with optimized and non-optimized code.



CHAPTER 13

Scanf Program Pattern in Reverse Engineering

Imagine you downloaded some hacking software from the internet.

On running this software, it asks you to enter the password. The

password is not mentioned anywhere on the site from where you

downloaded this software. Using reverse engineering, we can break

the password. Breaking a password is unethical and against laws

until and unless we are permitted to do so. Now you must be

thinking how one can break a password. Breaking a password is

dependent on the quality of the software code. If the code is

written with security in mind, chances are that a stronger

mechanism must have been used.

In this chapter, we will discuss the reverse engineering part of the

mechanism used by a software developer to capture user input.

We will be talking about scanf function, which is used to capture

the user input from the console.



Structure

In this chapter, we will cover the following topics:

Function scanf with Integers

Function scanf without Optimization

Function scanf with Optimization



Objective

In this chapter, we will understand the scanf function with respect

to reverse engineering. We will talk about the scanf code pattern

in the disassembled code and understand how scanf inputs are

stored in memory. We will also cover the scanf program with both

optimized and non-optimized code.



Function scanf with Integers

In this simple C/C++ code, we ask the user to input a number of

type integer and print it on the console. We use scanf to capture

user input and printf to print the number entered by the user in

our C/C++ code:

Figure 13.1: scanfWithIntegers.cpp



Function scanf without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 13.2: Function scanf without Optimization

This will generate the assembly code and the EXE file. This time,

before analyzing, we will disable the Address Space Layout

Randomization It’s a security mechanism by which the base

address of the PE file is randomized on every load of the Portable

Executable file generated with our MSVC compiler. This will help

us reload the PE file without randomizing its base address. To

disable ASLR, refer to the

We will now use the PE file with the disabled ASLR for further

analysis using x32dbg. Let’s move to the generated assembly

listing:



Figure 13.3: scanfWithIntegers.asm-Part-1



Figure 13.4: scanfWithIntegers.asm-Part-2

Let’s walk through the code:

▼Line 27-30

; Line 7

push ebp

mov ebp, esp

push ecx

The code starts with a simple main function prologue.

▼Line 31-34



; Line 9

push OFFSET $SG4678

call _printf

add esp, 4

The C/C++ code on line 9 prints the string constant on the

console:

printf ("Enter a Number: ");

In our assembly code, before calling the printf function, the string

constant $SG4678 stored in the .rdata segment is pushed onto

the stack. Once the arguments to the printf functions are pushed

onto the stack, the call to the printf function is made. On return,

4 bytes are added to ESP for stack cleaning. For analyzing the

assembly instruction, we will load the PE file in x32dbg, and then

put two breakpoints. The first breakpoint is at the start of the

.TEXT segment and the other breakpoint is just after the scanf

function return. Now, after loading the PE file in x32dbg, run the

code. The execution will stop at the first breakpoint. From the first

breakpoint step into the code using x32dbg, until you hit the

preceding add esp,4 instruction. The ADD instruction cleans the

stack and the following is how the stack looks after executing the

ADD instruction:

[ESP-0x4] 0012FF38  0040A140  "Enter a Number: ", arg to 1st

printf



[ESP]  0012FF3C  00000001  ECX pushed, later to store Integer

input passed

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  004012C4  return to 0x004012C4 from

0x00401000

Figure 13.5: Stack after ADD insruction

▼Line 35-40

; Line 10

lea eax, DWORD PTR _iInput$[ebp]

push eax

push OFFSET $SG4679



call _scanf

add esp, 8

The C/C++ code on line 10 calls the scanf function, which accepts

the following two arguments:

scanf ("%d", &iInput);

In the assembly code, the LEA instruction is evaluated to:

lea eax, ss:[ebp-0x4]

LEA will store the input placeholder memory location in By 'input

placeholder memory location’, we mean the memory location

which will be used to store the integer input by the user. Once

this input placeholder memory location is stored in then it is

pushed onto the stack as a parameter to the scanf function. Then

another push instruction pushes the string constant $SG4679 on

the stack.

The call to scanf is made after pushing both the arguments. On

return, 8 bytes are added to ESP for stack cleaning. The

breakpoint is added at the 0x0040101F memory location. The

stack state at breakpoint is as follows:

[ESP]  0012FF34  0040A154  "%d", parameter to scanf ()

[ESP+0x4] 0012FF38  0012FF3C  Input placeholder memory

location



[ESP+0x8] 0012FF3C  00000007  Input placeholder, Number 7 is

entered by user

[ESP+0xC] 0012FF40  0012FF88  [EBP]

[ESP+0x10] 0012FF44  004012C4  return to 0x004012C4 from

0x00401000

Figure 13.6: User entered number on stack

▼Line 41-46

; Line 11

mov ecx, DWORD PTR _iInput$[ebp]

push ecx

push OFFSET $SG4680

call _printf



add esp, 8

The C/C++ code on line 11 calls the printf function. This will print

the number entered by the user:

printf ("Number you entered is %d\n", iInput);

In the assembly code, the MOV instruction is evaluated to:

mov ecx, dword ptr ss:[ebp-0x4]

The MOV instruction will move the user input stored at ss:[ebp-

0x4] to Now, both the arguments the first is the string constant

and the second is the number that the user entered to the printf

function are pushed on the stack:

[ESP-0x8] 0012FF34  0040A158  "Number you entered is %d\n",

arg to 2nd printf()

[ESP-0x4] 0012FF38  00000007  Number 7 is entered by user, arg

to 2nd printf()

[ESP]  0012FF3C  00000007  Input placeholder, Number 7 is

entered by user  

[ESP+0x4] 0012FF40  0012FF88  [EBP]

[ESP+0x8] 0012FF44  004012C4  return to 0x004012C4 from

0x00401000



Figure 13.7: After printf function

▼Line 47-55

; Line 12

xor eax, eax

; Line 13

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

XOR and function epilogue will clean up EAX and stack,

respectively. EAX is XOR’ed to return 0. ENDP will end the main



procedure and ENDS will end the text segment. The stack will be

as follows:

[ESP+0x10] 0012FF34  0040A158  JUNK

[ESP+0xC] 0012FF38  00000007  JUNK

[ESP+0x8] 0012FF3C  00000007  JUNK

[ESP+0x4] 0012FF40  0012FF88  [EBP] popped up

[ESP]  0012FF44  004012C4  return to 0x004012C4 from

0x00401000

Figure 13.8: Stack cleaned



Function scanf with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 13.9: Function scanf with optimization

Let’s move to the generated assembly listing:



Figure 13.10: scanfWithIntegers-Optimized.asm-Part-1

Figure 13.11: scanfWithIntegers-Optimized.asm-Part-2

The main difference between optimized and non-optimized code is

that in optimized code, the function prologue and epilogue are

eliminated. Secondly, the stack cleaning is not done after each and

every function call but towards the end of the main function. We

will walk through the assembly instruction in the same way we

did in the non-optimization section by putting breakpoints in

x32dbg:

▼Line 27-31

; Line 7

push ecx



; Line 9

push OFFSET $SG4678

call _printf

The C/C++ code on line 9 prints the string constant on the

console:

printf ("Enter a Number: ");

The string constant $SG4678 stored in the .rdata segment is

pushed onto the stack before calling the printf function. Note that

the function prologue as well as the stack cleaning after the printf

function call are eliminated. We will also see that the stack is

cleaned towards the end. The following is the stack state after

executing the preceding instruction:

[ESP]  0012FF3C  0040A140  "Enter a Number: ", parameter to

1st printf()

[ESP+0x4] 0012FF40  00000001  ECX is pushed, used later to

store Integer input

[ESP+0x8] 0012FF44  004012BA  return to 0x004012BA from

0x00401000



Figure 13.12: After printf

▼Line 32-36

; Line 10

lea eax, DWORD PTR _iInput$[esp+8]

push eax

push OFFSET $SG4679

call _scanf

The C/C++ code on line 10 calls the scanf function, which accepts

the following two arguments:

scanf ("%d", &iInput);

In the assembly code, the LEA instruction is evaluated to:



lea eax, ss:[esp+0x4]

LEA will load the effective address of the input placeholder

memory location in EAX. As already stated in non-optimized

section, input placeholder memory location means, the memory

location which will be used to store the Integer input by user. The

Scanf function takes two arguments, one is the memory location

where the user’s input will be stored and the other is the string

constant

Once both the parameters are pushed onto the stack, the call to

scanf is made. During the call, the user is asked to enter the

number. The integer number supplied by the user will be stored

at the input placeholder memory location. We can also notice that

the stack cleaning is not done after the function call. The

breakpoint is added at the 0x0040101A memory location. The

stack state at breakpoint is as follows:

[ESP]  0012FF34  0040A154  "%d", parameter to scanf ()

[ESP+0x4] 0012FF38  0012FF40  Input placeholder memory

location

[ESP+0x8] 0012FF3C  0040A140  "Enter a Number: ", parameter

to 1st printf()

[ESP+0xC] 0012FF40  00000007  Input placeholder, Number 7 is

entered by user

[ESP+0x10] 0012FF44  004012BA  return to 0x004012BA from

0x00401000



Figure 13.13: After scanf

▼Line 37-41

; Line 11

mov ecx, DWORD PTR _iInput$[esp+16]

push ecx

push OFFSET $SG4680

call _printf

The C/C++ code on line 11 calls the printf function. This will print

the number that the user entered:

printf ("Number you entered is %d\n", iInput);

In the assembly code, the MOV instruction is evaluated to:



mov ecx, dword ptr ss:[esp+0xC]

The MOV instruction will move the user integer input stored at

ss:[esp+0xC] to Now, both the arguments (first is the string

constant and the second is the integer number that the user

entered) of the printf function are pushed on the stack before the

printf call. The stack state after the CALL instruction will be:

[ESP]  0012FF2C  0040A158  "Number you entered is %d\n", arg

to 2nd printf()

[ESP+0x4] 0012FF30  00000007  Number 7 is entered by user,

arg to 2nd printf()

[ESP+0x8] 0012FF34  0040A154  "%d", parameter to scanf ()

[ESP+0xC] 0012FF38  0012FF40  Input placeholder memory

location

[ESP+0x10] 0012FF3C  0040A140  "Enter a Number: ", parameter

to 1st printf()

[ESP+0x14] 0012FF40  00000007  Input placeholder, Number 7 is

entered by user

[ESP+0x18] 0012FF44  004012BA  return to 0x004012BA from

0x00401000



Figure 13.14: After second printf

▼Line 42-49

; Line 12

xor eax, eax

; Line 13

add esp, 24     ; 00000018H

ret 0

_main ENDP

_TEXT ENDS

END

XOR will clean up EAX to return 0. You can notice that the stack

is cleaned towards the end of the main function with the ADD

instruction. The ADD instruction cleans the stack by adding 24



bytes to The END derivative ends the code. The stack state will

be as follows:

[ESP-0x18] 0012FF2C  0040A158  JUNK

[ESP-0x14] 0012FF30  00000007  JUNK

[ESP-0x10] 0012FF34  0040A154  JUNK

[ESP-0xC] 0012FF38  0012FF40  JUNK

[ESP-0x8] 0012FF3C  0040A140  JUNK

[ESP-0x4] 0012FF40  00000007  JUNK

[ESP]  0012FF44  004012BA  return to 0x004012BA from

0x00401000

Figure 13.15: Stack cleaned



Conclusion

In this chapter, we understood how the input captured from a

user is stored in memory using the scanf function. We saw the

scanf code pattern in a disassembled code for both optimized and

non-optimized code. In the next chapter, we will study the strcpy

function and how its pattern looks while reverse engineering.



CHAPTER 14

Strcpy Program Pattern in Reverse Engineering

We have understood the patterns of arrays and pointers in the

earlier chapters. Now we will talk about some real-world examples

of code that use all these as a part of a single program. There

are times when you want to copy data from one place to another

place. To do so, we use some standard predefined functions. But

in this chapter, we will talk about the implementation of strcpy,

which is used to copy data from the source to the destination.

The implementation of strcpy will help you learn the combination

of pointers and arrays in a single program and understand the

code pattern in assembly. These patterns can be seen in many

applications or software and you will find it interesting to know

that this will allow you to find vulnerabilities in them.



Structure

In this chapter, we will cover the following topics:

Understand strcpy function

Strcpy without Optimization

Strcpy with Optimization



Objective

In this chapter, we will talk about the strcpy function

implementation with respect to reverse engineering. This function

is very popular in software implementation to perform the string

copy operation from the source location to the destination. We

will also talk about byte-by-byte operations that happen during the

strcpy execution. We will also cover strcpy program assembly

pattern with optimized and non-optimized code.



Strcpy

In this example, we will take up the strcpy function with the

name of xstrcpy to copy a string.



Figure 14.1: strcpy.cpp



Strcpy without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 14.2: Strcpy without Optimization

The compilation generates the EXE file and assembly code.

Disable ASLR manually. To disable ASLR, use the CFF explorer and

change the DllCharacteristics parameter to uncheck DLL can

Now, let’s move on to the generated assembly listing:



Figure 14.3: strcpy.asm-Part-1



Figure 14.4: strcpy.asm-Part-2



Figure 14.5: strcpy.asm-Part-3



Figure 14.6: strcpy.asm-Part-4

▼Line 12-15

CONST SEGMENT

$SG4688 DB 'ReverseEngg', 00H

$SG4690 DB '%s', 0aH, 00H

CONST ENDS



Constant Segment defines two string constants, $SG4688 and The

linker renames CONST SEGMENT to .rdata (the code is placed in

the .code segment, the constant strings are placed in CONST

segment and if not, the constant is placed in the .data segment),

which can be viewed in the memory dump using x32dbg, shown

as follows:

Figure 14.7: .rdata

$SG4688 and $SG4690 are internal names given by the compiler

to handle the string constant. DB defines the byte, which is the

data type.

'ReverseEngg', 00H is the string data, which is null terminated

ASCII string.

