buildkit/vendor/github.com/jaguilar/vt100/vt100.go

436 lines
10 KiB
Go

// package vt100 implements a quick-and-dirty programmable ANSI terminal emulator.
//
// You could, for example, use it to run a program like nethack that expects
// a terminal as a subprocess. It tracks the position of the cursor,
// colors, and various other aspects of the terminal's state, and
// allows you to inspect them.
//
// We do very much mean the dirty part. It's not that we think it might have
// bugs. It's that we're SURE it does. Currently, we only handle raw mode, with no
// cooked mode features like scrolling. We also misinterpret some of the control
// codes, which may or may not matter for your purpose.
package vt100
import (
"bytes"
"fmt"
"image/color"
"sort"
"strings"
)
type Intensity int
const (
Normal Intensity = 0
Bright = 1
Dim = 2
// TODO(jaguilar): Should this be in a subpackage, since the names are pretty collide-y?
)
var (
// Technically RGBAs are supposed to be premultiplied. But CSS doesn't expect them
// that way, so we won't do it in this file.
DefaultColor = color.RGBA{0, 0, 0, 0}
// Our black has 255 alpha, so it will compare negatively with DefaultColor.
Black = color.RGBA{0, 0, 0, 255}
Red = color.RGBA{255, 0, 0, 255}
Green = color.RGBA{0, 255, 0, 255}
Yellow = color.RGBA{255, 255, 0, 255}
Blue = color.RGBA{0, 0, 255, 255}
Magenta = color.RGBA{255, 0, 255, 255}
Cyan = color.RGBA{0, 255, 255, 255}
White = color.RGBA{255, 255, 255, 255}
)
func (i Intensity) alpha() uint8 {
switch i {
case Bright:
return 255
case Normal:
return 170
case Dim:
return 85
default:
return 170
}
}
// Format represents the display format of text on a terminal.
type Format struct {
// Fg is the foreground color.
Fg color.RGBA
// Bg is the background color.
Bg color.RGBA
// Intensity is the text intensity (bright, normal, dim).
Intensity Intensity
// Various text properties.
Underscore, Conceal, Negative, Blink, Inverse bool
}
func toCss(c color.RGBA) string {
return fmt.Sprintf("rgba(%d, %d, %d, %f)", c.R, c.G, c.B, float32(c.A)/255)
}
func (f Format) css() string {
parts := make([]string, 0)
fg, bg := f.Fg, f.Bg
if f.Inverse {
bg, fg = fg, bg
}
if f.Intensity != Normal {
// Intensity only applies to the text -- i.e., the foreground.
fg.A = f.Intensity.alpha()
}
if fg != DefaultColor {
parts = append(parts, "color:"+toCss(fg))
}
if bg != DefaultColor {
parts = append(parts, "background-color:"+toCss(bg))
}
if f.Underscore {
parts = append(parts, "text-decoration:underline")
}
if f.Conceal {
parts = append(parts, "display:none")
}
if f.Blink {
parts = append(parts, "text-decoration:blink")
}
// We're not in performance sensitive code. Although this sort
// isn't strictly necessary, it gives us the nice property that
// the style of a particular set of attributes will always be
// generated the same way. As a result, we can use the html
// output in tests.
sort.StringSlice(parts).Sort()
return strings.Join(parts, ";")
}
// Cursor represents both the position and text type of the cursor.
type Cursor struct {
// Y and X are the coordinates.
Y, X int
// F is the format that will be displayed.
F Format
}
// VT100 represents a simplified, raw VT100 terminal.
type VT100 struct {
// Height and Width are the dimensions of the terminal.
Height, Width int
// Content is the text in the terminal.
Content [][]rune
// Format is the display properties of each cell.
Format [][]Format
// Cursor is the current state of the cursor.
Cursor Cursor
// savedCursor is the state of the cursor last time save() was called.
savedCursor Cursor
unparsed []byte
}
// NewVT100 creates a new VT100 object with the specified dimensions. y and x
// must both be greater than zero.
