import multiprocessing from multiprocessing import Pipe class DoubleTask(object): def __init__(self, n, conn): self.n = n self.conn = conn # pipe to send results back def __call__(self): print("DoubleTask %s" % (self.n)) self.conn.send((self.n, 2*self.n)) self.conn.close() return (self.n, 2*self.n) def __str__(self): return 'DoubleTask (%d)' % (self.n) class TripleTask(object): def __init__(self, n): self.n = n def __call__(self): print("TripleTask %s" % (self.n)) return (self.n, 3*self.n) def __str__(self): return 'TripleTask (%d)' % (self.n) class BigTask(object): def __init__(self, n, doubler_queue): self.n = n self.doubler_queue = doubler_queue def __call__(self): print("BigTask %s" % (self.n)) # put the DoubleTask into the doubler_queue and wait for a result parent_conn, child_conn = Pipe() double_task = self.doubler_queue.put(DoubleTask(self.n, child_conn)) double_task_answer = parent_conn.recv() return (self.n, double_task_answer + TripleTask(self.n)()) def __str__(self): return 'BigTask (%d)' % (self.n) class SimpleConsumer(multiprocessing.Process): def __init__(self, task_queue): multiprocessing.Process.__init__(self) self.task_queue = task_queue def run(self): proc_name = self.name while True: next_task = self.task_queue.get() if next_task is None: # Poison pill means shutdown print('%s: Exiting' % proc_name) self.task_queue.task_done() break print('%s: %s' % (proc_name, next_task)) answer = next_task() self.task_queue.task_done() return answer class Consumer(SimpleConsumer): def __init__(self, task_queue, result_queue): pass def run(self): pass if __name__ == '__main__': manager = multiprocessing.Manager() big_queue = multiprocessing.JoinableQueue() doubler_queue = multiprocessing.JoinableQueue() triple_queue = multiprocessing.JoinableQueue() double_results = manager.dict() triple_results = manager.dict() big_results = multiprocessing.Queue() doubler_processor = ConsumerWithResultDict(doubler_queue, double_results) triple_processor = ConsumerWithResultDict(triple_queue, triple_results) big_processor = Consumer(big_queue, big_results) doubler_processor.start() triple_processor.start() big_processor.start() n_tasks = 10 for k in range(n_tasks): big_queue.put(BigTask(k, doubler_queue)) doubler_queue.put(None) # mark the end triple_queue.put(None) big_queue.put(None) # while there is an expectation of more results, read off results in the results queue results_so_far = 0 net_results = {} while results_so_far < n_tasks: result = big_results.get() net_results[result[0]] = result[1] print(result) results_so_far += 1 print("net results", net_results)