'%s', 0aH, 00H is also a string data.

By CONST the constant segment is ended.



First, we will take the main code starting with:

▼Line 72-73

PUBLIC __$ArrayPad$

PUBLIC _main

PUBLIC is the derivative which makes the _main procedure and

the __$ArrayPad$ macro public, which can be accessed by other

modules:

▼Line 74-76

EXTRN _printf:PROC

EXTRN ___security_cookie:DWORD

EXTRN @__security_check_cookie@4:PROC

The EXTRN derivative declares the extern function, which is printf

in our case. All functions begin with an underscore.

▼Line 78-81

_TEXT SEGMENT

_src$ = -44      ; size = 12

_dest$ = -32      ; size = 25

__$ArrayPad$ = -4     ; size = 4



This is the start of the _TEXT segment, where our main function

code resides. After we have the different variable macro defined.

The local variable on the stack frame can be accessed by adding

_$ to the EBP address.

▼Line 82

_main PROC

This is the start of the main procedure.

▼Line 83-89

; Line 35

push ebp

mov ebp, esp

sub esp, 44     ; 0000002cH

mov eax, DWORD PTR ___security_cookie

xor eax, ebp

mov DWORD PTR __$ArrayPad$[ebp], eax

Line 35 of the C/C++ code starts the main function:

int main() {

The ASM code starts with the main function prologue of PUSH

and MOV instruction. The SUB instruction creates room for

variables on the stack by subtracting 44 (0x2C) bytes from 44



bytes can be visualized as 4 bytes for the 12 bytes for the src

array, and 28 bytes for the dest array. The src and dest array

sizes have been round off to the multiple of 4 bytes.

▼Line 87-89

mov eax, DWORD PTR ___security_cookie

xor eax, ebp

mov DWORD PTR __$ArrayPad$[ebp], eax

We have already discussed the concept of a stack cookie. In the

preceding instruction, the stack cookie is moved from EAX to XOR

with EBP and the resultant XOR value is placed on the stack.

This value is stored on the stack right above the old This value

will be validated before the main function epilogue to check the

buffer overflow condition. Now, let’s move on to the next

instructions:

▼Line 90-96

; Line 36

mov eax, DWORD PTR $SG4688

mov DWORD PTR _src$[ebp], eax

mov ecx, DWORD PTR $SG4688+4

mov DWORD PTR _src$[ebp+4], ecx

mov edx, DWORD PTR $SG4688+8

mov DWORD PTR _src$[ebp+8], edx

Line 36 of the C/C++ code is:



char src[] = "ReverseEngg";

In the ASM code, we can see that the string $SG4688 is moved

to the stack in three steps and with six MOV instructions. The

first two MOV instructions move the first 4 bytes of string

(“Reve”) to EAX and then from it is pushed to the stack at the

[EBP - 0x2C] location. Similarly, the next 4 bytes of string (“rseE”)

are moved to ECX and then from it is pushed to the stack at the

[EBP - 0x28] location. Then in the remaining bytes, padded with

NULL (“ngg” + “0x00”) are moved to EDX and then from EDX to

the stack at the [EBP - 0x24] location. The stack state after the

execution of the preceding instruction in x32dbg will be as follows:

[ESP]  0012FF14  65766552   [EBP-0x2C]  “eveR” is pushed here,

in little endian

[ESP+0x04] 0012FF18  45657372   [EBP-0x28]  “Eesr” is pushed

here, little endian

[ESP+0x08] 0012FF1C  0067676E   [EBP-0x24]  “ ggn” is pushed

here, little endian

[ESP+0x0C] 0012FF20  AC9802CF   [EBP-0x20]  JUNK HERE

[ESP+0x10] 0012FF24  FFFFFFFE   [EBP-0x1C]  JUNK HERE

[ESP+0x14] 0012FF28  0040549C   [EBP-0x18]  JUNK HERE

[ESP+0x18] 0012FF2C  004054B0   [EBP-0x14]  JUNK HERE

[ESP+0x1C] 0012FF30  0040344B   [EBP-0x10]  JUNK HERE

[ESP+0x20] 0012FF34  0012FF48   [EBP-0x0C]  JUNK HERE

[ESP+0x24] 0012FF38  004028CE   [EBP-0x08]  JUNK HERE

[ESP+0x28] 0012FF3C  ACCA6657   [EBP-0x04]  XOR of stack

cookie and EBP stored here

[ESP+0x2C] 0012FF40  0012FF88   [EBP]       EBP of earlier

stack frame stored here



[ESP+0x30] 0012FF44  004012A8   [EBP+0x04]  return to

0x004012A8 from 0x00401050

Figure 14.8: $SG4688 is moved to the stack

▼Line 97-102

; Line 39

lea eax, DWORD PTR _src$[ebp]

push eax

lea ecx, DWORD PTR _dest$[ebp]

push ecx

call ?xstrcpy@@YAPADPADPBD@Z   ; xstrcpy



Line 39 of the C/C++ code is:

printf("%s\n", xstrcpy(dest, src));

In the ASM code, before making the printf function call, we need

to push the return value of the xstrcpy function and the string

$SG4690 onto the stack. To evaluate the return value of the

xstrcpy function, arguments to the function are pushed onto the

stack. So, the first LEA (Load Effective Address) loads the address

on the stack (which is [EBP - 0x2C], pointing to the source array

in the EAX register. From it is further pushed onto the stack.

Similarly, the second LEA instruction loads the address on the

stack (which is [EBP - pointing to the destination array in the ECX

register. From it is further pushed onto the stack. As the

destination array is not initialized in the C/C++ code, it is

pointing to the uninitialized memory location (which is [EBP - the

on stack. Once both the arguments to the xstrcpy function are

pushed onto the stack, a call to the xstrcpy function is made. The

stack state before the call to the xstrcpy function is as follows:

[ESP]  0012FF0C  0012FF20   [EBP-0x34]  2nd arg to xstrcpy, ptr

to dest array

[ESP+0x04] 0012FF10  0012FF14   [EBP-0x30]  1st arg to

xstrcpy(),ptr to src array

[ESP+0x08] 0012FF14  65766552   [EBP-0x2C] “eveR” is pushed

here, in little endian

[ESP+0x0C] 0012FF18  45657372   [EBP-0x28]  “Eesr” is pushed

here, little endian

[ESP+0x10] 0012FF1C  0067676E   [EBP-0x24]  “ ggn” is pushed

here, little endian



[ESP+0x14] 0012FF20  AC9802CF   [EBP-0x20]  dest array start,

uninitialized JUNK

[ESP+0x18] 0012FF24  FFFFFFFE   [EBP-0x1C]  JUNK HERE

[ESP+0x1C] 0012FF28  0040549C   [EBP-0x18]  JUNK HERE

[ESP+0x20] 0012FF2C  004054B0   [EBP-0x14]  JUNK HERE

[ESP+0x24] 0012FF30  0040344B   [EBP-0x10]  JUNK HERE

[ESP+0x28] 0012FF34  0012FF48   [EBP-0x0C]  JUNK HERE

[ESP+0x2C] 0012FF38  004028CE   [EBP-0x08]  JUNK HERE

[ESP+0x30] 0012FF3C  ACCA6657   [EBP-0x04]  XOR of stack

cookie and EBP stored here

[ESP+0x34] 0012FF40  0012FF88   [EBP]       EBP of earlier

stack frame stored here

[ESP+0x38] 0012FF44  004012A8   [EBP+0x04]   return to

0x004012A8 from 0x00401050



Figure 14.9: Before call to xstrcpy

The following is the start of the xstrcpy function:

▼Line 24-27

; Line 9

push ebp

mov ebp, esp

push ecx

The xstrcpy function prologue is called. The ECX register has the

pointer to the dest array, so it is saved onto the stack by pushing

the ECX register. The stack state after pushing the ECX register is

as follows. From this point onwards, the two stack frames have

been differentiated with EBP marked with superscript, that is, EBP

for main and xstrcpy.

to dest

[ESP+0x04] EBP of main() stack frame

[ESP+0x08] return to main()

[ESP+0x0C] arg to xstrcpy

[ESP+0x10] arg to xstrcpy

[ESP+0x14] “eveR” is pushed here

[ESP+0x18] “Eesr” is pushed here

[ESP+0x1C] “ ggn” is pushed here

[ESP+0x20] uninitialized dest array

[ESP+0x24] JUNK HERE



[ESP+0x28] JUNK HERE

[ESP+0x2C] JUNK HERE

[ESP+0x30] JUNK HERE

[ESP+0x34] JUNK HERE

[ESP+0x38] JUNK HERE

[ESP+0x3C] XOR of stack cookie and EBP

[ESP+0x40] of earlier stack frame

[ESP+0x44] return to 0x004012A8 from 0x00401050

Figure 14.10: Stack state after pushing ECX



▼Line 28-30

; Line 11

cmp DWORD PTR _dest$[ebp], 0

jne SHORT $LN3@xstrcpy

Line 11 of the C/C++ code is:

if (dest == NULL)

The ASM code compares the value at with NULL. A jump will

take place when the value at is not equal to NULL. As memory is

already allocated to the dest array at which is not equal to NULL,

so the jump will take place to the $LN3@xstrcpy label. The stack

state after the jump instruction will be the same as earlier.

▼Line 34-37

$LN3@xstrcpy:

; Line 15

mov eax, DWORD PTR _dest$[ebp]

mov DWORD PTR _ptr$[ebp], eax

Line 11 of the C/C++ code is:

char *ptr = dest;

In the ASM code it is just taking the pointer to the dest array

into EAX and then pushing it on to the stack at If you remember,



we saved ECX at the start of the xstrcpy function on-to the stack

at the same location ECX was having the same pointer to the

dest array. So basically in these two instructions we are

overwriting with the same value. So the stack state will be the

same as earlier:

Figure 14.11: Stack state after line 37

▼Line 38-43

$LN2@xstrcpy:



; Line 19

mov ecx, DWORD PTR _src$[ebp]

movsx edx, BYTE PTR [ecx]

test edx, edx

je SHORT $LN1@xstrcpy

Line 19 of the C/C++ code is:

while (*src != '\0')

In the ASM code, the MOV instruction is moving the pointer to

the src array in the ECX register. The next MOV instruction moves

the first byte of the src array into making (ascii “R”).

The TEST instruction will perform an AND operation of EDX with

itself, resulting in a non-zero value in EDX and ZF=0. So, a jump

to the label $LN1@xstrcpy will not take place. The instruction

pointer will move to the next instruction. The stack state will be

the same as earlier:



Figure 14.12: Stack state after je

▼Line 44-48

; Line 21

mov eax, DWORD PTR _dest$[ebp]

mov ecx, DWORD PTR _src$[ebp]

mov dl, BYTE PTR [ecx]

mov BYTE PTR [eax], dl

Line 21 of the C/C++ code is:



*dest = *src;

As this ASM code is non-optimized, we will come across many

instructions which are duplicating operations. We can see that the

MOV instruction is again moving the pointer from the dest array

to EAX register and pointer to src array is moved to the ECX

register. Now, in the remaining two MOV instructions, we are

copying the first byte from the src array to the dest array using

the DL register. This is done by copying a byte from the memory

pointed by the ECX register (which is pointing to the src array) to

the DL register and then from the DL register to the memory

pointed by the EAX register (which is pointing to the dest array).

The stack state after these instructions will be:

to dest

[ESP+0x04] EBP of main() stack frame

[ESP+0x08] return to main()

[ESP+0x0C] arg to xstrcpy

[ESP+0x10] arg to xstrcpy

[ESP+0x14] “eveR” is pushed here

[ESP+0x18] “Eesr” is pushed here

[ESP+0x1C] “ ggn” is pushed here

[ESP+0x20] only “R” is copied here at dest array

[ESP+0x24] JUNK HERE

[ESP+0x28] JUNK HERE

[ESP+0x2C] JUNK HERE

[ESP+0x30] JUNK HERE

[ESP+0x34] JUNK HERE

[ESP+0x38] JUNK HERE



[ESP+0x3C] XOR of stack cookie and EBP

[ESP+0x40] of earlier stack frame stored here

[ESP+0x44] return to 0x004012A8 from 0x00401050

Figure 14.13: Stack state after line 48

▼Line 49-52

; Line 22

mov eax, DWORD PTR _dest$[ebp]

add eax, 1



mov DWORD PTR _dest$[ebp], eax

Line 22 of the C/C++ code is:

dest++;

In this ASM section, the pointer to the dest array is again moved

to the EAX register so that it can be incremented to 1 by the

ADD instruction. This incremented pointer value to the dest array

is moved back on the stack at the location. The stack state after

these instructions will be as follows:

to dest  

[ESP+0x04] EBP of main() stack frame

[ESP+0x08] return to main()

[ESP+0x0C] dest array incremented

[ESP+0x10] First arg to xstrcpy

[ESP+0x14] “eveR” is pushed here

[ESP+0x18] “Eesr” is pushed here

[ESP+0x1C] “ ggn” is pushed here

[ESP+0x20] only “R” is copied here at dest array

[ESP+0x24] JUNK HERE

[ESP+0x28] JUNK HERE

[ESP+0x2C] JUNK HERE

[ESP+0x30] JUNK HERE

[ESP+0x34] JUNK HERE

[ESP+0x38] JUNK HERE

[ESP+0x3C] XOR of stack cookie and EBP



[ESP+0x40] of earlier stack frame stored here

[ESP+0x44] return to 0x004012A8 from 0x00401050

Figure 14.14: Dest array incremented

▼Line 53-56

; Line 23

mov ecx, DWORD PTR _src$[ebp]

add ecx, 1

mov DWORD PTR _src$[ebp], ecx



Line 23 of the C/C++ code is:

src++;

In this ASM section, the same steps as the preceding ones are

done with the src array. The src array is moved to the ECX

register so that it can be incremented to 1 by the ADD

instruction. This incremented pointer value to the src array is

moved back on the stack at the location. The stack state after

these instructions will be as follows:

to dest array

[ESP+0x04] EBP of main() stack frame

[ESP+0x08] return to main()