//
// Each cell is set to contain a ' ' rune, and all formats are left as the
// default.
func NewVT100(y, x int) *VT100 {
if y == 0 || x == 0 {
panic(fmt.Errorf("invalid dim (%d, %d)", y, x))
}
v := &VT100{
Height: y,
Width: x,
Content: make([][]rune, y),
Format: make([][]Format, y),
}
for row := 0; row < y; row++ {
v.Content[row] = make([]rune, x)
v.Format[row] = make([]Format, x)
for col := 0; col < x; col++ {
v.clear(row, col)
}
}
return v
}
func (v *VT100) UsedHeight() int {
count := 0
for _, l := range v.Content {
for _, r := range l {
if r != ' ' {
count++
break
}
}
}
return count
}
func (v *VT100) Resize(y, x int) {
if y > v.Height {
n := y - v.Height
for row := 0; row < n; row++ {
v.Content = append(v.Content, make([]rune, v.Width))
v.Format = append(v.Format, make([]Format, v.Width))
for col := 0; col < v.Width; col++ {
v.clear(v.Height+row, col)
}
}
v.Height = y
} else if y < v.Height {
v.Content = v.Content[:y]
v.Height = y
}
if x > v.Width {
for i := range v.Content {
row := make([]rune, x)
copy(row, v.Content[i])
v.Content[i] = row
format := make([]Format, x)
copy(format, v.Format[i])
v.Format[i] = format
for j := v.Width; j < x; j++ {
v.clear(i, j)
}
}
v.Width = x
} else if x < v.Width {
for i := range v.Content {
v.Content[i] = v.Content[i][:x]
v.Format[i] = v.Format[i][:x]
}
v.Width = x
}
}
func (v *VT100) Write(dt []byte) (int, error) {
n := len(dt)
if len(v.unparsed) > 0 {
dt = append(v.unparsed, dt...) // this almost never happens
v.unparsed = nil
}
buf := bytes.NewBuffer(dt)
for {
if buf.Len() == 0 {
return n, nil
}
cmd, err := Decode(buf)
if err != nil {
if l := buf.Len(); l > 0 && l < 12 { // on small leftover handle unparsed, otherwise skip
v.unparsed = buf.Bytes()
}
return n, nil
}
v.Process(cmd) // ignore error
}
}
// Process handles a single ANSI terminal command, updating the terminal
// appropriately.
//
// One special kind of error that this can return is an UnsupportedError. It's
// probably best to check for these and skip, because they are likely recoverable.
// Support errors are exported as expvars, so it is possibly not necessary to log
// them. If you want to check what's failed, start a debug http server and examine
// the vt100-unsupported-commands field in /debug/vars.
func (v *VT100) Process(c Command) error {
return c.display(v)
}
// HTML renders v as an HTML fragment. One idea for how to use this is to debug
// the current state of the screen reader.
func (v *VT100) HTML() string {
var buf bytes.Buffer
buf.WriteString(`<pre style="color:white;background-color:black;">`)
// Iterate each row. When the css changes, close the previous span, and open
// a new one. No need to close a span when the css is empty, we won't have
// opened one in the past.
var lastFormat Format
for y, row := range v.Content {
for x, r := range row {
f := v.Format[y][x]
if f != lastFormat {
if lastFormat != (Format{}) {
buf.WriteString("</span>")
}
if f != (Format{}) {
buf.WriteString(`<span style="` + f.css() + `">`)
}
lastFormat = f
}
if s := maybeEscapeRune(r); s != "" {
buf.WriteString(s)
} else {
buf.WriteRune(r)
}
}
buf.WriteRune('\n')
}
buf.WriteString("</pre>")
return buf.String()
}
// maybeEscapeRune potentially escapes a rune for display in an html document.
