added free courses (#6551)
* Update free-courses-en.md Added free courses with their link for machine learning and data science. * Update free-courses-en.md Added free courses for data science and machine learning with correct alphabetical order. * Update free-courses-en.md Added free course for machine learning in alphabetical order. * Update free-courses-en.md * Update free-courses-en.mdpull/6566/head
parent
aff6a7bbe0
commit
4b86281988
|
@ -271,6 +271,7 @@
|
|||
|
||||
* [Advanced Data Mining with Weka MOOC](https://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/)
|
||||
* [Data Analysis and Visualization](https://www.udacity.com/course/data-analysis-and-visualization--ud404) - Georgia Tech (Udacity)
|
||||
* [Data Analysis with Python: Zero to Pandas](https://jovian.ai/learn/data-analysis-with-python-zero-to-pandas) (Jovian)
|
||||
* [Data Analysis with R](https://www.udacity.com/course/data-analysis-with-r--ud651) - Facebook (Udacity)
|
||||
* [Data Cleaning by Rachael Tatman at Kaggle](https://www.kaggle.com/learn/data-cleaning)
|
||||
* [Data Mining with Weka MOOC](https://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/)
|
||||
|
@ -319,6 +320,7 @@
|
|||
* [Deep Learning for Natural Language Processing](http://cs224d.stanford.edu)
|
||||
* [Deep Learning Specialization](https://www.coursera.org/specializations/deep-learning) (coursera)
|
||||
* [Deep Learning with PyTorch](https://www.youtube.com/playlist?list=PLWKjhJtqVAbm3T2Eq1_KgloC7ogdXxdRa) - Aakash N. S., freeCodeCamp.org (YouTube)
|
||||
* [Deep Learning with Pytorch: Zero tp GANs](https://jovian.ai/learn/deep-learning-with-pytorch-zero-to-gans) (Jovian)
|
||||
* [Deep Multi-Task and Meta Learning](https://cs330.stanford.edu) - Chelsea Finn (Stanford University)
|
||||
* [Deep Reinforcement Learning](http://rail.eecs.berkeley.edu/deeprlcourse/) - Sergey Levine
|
||||
* [Exploring Fairness in Machine Learning for International Development](https://ocw.mit.edu/resources/res-ec-001-exploring-fairness-in-machine-learning-for-international-development-spring-2020) - Dr. Richard Fletcher, Prof. Daniel Frey, Dr. Mike Teodorescu, Amit Gandhi, Audace Nakeshimana (MIT OpenCourseWare)
|
||||
|
@ -663,6 +665,7 @@
|
|||
* [Machine Learning Tutorial Python \| Machine Learning For Beginners](https://www.youtube.com/playlist?list=PLeo1K3hjS3uvCeTYTeyfe0-rN5r8zn9rw) - Dhaval Patel
|
||||
* [Machine Learning with Python - Youtube Playlist](https://www.youtube.com/playlist?list=PLZoTAELRMXVPBTrWtJkn3wWQxZkmTXGwe) - Krish Naik (YouTube)
|
||||
* [Machine Learning with Python by Saeed Aghabozorgi](https://cognitiveclass.ai/courses/machine-learning-with-python) (cognitiveclass.ai)
|
||||
* [Machine Learning with Python: Zero to GBMs](https://jovian.ai/learn/machine-learning-with-python-zero-to-gbms) (Jovian)
|
||||
* [Mathematics for Machine Learning - Linear Algebra](https://www.youtube.com/playlist?list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3) - Imperial College London, Dr David Dye, Dr Sam Cooper
|
||||
* [Mathematics for Machine Learning - Multivariate Calclus](https://www.youtube.com/playlist?list=PLiiljHvN6z193BBzS0Ln8NnqQmzimTW23) - Imperial College London, Dr David Dye, Dr Sam Cooper
|
||||
* [Pattern Recognition and Machine Learning](https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book)
|
||||
|
|
Loading…
Reference in New Issue