[ESP+0x0C] dest array incremented

[ESP+0x10] src array incremented

[ESP+0x14] “eveR” is pushed here

[ESP+0x18] “Eesr” is pushed here

[ESP+0x1C] “ ggn” is pushed here

[ESP+0x20] only “R” is copied here at dest array

[ESP+0x24] JUNK HERE

[ESP+0x28] JUNK HERE

[ESP+0x2C] JUNK HERE

[ESP+0x30] JUNK HERE

[ESP+0x34] JUNK HERE

[ESP+0x38] JUNK HERE

[ESP+0x3C] XOR of stack cookie and EBP

[ESP+0x40] of earlier stack frame stored here

[ESP+0x44] return to 0x004012A8 from 0x00401050



Figure 14.15: Src array incremented

▼Line 57-58

; Line 24

jmp SHORT $LN2@xstrcpy

Line 24 of the C/C++ code is:

} //while loop closing



This ASM instruction will perform an unconditional jump to the

label This unconditional jump will copy the remaining bytes from

the src array (stored at to the dest array (stored at Now we will

consider the iteration where all the bytes of the src array are

copied to the dest array. The stack state after copying all the

bytes will be as follows:

to dest array  

[ESP+0x04] EBP of main() stack frame

[ESP+0x08] return to main()

[ESP+0x0C] array incremented

[ESP+0x10] array incremented

[ESP+0x14] “eveR” is pushed here

[ESP+0x18] “Eesr” is pushed here

[ESP+0x1C] “ ggn” is pushed here

[ESP+0x20] “eveR” is copied here at dest array

[ESP+0x24] “Eesr” is copied here at dest array

[ESP+0x28] 0012FF28 “ggn” is copied here at dest array

[ESP+0x2C] JUNK HERE

[ESP+0x30] JUNK HERE

[ESP+0x34] JUNK HERE

[ESP+0x38] JUNK HERE

[ESP+0x3C] XOR of stack cookie and EBP

[ESP+0x40] of earlier stack frame stored here

[ESP+0x44] to 0x004012A8 from 0x00401050



Figure 14.16: Src array are copied to dest array

Now, we will take the iteration (where an unconditional jump to

the label $LN2@xstrcpy was after all the bytes are copied from

the src array to the dest array.

▼Line 38-43

$LN2@xstrcpy:

; Line 19

mov ecx, DWORD PTR _src$[ebp]



movsx edx, BYTE PTR [ecx]

test edx, edx

je SHORT $LN1@xstrcpy

Line 19 of the C/C++ code is:

while (*src != '\0')

In the ASM code, the MOV instruction is moving the pointer

from the src array byte (0x0012FF1F at to the ECX register. The

next MOV instruction moves byte stored at 0x0012FF1F to making

The TEST instruction will perform an AND operation of EDX with

itself, resulting in a zero value in EDX and ZF=1. So, a jump to

the label $LN1@xstrcpy will take place. The stack state will be the

same as earlier:



Figure 14.17: EDX is 0x00

▼Line 59-62

$LN1@xstrcpy:

; Line 27

mov edx, DWORD PTR _dest$[ebp]

mov BYTE PTR [edx], 0

Line 27 of the C/C++ code is:

*dest = '\0';



In ASM code is pushing pointer to dest array (0x0012FF2B at to

EDX register, where it is filled with the null character byte. The

stack state will be the same as earlier:

▼Line 63-69

; Line 30

mov eax, DWORD PTR _ptr$[ebp]

$LN4@xstrcpy:

; Line 31

mov esp, ebp

pop ebp

ret 0

Line 30 of the C/C++ code is:

return ptr;

In the ASM code, the pointer to the dest array stored at is

pushed to the EAX register, as the function return value will be

stored in the EAX register. Once this value is moved to the

xstrcpy function epilogue is called with the RET instruction. The

RET instruction will move the instruction pointer back to the main

function. The stack state before the RET instruction is as follows:

[ESP-0x08] 0012FF00  0012FF20   Now JUNK  

[ESP-0x04] 0012FF04  0012FF40   Now JUNK  

[ESP]  0012FF08  00401087   return address to main()



[ESP+0x04] 0012FF0C  0012FF2B   Pointer to dest array

incremented

[ESP+0x08] 0012FF10  0012FF1F   Pointer to src array

incremented

[ESP+0x0C] 0012FF14  65766552   “eveR” is pushed here

[ESP+0x10] 0012FF18  45657372   “Eesr” is pushed here

[ESP+0x14] 0012FF1C  0067676E   “ ggn” is pushed here

[ESP+0x18] 0012FF20  65766552   “eveR” is copied here at dest

array

[ESP+0x1C] 0012FF24  45657372   “Eesr” is copied here at dest

array

[ESP+0x20] 0012FF28  0067676E   “ggn” is copied here at dest

array

[ESP+0x24] 0012FF2C  004054B0   JUNK HERE

[ESP+0x28] 0012FF30  0040344B   JUNK HERE

[ESP+0x2C] 0012FF34  0012FF48   JUNK HERE

[ESP+0x30] 0012FF38  004028CE   JUNK HERE

[ESP+0x34] 0012FF3C  ACCA6657   XOR of stack cookie and EBP

[ESP+0x38] 0012FF40  0012FF88   of earlier stack frame

[ESP+0x3C] 0012FF44  004012A8   return to 0x004012A8



Figure 14.18: Stack state before RET

▼Line 103-107

add esp, 8

push eax

push OFFSET $SG4690

call _printf

add esp, 8

Line 30 of the C/C++ code is:



printf("%s\n", xstrcpy(dest, src));

On return, the ADD instruction will clean up the stack by 8 bytes.

The printf function is called by pushing the return value of xstrcpy

onto the stack and the string constant $SG4690 (which is

$SG4690 DB '%s', 0aH, to call the printf function.

This will print the copied string on the screen.

The ADD instruction after printf is called to clean up the stack by

8 bytes. The stack state before the ADD instruction is as follows:

"%s\n", argument to printf()

[ESP+0x04] "ReverseEngg", argument to printf()

[ESP+0x08] “eveR” is pushed here

[ESP+0x0C] “Eesr” is pushed here

[ESP+0x10] “ ggn” is pushed here

[ESP+0x14] “eveR” is copied here at dest array

[ESP+0x18] “Eesr” is copied here at dest array

[ESP+0x1C] “ggn” is copied here at dest array

[ESP+0x20] JUNK HERE

[ESP+0x24] JUNK HERE

[ESP+0x28] JUNK HERE

[ESP+0x2C] JUNK HERE

[ESP+0x30] XOR of stack cookie and EBP

[ESP+0x34] of earlier stack frame stored here



[ESP+0x38] return to 0x004012A8

Figure 14.19: Stack state before ADD instruction

▼Line 108-119

; Line 41

xor eax, eax

; Line 42

mov ecx, DWORD PTR __$ArrayPad$[ebp]

xor ecx, ebp



call @__security_check_cookie@4

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

Line 30 of the C/C++ code is:

return 0;

}

In the ASM code, EAX is cleared by XOR and then the stack

cookie is checked for any buffer overflow attack by calling the

security_check_cookie procedure. On return, the main function

epilogue is called to return 0 and end the main function, TEXT

segment, and code. The stack state before the RET instruction is

as follows:

[ESP-0x0C] 0012FF38  004028CE   Now JUNK HERE

[ESP-0x08] 0012FF3C  ACCA6657   Now JUNK HERE

[ESP-0x04] 0012FF40  0012FF88   Now JUNK HERE

[ESP]  0012FF44  004012A8   return to strcpy.004012A8 from

strcpy.00401050



Figure 14.20: Stack state before RET instruction



Strcpy with Optimization

Compile the code with the optimization flag, /Ox flag. Run the

following commands on the Windows command prompt to set the

environment for cl.exe (VS compiler), and then compile the code

with the following switches:

Enable maximum optimization

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 14.21: Strcpy with Optimization

The compilation generates the EXE file and the assembly code. We

will again manually disable ASLR. To disable ASLR, use the CFF

explorer and change the DllCharacteristics parameter to uncheck

DLL can

Now, let’s move on to the generated assembly listing:



Figure 14.22: strcpy-Optimized.asm-Part-1



Figure 14.23: strcpy-Optimized.asm-Part-2



Figure 14.24: strcpy-Optimized.asm-Part-3



Let’s directly jump to the start of the TEXT segment of the _main

function.

▼Line 63-67

_TEXT SEGMENT

_src$ = -44      ; size = 12

_dest$ = -32      ; size = 25

__$ArrayPad$ = -4     ; size = 4

_main PROC

The local variable on the stack frame can be accessed by adding

_$ to the EBP address.

▼Line 67

_main PROC

Start of the main procedure.

▼Line 68-72

; Line 35

sub esp, 44     ; 0000002cH

mov eax, DWORD PTR ___security_cookie

xor eax, esp

mov DWORD PTR __$ArrayPad$[esp+44], eax

Line 35 of the C/C++ code starts the main function.



int main() {

This ASM code is optimized and starts by subtracting ESP by

44(0x2C) bytes to create room for the local variables. 44 bytes

can be visualized as 4 bytes for security_cookie plus 12 bytes for

the src array, and 28 bytes for the dest array. The sizes of src

and dest arrays have been round off to a multiple of 4 bytes.

The next MOV instruction moves the stack cookie from the EAX

register to XOR with ESP and stores the resultant on the stack. In

a non-optimized code, this XOR procedure happens with EBP.

Let’s see the stack state after moving the stack cookie on the

stack:

[ESP]  0012FF18  0012FF78  JUNK HERE

[ESP+0x04] 0012FF1C  004024F0  JUNK HERE

[ESP+0x08] 0012FF20  8E50CA61  JUNK HERE

[ESP+0x0C] 0012FF24  FFFFFFFE  JUNK HERE

[ESP+0x10] 0012FF28  0040549C  JUNK HERE

[ESP+0x14] 0012FF2C  004054B0  JUNK HERE

[ESP+0x18] 0012FF30  0040344B  JUNK HERE

[ESP+0x1C] 0012FF34  0012FF48  JUNK HERE

[ESP+0x20] 0012FF38  004028CE  JUNK HERE

[ESP+0x24] 0012FF3C  0040344B  JUNK HERE

[ESP+0x28] 0012FF40  8E02AEA1  XOR of stack cookie and EBP

stored here

[ESP+0x2C] 0012FF44  004012A0  ESP at the start of main

procedure



Figure 14.25: Stack cookie on the stack

▼Line 73-79

; Line 36

mov eax, DWORD PTR $SG4688

mov edx, DWORD PTR $SG4688+8

mov ecx, DWORD PTR $SG4688+4

mov DWORD PTR _src$[esp+44], eax

push esi

mov DWORD PTR _src$[esp+56], edx

Line 36 of the C/C++ code starts the src array initialization:

char src[] = "ReverseEngg";



In the ASM code, we see three MOV instructions to move the

string $SG4688 in three parts (4 bytes + 4 bytes + 4 bytes) to

different registers. The first MOV instruction moves the first 4

bytes of the string (“Reve”) to another 4 bytes of the string

(“ngg” + “0x00”) are moved to and then the remaining bytes

(“rseE”) are moved to the ECX register.

In the next MOV instruction, the first part of the string $SG4688

is moved to the top of the stack.

The PUSH instruction stores the ESI value on the stack, so that it

can be restored later.

The last MOV instruction moves the third part of the string

$SG4688 stored in EDX to the stack at [ESP+0x0C].

The stack state after the execution of the preceding instruction in

x32dbg will be:

[ESP]  0012FF14  00000000   ESI is saved here

[ESP+0x04] 0012FF18  65766552  “eveR” is pushed here, in little

endian

[ESP+0x08] 0012FF1C  004024F0  “Eesr” will be pushed here, in

little endian

[ESP+0x0C] 0012FF20  0067676E  “ ggn” is pushed here, little

endian

[ESP+0x10] 0012FF24  FFFFFFFE  JUNK HERE

[ESP+0x14] 0012FF28  0040549C  JUNK HERE

[ESP+0x18] 0012FF2C  004054B0  JUNK HERE



[ESP+0x1C] 0012FF30  0040344B  JUNK HERE

[ESP+0x20] 0012FF34  0012FF48  JUNK HERE

[ESP+0x24] 0012FF38  004028CE  JUNK HERE

[ESP+0x28] 0012FF3C  0040344B  JUNK HERE

[ESP+0x2C] 0012FF40  8E02AEA1  XOR of stack cookie and EBP

stored here

[ESP+0x30] 0012FF44  004012A0  ESP at the start of main

procedure

Figure 14.26: String $SG4688 on stack

▼Line 80-88

; Line 39



lea eax, DWORD PTR _dest$[esp+48]

mov esi, eax

lea edx, DWORD PTR _src$[esp+48]

mov DWORD PTR _src$[esp+52], ecx

sub edx, esi

mov cl, 82     ; 00000052H

pop esi

npad 6

Line 39 of the C/C++ code starts the printf function.

printf("%s\n", xstrcpy(dest, src));

In the ASM section, the Load Effective Address instruction loads

the address [ESP+0x10] form the dest array to the EAX register.

This allocates space for the dest array on the stack. EAX is then

moved to the ESI register using the MOV instruction. This is to

store the address of the dest array in the ESI register and at this

address is where the src array will be copied. ESI will become

The next LEA instruction does the same for the src array. It loads

the address of the src array [ESP+0x04] to the EDX register. EDX

will become

The MOV instruction moves the second part of the string

$SG4688 stored in ECX to the stack at [ESP+0x08].

The SUB instruction will calculate the offset between the dest

array and the src array by subtracting EDX from The resultant



offset will be saved in EDX for later calculations.