// It only escapes the things that html.EscapeString does, but it works without allocating
// a string to hold r. Returns an empty string if there is no need to escape.
func maybeEscapeRune(r rune) string {
switch r {
case '&':
return "&amp;"
case '\'':
return "&#39;"
case '<':
return "&lt;"
case '>':
return "&gt;"
case '"':
return "&quot;"
}
return ""
}
// put puts r onto the current cursor's position, then advances the cursor.
func (v *VT100) put(r rune) {
v.scrollIfNeeded()
v.Content[v.Cursor.Y][v.Cursor.X] = r
v.Format[v.Cursor.Y][v.Cursor.X] = v.Cursor.F
v.advance()
}
// advance advances the cursor, wrapping to the next line if need be.
func (v *VT100) advance() {
v.Cursor.X++
if v.Cursor.X >= v.Width {
v.Cursor.X = 0
v.Cursor.Y++
}
// if v.Cursor.Y >= v.Height {
// // TODO(jaguilar): if we implement scroll, this should probably scroll.
// // v.Cursor.Y = 0
// v.scroll()
// }
}
func (v *VT100) scrollIfNeeded() {
if v.Cursor.Y >= v.Height {
first := v.Content[0]
copy(v.Content, v.Content[1:])
for i := range first {
first[i] = ' '
}
v.Content[v.Height-1] = first
v.Cursor.Y = v.Height - 1
}
}
// home moves the cursor to the coordinates y x. If y x are out of bounds, v.Err
// is set.
func (v *VT100) home(y, x int) {
v.Cursor.Y, v.Cursor.X = y, x
}
// eraseDirection is the logical direction in which an erase command happens,
// from the cursor. For both erase commands, forward is 0, backward is 1,
// and everything is 2.
type eraseDirection int
const (
// From the cursor to the end, inclusive.
eraseForward eraseDirection = iota
// From the beginning to the cursor, inclusive.
eraseBack
// Everything.
eraseAll
)
// eraseColumns erases columns from the current line.
func (v *VT100) eraseColumns(d eraseDirection) {
y, x := v.Cursor.Y, v.Cursor.X // Aliases for simplicity.
switch d {
case eraseBack:
v.eraseRegion(y, 0, y, x)
case eraseForward:
v.eraseRegion(y, x, y, v.Width-1)
case eraseAll:
v.eraseRegion(y, 0, y, v.Width-1)
}
}
// eraseLines erases lines from the current terminal. Note that
// no matter what is selected, the entire current line is erased.
func (v *VT100) eraseLines(d eraseDirection) {
y := v.Cursor.Y // Alias for simplicity.
switch d {
case eraseBack:
v.eraseRegion(0, 0, y, v.Width-1)
case eraseForward:
v.eraseRegion(y, 0, v.Height-1, v.Width-1)
case eraseAll:
v.eraseRegion(0, 0, v.Height-1, v.Width-1)
}
}
func (v *VT100) eraseRegion(y1, x1, y2, x2 int) {
// Do not sanitize or bounds-check these coordinates, since they come from the
// programmer (me). We should panic if any of them are out of bounds.
if y1 > y2 {
y1, y2 = y2, y1
}
if x1 > x2 {
x1, x2 = x2, x1
}
for y := y1; y <= y2; y++ {
for x := x1; x <= x2; x++ {
v.clear(y, x)
}
}
}
func (v *VT100) clear(y, x int) {
if y >= len(v.Content) || x >= len(v.Content[0]) {
return
}
v.Content[y][x] = ' '
v.Format[y][x] = Format{}
}
func (v *VT100) backspace() {
v.Cursor.X--
if v.Cursor.X < 0 {
if v.Cursor.Y == 0 {
v.Cursor.X = 0
} else {
v.Cursor.Y--
v.Cursor.X = v.Width - 1
}
}
}
func (v *VT100) save() {
v.savedCursor = v.Cursor
}
func (v *VT100) unsave() {
v.Cursor = v.savedCursor
}