ESI=0x0012FF24

SUB= EDX-ESI = 0xFFFFFFF4

The CL register is loaded with the first byte 52(“R”) of the src

array using the MOV instruction.

Using POP ESI is restored back to the old value.

Next is the npad macro, which inserts the non-destructive, non-

operational instructions. For information on please refer to the

Appendix section. Our assembly listing uses the npad which is

defined in LISTING.INC as lea ebx, [ebx+00000000]. The stack

state after the npad macro is as follows:

[ESP-0x04] 0012FF14  00000000  JUNK HERE

[ESP]  0012FF18  65766552  “eveR” is pushed here, in little

endian

[ESP+0x04] 0012FF1C  45657372  “Eesr” will be pushed here, in

little endian

[ESP+0x08] 0012FF20  0067676E  “ ggn” is pushed here, in little

endian

[ESP+0x0C] 0012FF24  FFFFFFFE  Space for dest array

[ESP+0x10] 0012FF28  0040549C  JUNK HERE

[ESP+0x14] 0012FF2C  004054B0  JUNK HERE

[ESP+0x18] 0012FF30  0040344B  JUNK HERE

[ESP+0x1C] 0012FF34  0012FF48  JUNK HERE

[ESP+0x20] 0012FF38  004028CE  JUNK HERE



[ESP+0x24] 0012FF3C  0040344B  JUNK HERE

[ESP+0x28] 0012FF40  8E02AEA1  XOR of stack cookie and EBP

stored here

[ESP+0x2C] 0012FF44  004012A0  ESP at the start of main

procedure

Figure 14.27: Stack state after npad

▼Line 89-94

$LL4@main:

mov BYTE PTR [eax], cl

mov cl, BYTE PTR [edx+eax+1]

inc eax



test cl, cl

jne SHORT $LL4@main

This piece of ASM code is where the src array is copied to the

dest array memory location byte-by-byte. The first MOV instruction

copies the “R” (first char or byte) in the src array to the start of

the dest array memory location, The stack with the src and dest

array can be visualized as follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows:

follows:

Table 14.1: Stack with src and dest array - Part-1

Once the first byte is copied from the src array to the dest array,

the CL register is filled with the next byte of the src array using

the second MOV instruction with calculations explained as follows:

mov cl, BYTE PTR [edx+eax+1]

EDX = 0XFFFFFFF4



EAX = 0x0012FF24 (this is the memory address of the start of

dest array)

EDX+EAX+1 =   0x0012FF19

Now, the byte will be copied from 0x0012FF19 (which is “e” or

0x65) to the CL register.

As the byte copied to the CL register needs to be moved to the

next memory location, EAX is incremented by 1 using the INC

instruction. EAX will become

The TEST instruction performs the AND of CL with itself, resulting

in a non-zero output in CL and ZF=0. So, a jump to the label

$LL4@main will take place. The next iteration of this same ASM

code results in copying the next byte to the dest array. The stack

state will become as follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows:

follows:

Table 14.2: Stack with src and dest array - Part-2



Now, imagine the iteration where we reach the following stack

state where we copy all bytes from the src array to the dest array

till 0x67 or “g”.

“g”. “g”. “g”.

“g”. “g”. “g”.

“g”. “g”. “g”.

“g”. “g”. “g”.

“g”. “g”. “g”.

“g”. “g”. “g”.

Table 14.3: Stack with src and dest array - Part-3

In this iteration, 0x67 or “g” is copied at the 0x0012FF2E memory

location with the first MOV instruction. At this point:

EAX=0x0012FF2E

EDX=0xFFFFFFF4

So, the second MOV instruction will be evaluated to:

mov cl, byte ptr ds:[edx+eax*1+0x1]

mov cl, byte ptr ds:[0x0012FF23]

This will copy 0x00 to the CL register. The next INC instruction

will increment EAX to



The TEST instruction this time will set ZF=1 as CL=0x00, stopping

the jump instruction and breaking the loop to move on to the

next instruction. The stack state after this part of the ASM code

will be:

[ESP-0x04] 0012FF14  00000000  JUNK HERE

[ESP]  0012FF18  65766552  “eveR” is pushed here, in little

endian

[ESP+0x04] 0012FF1C  45657372  “Eesr” will be pushed here, in

little endian

[ESP+0x08] 0012FF20  0067676E  “ ggn” is pushed here, in little

endian

[ESP+0x0C] 0012FF24  65766552  “eveR” is pushed here in dest

array

[ESP+0x10] 0012FF28  45657372  “Eesr” will be pushed here in

dest array

[ESP+0x14] 0012FF2C  0067676E  “ggn” is pushed here in dest

array

[ESP+0x18] 0012FF30  0040344B  JUNK HERE

[ESP+0x1C] 0012FF34  0012FF48  JUNK HERE

[ESP+0x20] 0012FF38  004028CE  JUNK HERE

[ESP+0x24] 0012FF3C  0040344B  JUNK HERE

[ESP+0x28] 0012FF40  8E02AEA1  XOR of stack cookie and EBP

stored here

[ESP+0x2C] 0012FF44  004012A0  ESP at the start of main

procedure



Figure 14.28: Stack with src and dest array

As we saw in the preceding instructions, the dest array is not

NULL terminated as we move out of the loop before NULL is

copied to The answer lies in the next instruction. Let’s move on

to the next instructions:

▼Line 95-99

mov BYTE PTR [eax], cl

lea eax, DWORD PTR _dest$[esp+44]

push eax

push OFFSET $SG4690



call _printf

In the first preceding MOV instruction, the ASM code moves

0x00 byte from the CL register to This will NULL terminate the

dest array shown as follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

follows: follows: follows:

Table 14.4: Stack with the src and dest array - Part-4

Now, we have a pointer to the src array and a pointer to the

dest array on the stack. Next, we have to call the printf function

for which the arguments to printf need to be pushed onto the

stack.

The LEA instruction moves the pointer from the dest array to The

PUSH instruction pushes the first argument onto the stack by

PUSH

The second PUSH instruction pushes the string constant onto the

stack, which is the second argument to Once both arguments are



pushed, a call to printf is made. The stack state before the

execution of the CALL instruction is as follows:

[ESP]  0012FF10  0040814C  "%s\n", second argument to printf is

pushed here

[ESP+0x04] 0012FF14  0012FF24  "ReverseEngg", second argument

to printf()is pushed

[ESP+0x08] 0012FF18  65766552  “eveR” is pushed here, in little

endian

[ESP+0x0C] 0012FF1C  45657372  “Eesr” will be pushed here, in

little endian

[ESP+0x10] 0012FF20  0067676E  “ ggn” is pushed here, in little

endian

[ESP+0x14] 0012FF24  65766552  “eveR” is pushed here in dest

array

0012FF28  45657372  “Eesr” will be pushed here in dest array

[ESP+0x1C] 0012FF2C  0067676E  “ggn” is pushed here in dest

array

[ESP+0x20] 0012FF30  0040344B  JUNK HERE

[ESP+0x24] 0012FF34  0012FF48  JUNK HERE

[ESP+0x28] 0012FF38  004028CE  JUNK HERE

[ESP+0x2C] 0012FF3C  0040344B  JUNK HERE

[ESP+0x30] 0012FF40  8E02AEA1  XOR of stack cookie and EBP

stored here

[ESP+0x34] 0012FF44  004012A0  ESP at the start of main

procedure



Figure 14.29: Stack before CALL instruction

▼Line 100-110

; Line 42

mov ecx, DWORD PTR __$ArrayPad$[esp+52]

add esp, 8

xor ecx, esp

xor eax, eax

call @__security_check_cookie@4

add esp, 44     ; 0000002cH

ret 0

_main ENDP



_TEXT ENDS

END

In the preceding ASM code, the MOV instruction moves the stack

cookie stored at [ESP+0x30] to where it is XOR’ed with ECX to

check the buffer overflow condition by calling the

security_check_cookie procedure. The rest of the ADD instructions

clean up the stack to end the main procedure, TEXT segment,

and code. The stack state before the RET instruction is as follows:

[ESP-0x34] 0012FF10  0040814C  Now JUNK HERE

[ESP-0x30] 0012FF14  0012FF24  Now JUNK HERE

[ESP-0x2C] 0012FF18  65766552  Now JUNK HERE

[ESP-0x28] 0012FF1C  45657372  Now JUNK HERE

[ESP-0x24] 0012FF20  0067676E  Now JUNK HERE

[ESP-0x20] 0012FF24  65766552  Now JUNK HERE

[ESP-0x1C] 0012FF28  45657372  Now JUNK HERE

[ESP-0x18] 0012FF2C  0067676E  Now JUNK HERE

[ESP-0x14] 0012FF30  0040344B  Now JUNK HERE

[ESP-0x10] 0012FF34  0012FF48  Now JUNK HERE

[ESP-0x0C] 0012FF38  004028CE  Now JUNK HERE

[ESP-0x08] 0012FF3C  0040344B  Now JUNK HERE

[ESP-0x04] 0012FF40  8E02AEA1  Now JUNK HERE

[ESP]  0012FF44  004012A0  ESP at the start of main procedure



Figure 14.30: Stack cleaned



Conclusion

In this chapter, we covered the strcpy function implementation by

copying data from one memory location to another with respect

to reverse engineering. We also learned about byte-by-byte

operations that happen during the strcpy execution. In the

optimized assembly listing, during the stack cookie operation, the

XOR procedure happens with ESP and in a non-optimized

assembly listing, it happens with EBP. We also covered the

difference between optimized and non-optimized codes of strcpy

program assembly pattern. In the next chapter, we will talk about

another real-world example, wherein we will write a program to

calculate simple interest code.



CHAPTER 15

Simple Interest Code Pattern in Reverse Engineering

We all dream about buying a beautiful house and a nice car. Now

to buy any of these, we need money which can either be earned

with our skills or it can be borrowed from a bank. This is where

terms like interest come into picture. Imaging a person named

Atul Narula who works for International Institute of Cyber Security

and wants to buy a car. Now, Atul has savings of 10,000 dollars

and decides to take the remaining 10,000 dollars from a bank. A

bank offers him a loan on an annual simple interest rate of 2

percent for a term of 5 years. Atul goes to the bank and asks the

bank official about the interest that he has to pay over the term

of the loan. The bank official uses a software which uses a

mathematical formula to calculate interest. The mathematical

formula that goes inside the software will be $10,000 times 2

percent times 5 years, or 10,000 x .02 x 5. This is the interest

amount Atul has to pay over the entire term of the loan.

Now imagine, as a reverse engineer, you have to extract the

mathematical formula of this banking software without any access

to the software code. In this chapter, we will use this real-life

software example to understand the assembly pattern of such

kinds of software. This type of reverse engineering will help you

understand some patterns used by malware writers.



Structure

In this chapter, we will cover the following topics:

Program to calculate simple interest

Calculate simple interest without Optimization



Objective

In this chapter, we will talk about a real-life software that uses an

internal mathematical formula to calculate simple interest. We will

find out how an integer and float are together handled in

memory. Reverse engineering a software with mathematical

calculation will help us understand the assembly pattern of the

software along with the mathematical calculations.



Program to Calculate Simple Interest

Let’s write down a C/C++ program to calculate simple interest

from a set of values represented by Principal Amount, Interest

Amount, and Number of Years.

Figure 15.1: SimpleInterestCalculation.cpp



Calculate Simple Interest Without Optimization

Compile the code without optimization in the MSVC compiler on

the same x86 Windows machine. Run the following commands on

the Windows command prompt to set the environment for cl.exe

(VS compiler), and then compile the code with the following

switches:

Name of the output assembly listing file

Name of the output executable file

file file file file file file file file file file file file file file file

The following is the output of running the preceding commands:



Figure 15.2: Simple Interest without Optimization

The generated assembly code will be as follows:

Figure 15.3: SimpleInterestCalculation.asm-Part-1



Figure 15.4: SimpleInterestCalculation.asm-Part-2



Figure 15.5: SimpleInterestCalculation.asm-Part-3

We have already discussed most of the parts in the listing in the

preceding chapters. Let’s move on to line 12.

▼Line 12-14

CONST SEGMENT

$SG4681 DB '%f', 00H

CONST ENDS

The string constant is allocated in the constant segment. In our

case, the linker is renamed from CONST SEGMENT to .rdata (the

code is placed in the .code segment, the constant strings are

placed in the CONST (.rdata) segment, and if not a constant, it is



placed in the .data segment), which can be dumped using any

debugger. Following screenshot demonstrates string $SG4681 in

the memory dump:

Figure 15.6: .rdata

▼Line 15-21

PUBLIC __real@4059000000000000

PUBLIC __real@40f00000

PUBLIC _main

EXTRN _printf:PROC

EXTRN __fltused:DWORD

; COMDAT __real@4059000000000000

; File

c:\jitendern\rebook\simpleinterestcalculation\simpleinterestcalculation

\simpleinterestcalculation.cpp



The public derivative is to make the real variable public to make

it available across modules. The EXTRN derivative declares the

extern function which is printf and The rest are all comments.

▼Line 22-29

CONST SEGMENT

__real@4059000000000000 DQ 04059000000000000r ; 100

CONST ENDS

; COMDAT __real@40f00000

CONST SEGMENT

__real@40f00000 DD 040f00000r   ; 7.5

; Function compile flags: /Odtp

CONST ENDS

Here, the real variables/numbers are allocated in the .rdata

segment. Both can be viewed by dumping the .rdata segment:

Figure 15.7: Float 7.5 to hex



The floating point argument’s hexadecimal representation will be

stored in a reverse order, as we are dealing with the little-endian.

Figure 15.8: .rdata with float hex

▼Line 30-35

_TEXT SEGMENT

tv76 = -20      ; size = 4

_fInterestAmt$ = -16     ; size = 4

_iPrincipalAmt$ = -12     ; size = 4

_iNoOfYrs$ = -8      ; size = 4

_fSimpleInterest$ = -4     ; size = 4

From here, our text segment starts. To access the local variable

on the stack frame, we have to add _$ to the EBP address. The

following figure will help us understand the concept behind

accessing arguments on the stack:



Figure 15.9: Stack view



To access the local variable fInterestAmt on the stack frame, we

have to add _fInterestAmt$ to the EBP address. So, to access the

fInterestAmt variable on the stack, we have to add -16 to the EBP

address. The same applies to other variables, each of 4 bytes in

size. The same preceding stack can be visualized as follows:

Figure 15.10: Variables on stack

▼Line 36-40

_main PROC

; Line 7

push ebp

mov ebp, esp

sub esp, 20     ; 00000014H

The main procedure starts here and the real code begins with the

function prologue. The SUB instruction is creating room for the

local variables by subtracting 20 bytes (14H in Hex), equivalent to



the space for 5 local variables as shown in the following

screenshot.

Figure 15.11: Creating room for variables on the stack

As we have only 4 local variables, you may be wondering why a

space for 5 local variables is required. To understand this point,

we will walk through the code instruction-by-instruction by putting

a breakpoint point on the main procedure call. We will use x32dbg

to step into the next instruction:

▼Line 41-42



; Line 11

mov DWORD PTR _iPrincipalAmt$[ebp], 10000 ; 00002710H

This instruction will move the first variable, that is on the stack

at [EBP-12] as shown in the following screenshot.

Figure 15.12: iPrincipalAmt on the stack

▼Line 43-44



; Line 12

mov DWORD PTR _iNoOfYrs$[ebp], 5

This instruction will move the second variable, that is on the

stack at [EBP-8].

▼Line 45-46

; Line 13

fld DWORD PTR __real@40f00000.

The Floating Point Load will push the floating point value on the

FPU stack. In x32dbg, we can see the same instruction as follows:

fld st0, dword ptr ds:[0x0100C150]

This means pushing the floating point value stored at ds:

[0x0100C150] to the ST(0) register as shown below.



Figure 15.13: Floating point value on the FPU stack

▼Line 47

fstp DWORD PTR _fInterestAmt$[ebp]

This will move the fInterestAmt floating point value stored at

ST(0) to the stack [EBP-0x10] and POPs the variable from the

FPU stack. The same instruction is viewed as follows in x32dbg:

fstp dword ptr ss:[ebp-0x10], st0



Figure 15.14: fInterestAmt on stack

▼Line 49

mov eax, DWORD PTR _iPrincipalAmt$[ebp]

It will move the iPrincipalAmt variable value to EAX for further

calculation.

▼Line 50

imul eax, DWORD PTR _iNoOfYrs$[ebp]

This multiplies the iNoOfYrs variable stored on the stack [EBP-8]

with the iPrincipalAmt variable stored in The result of the



multiplication is stored in the EAX register.

▼Line 51

mov DWORD PTR tv76[ebp], eax

The same can be viewed as follows in x32dbg:

mov dword ptr ss:[ebp-0x14], eax

MOV will move the multiplication value of iPrincipalAmt and

iNoOfYrs onto the stack at [EBP-0x14] as a temporary location. We

can imagine this multiplication result as a variable local to the

main procedure. This is where we our variable comes in picture

as shown below in the screenshot.



Figure 15.15: Multiplication value on the stack

▼Line 52

fild DWORD PTR tv76[ebp] ;In x32dbg, fild st0, dword ptr ss:[ebp-

0x14]

The multiplication result of iPrincipalAmt and iNoOfYrs stored at

[EBP-0x14] is signed-integer. If it has to be moved to the FPU

stack, it has to be converted to the floating point format. The

FILD instruction converts the signed-integer into a floating point

format and then pushes the value onto the FPU register stack.



Figure 15.16: FILD instruction output

▼Line 53

fmul DWORD PTR _fInterestAmt$[ebp]    ;in x32dbg, fmul st0,

dword ptr ss:[ebp-0x10]

It will multiple the fInterestAmt variable stored on the stack with

the value stored at ST(0). So, this basically multiples the

multiplication result of iPrincipalAmt and iNoOfYrs (stored at with

fInterestAmt (stored on the stack



Figure 15.17: FMUL instruction output

▼Line 54

fdiv QWORD PTR __real@4059000000000000

; in x32dbg, fdiv st0, qword ptr ds:[0x0100C148]

Up until now, we have multiplied all three, iPrincipalAmt *

iNoOfYrs * and the result of this is stored in the FPU stack at

Now, this will divide the resultant with 100 as per our C/C++

code. FDIV will divide QWORD (1 QWORD = 8 bytes) stored at

ds:[0x0100C148] with the value on the FPU stack.

▼Line 55



fstp DWORD PTR _fSimpleInterest$[ebp]

;In x32dbg, fstp dword ptr ss:[ebp-0x4], st0

This will move the fSimpleInterest that we got from ST(0) to the

stack [EBP-0x4] and POP the variable from FPU stack as shown in

the following screenshot.

Figure 15.18: FSTP instruction output

▼Line 57

fld DWORD PTR _fSimpleInterest$[ebp]

;In x32dbg, fld st0, dword ptr ss:[ebp-0x4]

This pushes the fSimpleInterest floating point value onto the FPU

stack.



▼Line 58

sub esp, 8

Before calling the printf function, it will create room for

arguments on the stack by 8 bytes.

▼Line 59

fstp QWORD PTR [esp]

;In x32dbg, fstp qword ptr ss:[esp], st0

This will move fSimpleInterest from ST(0) to the stack [ESP] in

the QWORD format and then POP the variable from FPU stack.

In the following screenshot, variables are marked on stack for

proper understanding.

Figure 15.19: fSimpleInterest from ST(0) to stack



▼Line 60

push OFFSET $SG4681

; in x32dbg, push 0x100C140

This will push the string constant on the stack.

Figure 15.20: Before call to printf

▼Line 61-62



call _printf

add esp, 12     ; 0000000cH

xor eax, eax

mov esp, ebp

pop ebp

ret 0

_main ENDP

_TEXT ENDS

END

Now, the printf function arguments are pushed onto the stack;

CALL instruction will call the printf function. On return as per the

CDECL calling convention, the caller cleans the stack. With this,

the listing ends by calling the function epilogue and returning 0.



Conclusion

In this chapter, we learned about a real-life software that uses

internal mathematical formula to calculate simple interest. We saw

how an integer and float are together handled in memory. We

studied the assembly pattern of a software with mathematical

calculations. In the next chapter, we will reverse engineer a

popular ransomware to crack.



CHAPTER 16

Breaking Wannacry Ransomware With Reverse Engineering

Ransomware is a kind of malware that encrypts the victim’s file

and demands a ransom to decrypt those files. If the ransom is

not given within time, the victim’s computer data is deleted or

left encrypted forever or, sometimes, is sold in the black market.

Wannacry was such ransomware which targeted the Windows

computers by encrypting data and then demanding a ransom to

decrypt the data. Ransom was demanded in the form of Bitcoin

cryptocurrency. The impact of Wannacry was so big that it infected

millions of computers worldwide and, moreover, it also infected

Apple & other servers’ OS. Information Security Newspaper

reported that many big companies’ manufacturing plants, like

Honda’s, was shut down after some of their computers got

infected with Wannacry. Check the following link for reference:

https://www.securitynewspaper.com/2017/06/21/one-month-later-

wannacry-ransomware-still-shutting-factories/

As a reverse engineer, we will analyze and break the Wannacry

ransomware. When we say ‘break it’, it means that we will try to

dig into the code flow of Wannacry and find something that can

change the operation to make it ineffective. We will use the

reverse engineering framework called Ghidra to analyze and break

the Wannacry ransomware.



Structure

In this chapter, we will cover the following topics:

Installation of reverse engineering framework called Ghidra

How to analyze malware using reverse engineering

How to kill Wannacry malware



Objective

The objective of this chapter is to understand the steps involved

in installing the reverse engineering framework called Ghidra. After

installing it, we will analyze the Wannacry malware and find the

kill switch of Wannacry. The attack of Wannacry was stopped after

a few days of the kill switch discovery. It affected thousands of

computers in 150 countries with a loss of billions of dollars.



Installation

As we have covered the basic introduction of Ghidra in Chapter 3,

Up and Running with Reverse Engineering in this chapter we will

walk over the installation of the reverse engineering framework.

Ghidra installation is very simple and we will use the Windows 10

64-bit version to carry out our Ghidra installation. Follow the

given procedure step by step to install Ghidra:

Download and install JDK 11 from the official website of Oracle –

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

Select Windows x64 Installer for download.

While downloading JDK, you will be redirected to create an

account on the Oracle website as follows:

https://profile.oracle.com/myprofile/account/create-account.jspx



Figure 16.1: Registration for JDK download

After creating an account, login to download and install the JDK

on your machine.

Add the JDK bin directory to your windows machine PATH

variable. To do that, follow:

Right-click on the Windows Start button and click on



Click on Advanced system

Under Advance TAB in the System Properties window, click on

Environment

Under System edit the PATH variable. At the end of the variable,

add a semicolon followed by path of JDK dir>\bin as follows:

Figure 16.2: Add JDK to PATH

Now the JDK path is set. It is time to download Ghidra. Do so

from the following link:

https://ghidra-sre.org/



Extract the downloaded folder and run ghidraRun.bat as follows:

Figure 16.3: Start Ghidra

It will prompt you to Agree the Ghidra User On accepting, you

will get the NO ACTIVE PROJECT screen as we have no active

projects on Ghidra.



Figure 16.4: Ghidra first screen

With this, we have successfully installed and started Ghidra.



Analyzing and Breaking Wannacry

Before analyzing the Wannacry ransomware, we need to get the

copy of the ransomware from the following website. This is 32-bit

version of the ransomware binary.

https://www.ghidra.ninja/samples/wannacry.zip

Note: Do not run executable file compressed in the Wannacry zip

file on your machine. If you want to run and check how Wannacry

malware works, then do it on a virtual machine with no important

data on it. Once this binary is executed on machine, you will not

be able to access files on that virtual machine.

If you run the Wannacry executable or binary on your virtual

machine, disable Defender to get the following screen:



Figure 16.5: Wannacry

Let’s load Wannacry into Ghidra by downloading the Wannacry zip

(password: from the preceding link and extract it. Open Ghidra to

create a new project from File > New Name it



Figure 16.6: Ghidra new project screen

Figure 16.7: Project name



On clicking your Wannacry project will come under Active Drag

and drop the Wannacry executable under Active Project and it will

import the binary and flash the following screen:

Figure 16.8: Drag drop wannacry binary

On clicking the next screen will show the Import Result Summary

for the Wannacry binary. This will list the Executable format,

Compiler ID, Processor, Endianess, and many other components as

follows:



Figure 16.9: Import result summary

Press OK and double click on the wannacry project to open

CodeBrowser as follows. In the it will ask you to analyze the

executable.



Figure 16.10: Wannacry analyze now screen

Click Yes to continue. You will have to enable a few analysis

options like WindowsPE x86 Propagate External Parameter and

Decompiler Parameter



Figure 16.11: Enable analysis options

Once enabled, click on Analyze and ignore the warnings if any.



Figure 16.12: Disassembly view

On the right, we see Program Trees which displays the PE section

details. In the Symbol it displays the symbols currently defined in

the program. The middle screen is the disassembled view of the

binary and on the left, we see It shows No Function as we have

not selected any function from the Functions TAB on the bottom

of the Decompiler window. To view the entry point of this

executable, type in entry in the functions tab and double click on

the entry function to view its disassembled and decompiled code.

Figure 16.13: Entry function



The assembly code we see in the listing section of the preceding

screenshot is the entry code of the binary. This entry function is a

main() or WinMain() function. For breaking Wannacry, we will have

to analyze and understand the code flow. In this process of

understanding the code flow, we will first see all the function calls

made from the entry disassembled function. This is done by going

to the menu Windows > Function Call A window with all the calls

made from the entry function will be shown in a graphical way:

Figure 16.14: Entry function call graph

Most of the calls are made to the internal libraries functions. Let’s

analyze the functions of our interest.

Figure 16.15: FUN_00409ba1

FUN_00409ba1 is just a so it does not revealing anything. Move

to the next function as follows:



Figure 16.16: FUN_00409b8c

FUN_00409b8c also does not revealing anything. Let’s move to

the next function, as follows:



Figure 16.17: FUN_00408140-Part-1



Figure 16.18: FUN_00408140-Part-2

This function is something of our interest. We will analyze the

disassembled code from whatever we have learned from the earlier

chapters. Ghidra also decompiles the binary, but we will first go

over the disassembled code step by step to review our learning.

While analyzing the disassembled code line by line, we will

visualize the stack state to get an overview of the stack state

during code flow.

Note: We will be doing a static analysis of the disassembled code.

We will not execute this binary during our analysis. Static analysis



will help us understand the code flow as well as the working of

the ransomware.

Before we start the analysis, let’s visualize a stack where ESP is

pointing on the top of the stack. In the following screenshot, you

can see the visualization of the stack in a sequence of 4 cells,

one above the other. Each cell denotes a byte and the memory

addressing is done on the left side from a higher memory

location to a lower memory location as we move up. The memory

location marked with green is the location of ESP, pointing to the

top of the stack having some data marked with XX bytes. The

initial stack state before starting the FUN_00408140 function will

be as follows. Right now, all the cells are filled with some data

which is marked as JUNK. With the instructions flow, bytes will be

pushed and popped of the stack.



Figure 16.19: Initial stack state

▼Line 01-18

undefined4 __stdcall FUN_00408140(void)

undefined4        EAX:4          

undefined1        Stack[-0x1]:1  local_1    XREF[1]:    

00408177(W)  

undefined2        Stack[-0x3]:2  local_3    XREF[1]:    

0040816c(W)  

undefined4        Stack[-0x7]:4  local_7    XREF[1]:    

00408168(W)  

undefined4        Stack[-0xb]:4  local_b    XREF[1]:    

00408164(W)  

undefined4        Stack[-0xf ]:4  local_f    XREF[1]:    

00408160(W)  

undefined4        Stack[-0x13]:4 local_13   XREF[1]:    

0040815c(W)  

undefined4        Stack[-0x17]:4 local_17   XREF[1]:    

00408158(W)  

undefined1        Stack[-0x50]:1 local_50   XREF[2]:    

0040814f(*),

SUB ESP,0x50

PUSH ESI

PUSH EDI

At the start of we see that different variable macros are defined.

SUB is creating room for variables on the stack by subtracting

0x50 from After creating some room, the ESI and EDI values are



preserved on the stack by pushing them on the stack. The stack

state after these instructions will be as follows:

Figure 16.20: After creating room for the local variables

▼Line 19-32

MOV ECX,0xe

MOV ESI,s_http://www.iuqerfsodp9ifjaposdfj_004313d0

LEA EDI=>local_50,[ESP + 0x8]

XOR EAX,EAX

MOVSD.REP ES:EDI,ESI=>s_http://www.iuqerfsodp9ifjaposdfj

MOVSB ES:EDI,ESI=>s_http://www.iuqerfsodp9ifjaposdfj

MOV dword ptr [ESP + local_17],EAX

MOV dword ptr [ESP + local_13],EAX



MOV dword ptr [ESP + local_f ],EAX

MOV dword ptr [ESP + local_b],EAX

MOV dword ptr [ESP + local_7],EAX

MOV word ptr [ESP + local_3],AX

With the MOV instruction, ECX is filled with 0x0E which will act

as a counter to the loop instruction afterwards.

ESI is pointing to offset

The length of this URL string is 57 bytes, where one byte is for

null termination.

The Load effective address instruction is loading the address of

ESP+0x08 in EDI.

In these instructions, you will see the REP and MOVS instruction.

The REP instruction repeats the string operation ECX times, where

ECX is initialized to 0x0E, which is 14 in decimal. As the MOVSD

instruction is copying the bytes in the chunk of 4 bytes that is,

DWORD from ESI to So, the total number of bytes that are

copied using the MOVSD.REP operation is 14 multiplied by 4

bytes (1 DWORD has 4 bytes) = 56 bytes. An additional null byte

for termination is copied using the MOVSB operation, resulting in

a total of 57 bytes that are copied from ESI to This is the same

as the length of this URL string, which is 57 bytes.

During the start of the function, we created room for the local

variables by subtracting 0x50 (80 bytes in decimal) from After



copying the URL string in this 80-bytes room, the remaining 23

bytes (80 bytes minus 57 bytes) of the memory location on the

stack will be cleared using XOR and several MOV instructions.

EAX is cleared using the XOR operation and with the remaining

MOV instructions, the 22 bytes of the memory location will be

cleared as shown in the following stack state screenshot. The

yellow-marked cells are the URL string data copied from ESI to

EDI on the stack. The blank cells marked with 0x00 show the

result of the XOR and MOV XOR operations. The remaining 1

byte will be cleared in the subsequent MOV instruction.

Figure 16.21: URL copied from ESI to EDI

▼Line 34-40



PUSH    EAX  ; dwFlags

PUSH    EAX  ; lpszProxyBypass

PUSH    EAX  ; lpszProxy

PUSH    0x1  ; dwAccessType

PUSH    EAX  ; lpszAgent

MOV     byte ptr [ESP + local_1],AL

CALL    dword ptr [->WININET.DLL::InternetOpenA]

The InternetOpenA function is called, as we can see in this set of

assembly listing. As per the Microsoft documentation, the

InternetOpenA syntax is defined as follows:

void InternetOpenA(

LPCSTR lpszAgent,

DWORD dwAccessType,

LPCSTR lpszProxy,

LPCSTR lpszProxyBypass,

DWORD dwFlags

);

All the parameters to InternetOpenA are pushed on the stack

using the PUSH instructions one by one. This is marked in the

following stack state for a better understanding. The MOV

instruction is clearing the remaining 1 byte location on the stack

as shown in the following stack state:



Figure 16.22: InternetOpenA call

▼Line 42-51

PUSH 0x0       ; dwContext

PUSH 0x84000000      ; dwFlags

PUSH 0x0       ; dwHeadersLength

LEA ECX=>local_50,[ESP + 0x14]    

MOV ESI,EAX

PUSH 0x0       ; lpszHeaders

PUSH ECX       ; lpszUrl

PUSH ESI       ; hInternet



CALL dword ptr [->WININET.DLL::InternetOpenUrlA]

The InternetOpenA function in wininet.dll (32-bit) returns with the

RETN 0x14 instructions, which clears off the pushed parameters of

the InternetOpenA function on the stack upon Now, with the

preceding instructions, the stack is again populated with

parameters to the InternetOpenUrlA function. According to the

Microsoft documentation, the syntax of InternetOpenUrlA function

is:

void InternetOpenUrlA(

HINTERNET hInternet,

LPCSTR    lpszUrl,

LPCSTR    lpszHeaders,

DWORD     dwHeadersLength,

DWORD     dwFlags,

DWORD_PTR dwContext

);

The return value of the InternetOpenA function is stored in the

EAX register and is pushed onto the stack as a parameter to the

InternetOpenUrlA function with MOV ESI, and PUSH ESI

instructions. The LEA instruction loads the address of the URL

string at [ESP + 0x14] into which is later pushed onto the stack

as a parameter to the InternetOpenUrlA function. The stack state

before the call to the InternetOpenUrlA function will be as follows:



Figure 16.23: Before call to InternetOpenUrlA

▼Line 53-77

MOV    EDI,EAX

PUSH   ESI

MOV    ESI,dword ptr [->WININET.DLL::InternetCloseHan   =

0000a7b2

TEST   EDI,EDI

JNZ    LAB_004081bc

CALL   ESI=>WININET.DLL::InternetCloseHandle



PUSH   0x0

CALL   ESI=>WININET.DLL::InternetCloseHandle

CALL   FUN_00408090  

POP    EDI

XOR    EAX,EAX

POP    ESI

ADD    ESP,0x50

RET    0x10

LAB_004081bc   XREF[1]:     004081a5(j)

CALL   ESI=>WININET.DLL::InternetCloseHandle

PUSH   EDI

CALL   ESI=>WININET.DLL::InternetCloseHandle

POP    EDI

XOR    EAX,EAX

POP    ESI

ADD    ESP,0x50

RET    0x10

The InternetOpenUrlA function in wininet.dll (32-bit) returns with

the RETN 0x18 instruction, which clears off the pushed parameters

of the InternetOpenUrlA function on the stack. In this set of

assembly instructions, we see something really interesting. The

return value of the function in EAX is moved to As per the

documentation of Microsoft for InternetOpenUrlA function, if the

return value is NULL, it means that the connection to the URL

failed. If the return value is a valid handle to the URL, it means

that the connection to the URL is successfully established. This

condition is checked with the TEST instruction in the preceding

assembly listing. This brings us to some interesting conclusions

from the Function



Figure 16.24: TEST condition

TEST   EDI,EDI

JNZ    LAB_004081bc

The TEST instruction performs the logical AND between EDI and

This instruction is used to check the registers for zero without

altering its value. If EDI is equal to 0, set ZF to 1. If the ZF is

set to 1, then no action will be taken and the next instruction

following it will be executed. This is a conditional jump instruction



which jumps to the LAB_004081bc location if the zero flag (ZF)

is set to 0.

The TEST instruction checks the return value of the

InternetOpenUrlA function. If the request to

http://www.iuqerfsodp9if japosdfjhgosurĳfaewrwergwea.com fails, the

InternetOpenUrlA function returns the null handle which then

closes the handle to calls FUN_00408090 function. This is where

the ransomware does all its working.

But if the request to

http://www.iuqerfsodp9if japosdfjhgosurĳfaewrwergwea.com passes, it

simply closes the handle and then quits the Wannacry program to

make the ransomware ineffective.

According to Information Security Newspaper, link as mentioned

below:

Marcus Hutchins was the hero behind the switch of Wannacry. So

once he registered this domain, Wannacry was shut down.

So we saw by understanding the assembly listing, we are able to

decode the functioning of the malware and find a way to break

the Wannacry ransomware. Now, we can validate our

understanding of the code flow with the decompiled code

generated by Ghidra as follows:



Figure 16.25: Decompiled code

Whatever we have analyzed from the step-by-step assembly

instructions is in line with the decompiled code generated from

Ghidra. If the InternetOpenUrlA function returns the null handle,

the ransomware does all its working with the FUN_00408090

function. Or else, it simply closes the handle and then quits the

Wannacry program.



Conclusion

In this chapter, we covered the steps to install a reverse

engineering framework called Using Ghidra, we analyzed the

Wannacry malware to disassemble the malware. With what we

learned from the earlier chapters, we analyzed the code flow with

the help of visualizing the stack state during the instruction flow.

This helped us understood the code flow and find the kill switch

of Wannacry.



CHAPTER 17

Generate Pseudo Code From Binary File

In the earlier chapter, we covered the different patterns of

assembly code for various C/C++ applications and some real-life

examples. The job of a reverse engineer is to get the copy of the

binary for reverse engineering and understanding the code flow.

This binary can be of any software or application or it can be

malware. All the modern malwares are coded with some URL to

communicate with the server to upload data or to send feeds of

the malware activities. So, these URL are not hard coded in the

plain text format but are encrypted or encoded inside the code.

In this chapter, we will generate the pseudo code from the binary

file to crack such encrypted URL. The encryption logic used in

such cases can be standard ones or custom made, all depending

on the malware writer. We will use which is an open-source

interface to the Radare2 reverse engineering framework. Radare2 is

used for static and dynamic analysis of binary formats on different

platforms and architectures. Radare2 is for those who love to work

on command line interface. Cutter is the graphical user interface

of Radare2.



Structure

In this chapter, we will cover the following topics:

Installation of the reverse engineering framework called Cutter

Binary analysis using Cutter

Decrypting a hidden URL



Objective

The objective of this chapter is to understand the steps involved

in installing the reverse engineering framework called Cutter. After

installing, we will analyze the binary to generate the pseudo code

to extract the encryption key. This encryption key is used to

encrypt the URL in the binary. We will also see how this

encryption of URL is used to escape from reverse engineering.



Cutter Installation

Cutter can be downloaded from the GitHub repository. It can be

compiled from the source code or can be downloaded as a binary.

It is available for different platforms (Windows, Linux, macOS). We

will use the Windows 10 64-bit version to carry out our Cutter

installation. Following is the step-by-step procedure to install

Cutter:

Download and extract the zip file from the GitHub repository:

https://github.com/rizinorg/cutter/releases/download/v1.12.0/Cutter-

v1.12.0-x64.Windows.zip

In the extracted folder, run cutter.exe to open the first screen of

Cutter. This is the screen where we have to select and open the

binary file to analyze.



Figure 17.1: Cutter first screen

Download this CrackMe.exe from the following link:

https://github.com/bpbpublications/Implementing-Reverse-Engineering

Once the binary file to be analyzed is selected, click Open to get

the cutter Load We are keeping everything default. If you have a

symbol file, we can select the Load PDB option.



Figure 17.2: Cutter Load Options

On clicking you will be presented with the disassembly view of

the binary. Along with this, we get to see several tabs at the

bottom of window.



Figure 17.3: Binary disassemble view

With this, we have successfully started Cutter for further analysis.

But before we begin our analysis, we will walk through the

different functionalities and terminologies in the Cutter graphical

user interface.



Binary Analysis Using Cutter

The Cutter user interface has many tabs. We will walk through

each tab and explain its relevance in analyzing any binary file.



Dashboard

The Dashboard tab shows the binary path, architecture,

endianness, and many other details. Our binary file is a portable

executable format file and compiled for 32-bit architecture as

follows. The values present in the Hashes section is used to

ensure that the file is not corrupted or altered by unauthorized

users. Some antivirus companies use these values to determine if

a file is malicious or not. They maintain the hash database of

known malwares and upon scanning, they evaluate the file hash to

compare with that in the database. If the hash values match the

values in the database, the file infection is triggered.

Figure 17.4: Dashboard view



Strings

The Strings tab shows the text string found in the binary. It is the

first level of analysis for any binary as sometimes it gives a lot of

clues about the binary internals. Imagine if some IP address or

URL is used in a plain text format in a malware code, then that

IP or URL will be reflected in the Strings tab.

Figure 17.5: Strings view



Imports

This tab shows the libraries imported by the binary. If the binary

is using the internet to connect to some service, then it can be

figured out with the use of the relevant functions used to connect

to the internet.

Figure 17.6: Imports view



Disassembly

This tab shows the disassembled view of the binary. Whatever

concepts and instructions we have learned in the earlier chapters

will help us understand this flow. It might be overwhelming for

you in the first view but don’t worry, we will understand this in a

step-by-step manner.

Figure 17.7: Disassemble view



Graph

As seen in the earlier figure, this tab is named as Graph (Empty).

Empty is suffixed as we have not selected any function. On this

tab selection, we get an empty screen with the same message to

select a function.



Hexdump

This shows the hex dump of the binary file and is represented by

3 columns. The first column shows the offset, the second column

shows the hexadecimal output, and the third column is the

representation of data in the ASCII format.



Figure 17.8: Hexdump view



Decompiler

To populate this tab, we will first go to the Windows menu and

select Functions to get the list of functions in the binary. In the

filter, search for the main function as it is the starting point of

the binary. Once the main function is double-clicked, the

decompiler will analyze the binary to display the high-level

representation of the assembly code in the Decompiler tab. Cutter

supports plugin for multiple decompilers such as RetDec and

Ghidra.



Figure 17.9: Decompiler view



Decrypting the Hidden URL

Now we will move back to the Graph section which displays the

visual process flow of the main function. This graph view can be

zoomed in or out using the Ctrl++ or Ctrl— shortcuts. We will

understand the execution path in a step-by-step manner to

understand what the binary is actually doing. The following is the

screenshot of what we got in the graph view for the main

function. In the graph view, we see blocks connected with arrows.

Arrows are representations of different jumps such as The green

arrow shows what happens when a jump takes place. The red

arrow shows if a jump does not take place. The blue arrow shows

the loop.





Figure 17.10: Exported graph of main

Let’s walk over the disassembled code block one by one to

understand the code flow:



Figure 17.11: Exported graph of main-Block-1

After the function prologue, the SUB instruction is creating room

for the local variable by subtracting ESP by 0x3C (60 bytes in



decimal). At the stack cookie is stored by XOR’ing EAX and In

the subsequent MOV instructions, the text string with string

length 24 (in decimal) is copied on the stack. This text string

seems to be the encrypted version of something. We will call it

the encrypted text string. Out of 60 bytes (in decimal) on the

stack, we have consumed 24 bytes (in decimal) for encrypted text

string and 4 bytes for the stack cookie. The remaining memory

locations on the stack are cleared using the MOV instructions

after XOR’ing the EAX instruction. This ends the blocks with a

JMP instruction. Let’s move to the remaining instructions in the

blocks.

Figure 17.12: Exported Graph of main remaining blocks



We see the looping arrow represented by the blue arrow. It

indicates that ECX is initialized to 0x32 (50 in decimal) to loop

over with the CMP and JGE instructions. The green arrow on the

right indicates that ECX reaches a count of 50 in decimal. This

green arrow moves to the end of the code block. The red arrow

indicates that we are inside the loop.

The MOVSX instruction is copying every char from the encrypted

text string on the stack to Check if it is NULL or not. If it is

NULL, then move to the end of the code block at the bottom

right. Or else, again copy the first byte (char) from the encrypted

text string on the stack to EDX using the MOVSX instruction. The

SUB instruction subtracts 2 from the HEX value of the char

copied in From it is moved to overwrite the first char of the

encrypted text string on the stack in the first loop. This loop is

carried out until all the HEX values of the characters of the

encrypted text string are subtracted by 2. Thus, 2 is the encrypting

key used to encrypt some text string.

With this, we can generate a high-level pseudo code for the binary

as follows:

EncryptedText = “yyy0kke{dgtugewtkv{0eqo”

for(iteration=50, EncryptedText !=’\0’, iteration++)

{

EncryptedText[iteration] = EncryptedText[iteration] -2;

}

return 0;



So, we saw how to generate the pseudo code by stepping over

the assembly instructions and extracting the meaning out of it.

Your pseudo code might not be the same as the original binary

code, but it’s a glimpse of what’s happening inside the binary

working. With this, we are now clear on how to extract the

hidden text behind the encrypted text string.

To extract the original text string, we can either follow a manual

or automated process. Manually, it can be done as follows. Refer

to the ASCII table in the Appendix for the char to hex conversion.



Figure 17.13: Decrypted text

So, the decrypted text is a URL, which is This was a simple

custom encryption to hide the URL in the code. If a plain text

URL is used in the code, then it would be visible in the Strings

tab of the Cutter graphical interface.

The automated approach to extract the URL from an encrypted

URL is to write the Python code as follows:

Figure 17.14: Python code to get the decrypted text

The output of the preceding Python program is as follows:

www.iicybersecurity.com

In the preceding Python code, we are iterating over every char of

encstr and subtracting the encryption key 2 from the ASCII value

to get the decrypted char using the chr function.

It is time to check the original C++ code from which the CrackMe

binary is generated.



Figure 17.15: Binary CPP code

With this, we are able to crack the simple encryption used in the

binary.



Conclusion

We covered the steps involved in the installation of the reverse

engineering framework called With what we have learned in the

previous chapters, we were able to analyze the binary to generate

a pseudo code to extract the encryption key. We also covered the

manual as well as the automated way to extract a hidden URL

from the encrypted text. In the next chapter, we will learn some

new things about the well-known Windows application.



CHAPTER 18

Fun With Windows Calculator Using Reverse Engineering

In this chapter, we will take up an example to understand how we

can use reverse engineering to modify applications or software

behaviour without having access to the source code. We will take

a well-known Windows application used by everyone. Even those

who know the basics of computer use it. We are talking about the

Windows Calculator. It is used by computer learners,

intermediates, and experts. Everyone uses it for basic and advance

calculations. So, what are we going to do with this calculator?

This will be an interesting real-life example where, as a reverse

engineer, we will change the working of an application with having

its source code.

If you are reverse engineering a malware, then this type of real-life

scenario will help you change the execution flow of any malware.

We will also talk in detail about many concepts involved in this

process. This will be a fun exercise to understand.



Structure

In this chapter, we will cover the following topics:

Reverse engineering a calculator

Understanding the code flow with breakpoints

Finding a placeholder to call our code

Writing our code in the Code Cave

Patching the binary



Objective

In this chapter, using reverse engineering, we will change the

working of a calculator by modifying its behaviour to output our

defined string for any calculation that we perform. It means that

rather than getting 8 as an output to 2+6 or any other

calculation, the calculator will display our defined message on the

press of equal to button. For this, we will use the Win32

Calculator available in the old Windows XP.



Reverse Engineering Calculator

If we want to change the behaviour of any application, we can do

so in the application source code and recompile it to get the

desired result on execution. In this case, we only have the

calculator binary or Portable Executable file. We will use

engineering to modify the calculator binary by writing our code to

work as desired. To get the desired result, we will follow a 4-step

process to modify the calculator binary:

Understanding the code flow with breakpoints

Finding a placeholder to call our code

Writing our code in the Code Cave

Patching the binary



Understanding the code flow with breakpoints

This step involves understanding the code flow of an application,

the calculator in our case, using x32dbg or Ollydbg. Our objective

is to modify the calculator is such a way that if somebody

presses the equal to button, the user will be presented with our

desired string rather than the calculated output. To start, take a

copy of calc.exe from the WinXP system32 folder.

Figure 18.1: Calculator binary path

CFF Explorer shows that the binary is Portable Executable 32.

Open this binary in x32dbg and go to Debug | Run to start the



calculator. Or you can also press F9 to run.

Figure 18.2: Open the calculator binary in x32dbg

First, we will check the list of Win32 function calls in our binary

by going to the CPU tab, right-clicking to get the context menu,

and then going to Search for -> All Modules -> Intermodular



Figure 18.3: Intermodular calls

This will bring up the All Modules (Calls) tab, where we can see

a bunch of function calls and in the bottom, we have a filter

option to find any specific function call reference. Now, Win32

offers the SetWindowText function to change the text of control.

BOOL SetWindowTextW(

HWND    hWnd,

LPCWSTR lpString

);



It takes 2 parameters:

hWnd is the handle to the window or control whose text is to be

changed.

lpString is the control text

Let’s find this function in the Search filter to find all the

references to the function call in our code and set the breakpoint.



Figure 18.4: Search SetWindowTextW and set the breakpoint

Now, we are all set to understand the code flow of the

application. We will perform a calculation of 2+6 to see if our

breakpoint is hit or not. Let’s begin by first pressing the button

for the digit As soon as 2 is pressed on the calculator, our

breakpoint is hit.

Figure 18.5: Breakpoint hit as 2 is pressed

The breakpoint is set at the SetWindowTextW function call and we

can see that before the CALL to the arguments to the function



are pushed onto the stack.

stack. stack. stack. stack.

stack. stack. stack. stack.

stack.

The second argument of SetWindowTextW is LPCWSTR which is

pushed first on the stack by the instruction:

push dword ptr ss:[esp+0x10]

This pushes [ESP+0x10] on the stack. While running this push

instruction, [ESP+0x10] was pointing to which is the memory

location of the digit we pressed on the calculator, So that means

the memory location of the digit 2 (which we pressed on the

calculator) was pushed on the stack.

Let’s see how the digit 2 is stored in the memory by dumping

0x0006F7E0 in the memory dump. We can observe that the digit

is stored in the Unicode format. For understanding ASCII and

Unicode, refer to the

Figure 18.6: Memory location of the digit 2



The first argument of SetWindowTextW is HWND which is the

handle to the control whose text is to be changed. This is pushed

on the stack by the PUSH ESI instruction.

We now understand how a digit that we press on the calculator is

stored in the memory. Now we will press Run in x32dbg to return

the control back to the calculator. Once the calculator has the

control, press plus (+) on the calculator. After pressing plus the

breakpoint is hit again.

Figure 18.7: Breakpoint hit when + is pressed

All the registers are unchanged at this point and we see that

there is no identifier to differentiate when the plus (+) is pressed



on the calculator. Press Run in x32dbg again to return the control

back to the calculator.

Now we will press the next digit, which is on the calculator. We

can again see that our breakpoint is hit and the stack is pushed

with the memory location of the digit The same behaviour was

observed earlier, wherein the parameters to the SetWindowTextW

function were pushed onto the stack.

Figure 18.8: Breakpoint hit on pressing 6

Next, to evaluate 2+6, we will press the equal to button on the

calculator. After pressing equal our breakpoint is hit but nothing

special is observed on the stack or in the register value to help



us differentiate when the equal to button is pressed on the

calculator.

Figure 18.9: Breakpoint hit when = is pressed

So, we will pass the execution by pressing Run again. This time

when the breakpoint is hit, we can see that the result of 2+6,

which is is pushed on the stack.



Figure 18.10: Sum 8 is pushed on the stack

Again, 0x0006F7E0 is the memory location of the evaluated result,

which is By dumping 0x0006F7E0 in the memory dump, we can

observe that the result is stored in the Unicode format.

On the next Run in x32dbg, our evaluated value 8 is displayed on

the calculator.



Figure 18.11: Sum 8 is displayed on the calculator

We can observe that every time we press any digit on the

calculator, the SetWindowTextW function is called, which pushes

the memory location of the digit on the stack. But we were not

able to find any identifier or differential flow till that point to help

us identify when the user pressed the equal to button on the

calculator.



Finding a placeholder to call our code

The objective of this step is to identify a condition where we can

differentiate between the press of the equal to button on the

calculator and the press of another digit or a button on the

calculator. We have to be able to find that differential flow or

some register value to help us identify the press of the equal to

button. Using that as a condition or trigger, we can jump to our

written code to flash our defined string on the calculator when

the equal to button is pressed.

To find that differentiating parameter, we will follow a simple

process, wherein we will note down the value of all the registers

and the stack at the press of any button on the calculator. As we

have the x32dbg debugger attached to our calculator, we will

follow the given steps:

First press 2 on the calculator to hit the breakpoint. When the

execution is paused at the breakpoint, note the register value and

the stack.

Now press Run in x32dbg to return the control to the calculator.

Press the plus (+) button to hit breakpoint again and note the

register value and the stack.

Press Run in x32dbg again and then press 6 to hit breakpoint to

note the register value and the stack.



Press Run again in x32dbg to return the control to the calculator.

Then press equal to (=) to hit the breakpoint. At this point, you

will see that the calculated value of 8 is not pushed on the stack.

Press Run in x32dbg again and note the registers’ values and the

stack.

Now if you press Run in x32dbg again, it will update the

calculator with the calculated value, which is 2+6 = 8.

For your better understanding, we have placed the output of the

preceding steps in a table format. This will also help us analyze

all the registers and the stack to find any differentiating parameter

to help us identify the press of the equal to button on the

calculator.

Table 18.1: Comparison of registers and the stack when BP at CALL



As we can see from the table, the register values are the same

when the different keys are pressed on the calculator. This is not

leading us to find any differentiating parameter to determine

whether the user pressed the equal to button or some other digit.

Let’s move our breakpoint position to the start of the procedure

and see if we can find something there to differentiate between

the keys pressed on the calculator. Set the breakpoint at the start

of procedure and follow the same debugging process to calculate

2+6 on the calculator.

Table 18.2: Comparison of the registers and the stack when BP at the

PROC start

In this exercise, we can observe two points:

First, EAX is holding the memory location of the evaluated result

(that is 2 + 6 = 8) and we know that EAX holds the return value

of the caller function.



Second, the ESI register can be of our interest. When 2 or plus

(+) or 6 is pressed on the calculator, the value of ESI is always

lower than let’s say about 1000 (in decimal) (0x3E8 in hex). But

when the equal to button is pressed on the calculator, the ESI

value is greater than 1000 (in decimal) (0x3E8 in hex). This

condition will help us differentiate between the other buttons that

are pressed and when the equal to button is pressed on the

calculator.

So, we can use this as a triggering condition to jump to our

code and to automate this whole process of checking when the

equal to button is pressed on the calculator. The pseudo code of

this can be as follows:

If (ESI ≤ 0x3E8)  // 2 or plus (+) or 6 button is pressed on the

calculator

{

Continue execution normally

} else    // equal to button is pressed on the calculator

{

Run our code to print text on calculator screen

}

Now, we will move on to write our code. But the big question is,

where are we going to write our code?

The answer to the question is that we will write our code in the

Code Cave. But first, we will understand what code cave is in the

following section.



Writing our code in the Code Cave

To modify any application or add some functionality to any

application, we need to have the source code. Having a source

code and modifying it is the simplest solution to add some

functionality to the application. But what if we don’t have the

source code?

In that case, we will have to modify the application binary and

add our code to it. For adding our code to the compiled

application or binary, we will use the code cave.

For adding the code, we will have to find an unused area in the

compiled application or exe file. This unused space will be our We

will insert our custom code in this cave. Finally, somewhere in the

original binary, we will add jump to our code cave so that it is

executed along with the original binary execution. At the end, to

return the execution from our code cave to the original binary, we

will add return to our code cave. This process is used by many

malware writers to add custom code to the complied application.



Figure 18.12: Code cave concept

Sometimes, an empty space is not enough to write a big code. In

such cases, a new section can be added to the binary with

executable privileges. Then we can jump to that section and return

back. This technique is not covered here, so let’s move on to

code cave.

While writing a code in the cave, we always have to remember

that every byte counts. The size of the code should be as small

as possible. To find the space available for us, let’s walk through

the compiled binary of the calculator and based on that, we will

take a decision.



Compiled application, exe, portable exe, binary – All these mean

the same.

As we move towards the end of the calculator executable, we see

enough space to write our code (shown in the following

screenshot). We will select some sections of the space and fill it

with the NOP instruction. This section can be referred to as the

cave.

Figure 18.13: Code cave with NOPs

After filling the cave with the we can start writing our code. The

objective of this code is to print JITENDER NARULA IS

WATCHING YOU on the calculator when somebody performs

some calculation and presses the equal to button for the result.

This output text can be customized to anything of your choice.

The code that goes into the cave is:



Figure 18.14: Code cave

The code has been explained as follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:



follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:



follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

follows: follows: follows:

follows: follows:

follows: follows:

follows: follows: follows: follows: follows: follows: follows: follows:

Table 18.3: Code cave explained instruction by instruction

Now we have written our code in the cave. To call this code

during the calculator execution, we have to modify the execution

flow of the executable as explained in figure To do this, we can

either use the CALL instruction or the JMP instruction. We can

use the CALL instruction to call our code but since we don’t have

any space constraints, we will use the basic JMP instruction for

easy understanding. Follow below screens to modify executable

code flow at the start of the procedure where we inserted our

breakpoint for the comparison of registers and the stack to get

the triggering condition in table



Figure 18.15: Original executable

Figure 18.16: After adding jump to Code Cave

The JMP instruction is pointing to the code cave and the

instructions occupied by NOP are called in the code cave. Now

we are done with our code insertion in the compiled binary. We

will now patch this binary to save the changes in the calculator

exe.



Patching the binary

Patching will help us in writing our code in the compiled

calculator application on the disk. To patch, go to File -> Patch

Select All to Patch Specify the path & filename to save the file on

the disk.

Now, by performing any calculation on our patched calculator

binary, the following result will be produced on pressing the equal

to button. For example, if we press 2+6 and then the equal to

button, we will get the following result:

Figure 18.17: Patched calculator

Placing the breakpoint in our code cave shows that we have

overwritten the calculator result in the memory with our custom

text JITENDER NARULA IS WATCHING



Figure 18.18: Patched calculator in x32dbg



Conclusion

In this chapter, we learned to reverse engineer the calculator by

modifying its behaviour to output our defined string for any

calculation. This means that rather than getting 8 as an output to

2+6 or any other calculation, the calculator will display our defined

message on pressing the equal to button. We also learned the

concept of finding a cave in the closed binary and writing a code

cave to change the execution path of the binary. Further, we

learned how to patch the binary to permanently write the changes

on the disk.



Appendix



Macro

Macros in the assemble language are used to write modular

programs. Macros are the sequence of instruction, assigned by

name. They can be used anywhere in the code. The macros make

programs shorter and readable.



Procedure

A procedure or subroutine is a sequence of instructions that

perform certain tasks. They are very important in assembly

language. They are identified by name and the end of the

procedure is identified by RET statement.



npad

The npad is a macro defined in the listing.inc which resides in

Root_Folder\VC\include folder of MSVC. npad macro inserts non-

destructive and non-operational instructions, rather than a series of

NOP instruction. While doing optimization the compiler insert

non-operational instruction for enforcing alignment of the data. A

series of NOP’s can also be used, but single instructions are

always good for better CPU performance.

Figure A.1: Listing.inc file path

npad macro is accompanied by a number (X). Where number X

can be from 1 to 15, this number defines the amount of memory

alignment or padding required by the compiler during

optimization. Compiler pads the extra space between the previous

instruction/data and the one after npad macro.

If we look into



npad 1 defines padding of 1 byte NOP

npad 2 defines padding of 2 bytes with mov edi, edi instruction.

npad 2 defines padding of 3 bytes with lea ecx, [ecx+00]

instruction, so on

All these are basically different variations of NOP, which have no

impact on the code flow.

LISTING.INC for reference:

; LISTING.INC

;

; This file contains assembler macros and is included by the files

created

; with the -FA compiler switch to be assembled by MASM

(Microsoft Macro

; Assembler).

;

; Copyright (c) 1993-2003, Microsoft Corporation. All rights

reserved.

; non-destructive nops

npad macro size

if size eq 1

nop

else



if size eq 2

mov edi, edi

else

if size eq 3

; lea ecx, [ecx+00]

DB 8DH, 49H, 00H

else

if size eq 4

; lea esp, [esp+00]

DB 8DH, 64H, 24H, 00H

else

if size eq 5

add eax, DWORD PTR 0

else

if size eq 6

; lea ebx, [ebx+00000000]

DB 8DH, 9BH, 00H, 00H, 00H, 00H

else

if size eq 7

; lea esp, [esp+00000000]

DB 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H

else

if size eq 8

; jmp .+8; .npad 6

DB 0EBH, 06H, 8DH, 9BH, 00H, 00H, 00H, 00H

else

if size eq 9

; jmp .+9; .npad 7

DB 0EBH, 07H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H

else

if size eq 10



; jmp .+A; .npad 7; .npad 1

DB 0EBH, 08H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 90H

else

if size eq 11

; jmp .+B; .npad 7; .npad 2

DB 0EBH, 09H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8BH,

0FFH

else

if size eq 12

; jmp .+C; .npad 7; .npad 3

DB 0EBH, 0AH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH,

49H, 00H

else

if size eq 13

; jmp .+D; .npad 7; .npad 4

DB 0EBH, 0BH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH,

64H, 24H, 00H

else

if size eq 14

; jmp .+E; .npad 7; .npad 5

DB 0EBH, 0CH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 05H,

00H, 00H, 00H, 00H

else

if size eq 15

; jmp .+F; .npad 7; .npad 6

DB 0EBH, 0DH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH,

9BH, 00H, 00H, 00H, 00H

else

%out error: unsupported npad size

.err

endif



endif

endif

endif

endif

endif

endif

endif

endif

endif

endif

endif

endif

endif

endif

endm

; destructive nops

dpad macro size, reg

if size eq 1

inc reg

else

%out error: unsupported dpad size

.err

endif

endm



LSB and MSB

To understand least significant bit and most significant bit we will

take an example of byte:

0000 0001

In the above byte example, bit in the right end most is set to 1.

This is what is referred as the LSB. Now take another example:

1000 0000

In the preceding byte example, bit in the left end most is set to

1. This is what is referred as the MSB.

This same concept goes with the WORD, DWORD and so on.

WORD

(MSB) 1000 0000 0000 0001 (LSB)

DWORD

(MSB) 1000 0000 0000 0000 0000 0000 0000 0001 (LSB)



Signed and Unsigned

In mathematics we have positive (1, 2, 3, 4, so on) and negative

numbers (-1, -2, -3, -4, so on). Similarly to represent positive and

negative number concept in programming, signed and unsigned

terms are used.



Unsigned

Data is represented by byte of data, where 00 is the lowest

number in byte and FF is the highest number in byte. The

positive decimal numbers are represented in bytes as shown below

and similarly numbers can also be represented in WORD,

DWORD:

Figure A.2: Positive decimal numbers in bytes

For WORD this range is from 0000 to FFFF and for DWORD it

is from 00000000 to FFFFFFFF. These all are referred to as

unsigned numbers.



Signed

When data is represented as a signed, then 0x00 to 0x7F is

treated as positive and 0x80 to 0xFF is treated as negative

numbers:

Figure A.3: Signed numbers in bytes

As we can observe MSB of all negative number is set to 1 and

for positive numbers MSB is set to 0. Consider -4 and + 4 in

decimal, its byte and binary representation is:

+4 = 0x04 = 0000 0100, MSB = 0

-4 = 0xFC = 1111 1100, MSB = 1

But when the same decimal is represented in WORD, -4 (decimal)

will not become 0x00FC. As 0x00FC is not negative, it represents

positive number that falls between 0000 and 7FFF. To represent

-4 in WORD, we need to extend it as 0xFFFC and in DWORD it

is 0xFFFFFFFC.



Now we understood that simply changing the MSB bit will not

change the polarity of number. To convert positive number to

negative and vice versa, can be done by performing 2’s

complement of the number. To calculate 2’s complement of

number following process is followed:

Invert all bits in byte or WORD or DWORD

After flapping all bits, add 1 to the number



Bit Shifting

To understand bit shifting concept, take 0x44 which in binary is:

0100 0100

In bit shifting, bits are shifted either right or left. When shifted to

right 0x44 will become:

?0100 010

When shifted to left, 0x44 will become:

100 0100?

When we shifted to right or left a bit placeholder position is

created, denoted by question mark (?) above. Now this question

mark can be 0 or 1, which is decided by the type of shifting

done .i.e. Logical and Arithmetic shifting.



Logical bit shifting

In logical bit shifting, when bits are shifted to the right, bit

placeholder which is question mark is always set to 0. Example:

0100 0100

Logical shift right of 0x44 becomes,

00100 010

When bit shifting is done to left, LSB is always set to 0:

0100 0100

Logical shift left of 0x44 becomes,

100 01000



Arithmetic bit shifting

In Arithmetic bit shifting, when bits are shifted to the right, bit

placeholder which is question mark is decided by most significant

bit (MSB). Example:

0100 0100

Arithmetic shift right of 0x44 becomes,

00100 010

Take another example:

100 01000

Arithmetic shift right of 0x44 becomes,

1100 0100

When bit shifting is done to left, LSB is always set to 0:

0100 0100

Arithmetic Shift left of 0x44 becomes,



100 01000



ASCII

We all are familiar with the ASCII, where 7 bits are used to

represent 128 characters and storing them in 8 bits. Every

character occupies 1 byte. Below is the ASCII table for reference:

reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference: reference:

reference:

reference:

reference:

reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:



reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference: reference:

reference: reference:

reference: reference:

reference: reference: reference: reference:

reference:

reference: reference: reference:

reference:

reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference:

reference: reference:

reference: reference: reference: reference:

reference: reference:



reference: reference:

reference: reference:

reference:

reference:

reference: reference: reference: reference:

reference: reference: reference: reference:

reference:

reference: reference:

reference:

reference:

reference: reference: reference:

reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:



reference: reference:

reference:

reference:

reference: reference:

reference: reference:

reference: reference: reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:



reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference: reference: reference: reference:

reference:

reference: reference: reference: reference: reference:

reference: reference: reference: reference:

reference: reference: reference: reference: reference: reference:

reference: reference:

reference: reference:

reference: reference:



reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:

reference: reference:



reference: reference:

reference: reference:

reference: reference:

reference: reference: reference: reference:

reference: reference: reference: reference: reference: reference:

reference:

reference: reference: reference: reference:

reference: reference: reference: reference:

reference:

Table A.1: ASCII table



Unicode

There are many versions of Unicode, UTF-16 is the most popular

one. It is represented by 16 bits, which is needed to satisfy any

language efficiently. It ranges from 0x0000 to 0xFFFF.

In ASCII it was not possible to store characters of different

languages, as it just 7 bits. But Unicode versions are expanded to

16, 32 bits

Example: ASCII of ‘A’ = 0x41 and Unicode (UTF=16) representation

is 0041.



Disable Address Space Layout Randomization

Address Space Layout Randomization is a security mechanism by

which base address of PE file is randomized on every load. To

disable the ASLR on the Portable Executable file generated with

our MSVC compiler we will following steps. This will help us

reload PE file without randomizing base address of PE file. To

disable ASLR we will use a CFF Explorer (it can be download

from Open the PE file generated in CFF Explorer and follow steps:

Select from the left panel, Optional Header

In the Optional find

Figure A.4: PE file optional header using CFF Explorer



Click on Click here on the right bottom.

Uncheck the DLL can move and click

Figure A.5: Disable ASLR on PE file

Now go to File menu and Save changes.

Now using x32dbg, we can load PE file to do analysis without

randomizing base address on every load.
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Callee After Function Call 22

Callee Before Returning 23

Caller After Returning 24

Caller Before Callee Call 21

stack instructions

about 35

POP 36

POPAD 37

POPFD 37

PUSH 36

PUSHAD 36

PUSHFD 36

RET 37

status register, x86 architecture

Carry Flag (CF) 17

Overflow Flag (OF) 18

Parity Flag (PF) 18

Sign Flag (SF) 17

Trap Flag (TF) 18

Zero Flag (ZF) 17



STDCALL 85

stored program computing system 8

Store String Byte (STOSB) 78

Store String DWORD (STOSD) 79

Store String (STOS) 78

Store String Word (STOSW) 79

strcpy

about 328

with optimization

without optimization

strcpy program pattern

in reverse engineering 327

string instructions

CMPS/CMPSB/CMPSW 74

IN/INSB/INSW/INSD 76

LODS/LODSB/LODSW/LODSD 78

MOVS/MOVSB/MOVSW 80

OUT/OUTSB/OUTSW/OUTSD 77

REP 81

REPE/REPZ 81

REPNE/REPNZ 82

SCAS/SCASB/SCASW 79

STOS/STOSB/STOSW 78

structure

about 282

with optimization

without optimization

structure code

reverse engineering pattern 281

subroutine 449

System Bus, computing system



Address Bus 10

Control Bus 10

Data Bus 10

T

tools, reverse engineering. See reverse engineering tools

U

unconditional jump 54

Unicode 460

unsigned terms 454

UTF-16 460

V

von Neumann architecture 9

W

Wannacry ransomware

about 3

analyzing

breaking 393

disassembling

while condition

about 212



with optimization

without optimization

Windows Calculator

reverse engineering 429

Windows Calculator, reverse engineering

about 430

binary, patching 446

code flow, with breakpoints

code, writing in code cave

placeholder, finding to call code

X

x32dbg

about 31

disassembly or CPU instructions 31

memory dump 31

registers and flags 31

stack 31

x86 Intel family 14
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